40 Digital Image Fundamentals

distributing the samples, greater sample concentration should be used in gray-
level transition boundaries, such as the boundary between the face and the
background in this example.

The necessity of having to identify boundaries, even if only roughly, is a
definite drawback of the nonuniform sampling approach. This method also is
not practical for images containing relatively small uniform regions. For in-
stance, nonuniform sampling would be difficult to justify for an image of a
dense crowd of people.

When the number of gray levels must be kept small, the use of unequally
spaced levels in the quantization process usually is desirable. A method similar
to the nonuniform sampling technique discussed earlier may be used for the
distribution of gray levels in an image. However, as the eye is relatively poor
at estimating shades of gray near abrupt level changes, the approach in this
case is to use few gray levels in the neighborhood of boundaries. The remaining
levels can then be used in regions where gray-level variations are smooth, thus
avoiding or reducing the false contours that often appear in these regions if
they are too coarsely quantized.

This method is subject to the preceding observations about boundary de-
tection and detail content. An alternative technique that is particularly attrac-
tive for distributing gray levels consists of computing the frequency of occur-
rence of all allowed levels. If gray levels in a certain range occur frequently,
while others occur rarely, the quantization levels are finely spaced in this range
and coarsely spaced outside of it. This method is sometimes called tapered
quantization. We discuss these topics further in Chapter 6.

2.4 SOME BASIC RELATIONSHIPS BETWEEN PIXELS

In this section we consider several primitive, yet important relationships be-
tween pixels in a digital image. As mentioned before, an image is denoted by
f(x, y). When referring to a particular pixel, we use lowercase letters, such as
p and q. A subset of pixels of f(x, y) is denoted by §.

2.4.1 Neighbors of a Pixel

A pixel p at coordinates (x, y) has four horizontal and vertical neighbors whose
coordinates are given by

(JC + 1,y), ()C -]:y)a (x,y + l)s(x’y - l)

This set of pixels, called the 4-neighbors of p, is denoted by N,(p). Each pixel
is a unit distance from (x, y), and some of the neighbors of p lie outside the
digital image if (x, y) is on the border of the image.

The four diagonal neighbors of p have coordinates

x+Ly+D,x+1L,y—1),x—-1y+1),x—-1,y—1)

2.4 Some Basic Relationships Between Pixels 41

and are denoted by N,(p). These points, together with the 4-neighbors, are
called the 8-neighbors of p, denoted by Ny(p). As before, some of the points
in Ny(p) and Ny(p) fall outside the image if (x, y) is on the border of the
image.

2.4.2 Connectivity

Connectivity between pixels is an important concept used in establishing bound-
aries of objects and components of regions in an image. To establish whether
two pixels are connected, it must be determined if they are adjacent in some
sense (say, if they are 4-neighbors) and if their gray levels satisty a specified
criterion of similarity (say, if they are equal). For instance, in a binary image
with values 0 and 1, two pixels may be 4-neighbors, but they are not said to
be connected unless they have the same value.

Let V be the set of gray-level values used to define connectivity; for ex-
ample, in a binary image, V = {1} for the connectivity of pixels with value 1.
In a gray-scale image, for the connectivity of pixels with a range of intensity
values of, say, 32 to 64, it follows that V' = {32,33, . . . , 63, 64}. We consider
three types of connectivity:

(a) 4-connectivity. Two pixels p and g with values from V are 4-connected if
q is in the set Ny(p).

(b) 8-connectivity. Two pixels p and g with values from V are 8-connected if
g is in the set Ny(p).

(¢) m-connectivity (mixed connectivity). Two pixels p and g with values from
V are m-connected if
(i) g isin Ni(p), or
(ii) g is in N,(p) and the set No(p)NNy(g) is empty. (This is the set of pixels
that are 4-neighbors of both p and ¢ and whose values are from V')

Mixed connectivity is a modification of 8-connectivity and is introduced to
eliminate the multiple path connections that often arise when 8-connectivity is
used. For example, consider the pixel arrangement shown in Fig. 2.13(a). For
V = {1}, the paths between 8-neighbors of the center pixel are shown by dashed
lines in Fig. 2.13(b). Note the ambiguity in path connections that results from
allowing 8-connectivity. This ambiguity is removed by using m-connectivity, as
shown in Fig. 2.13(c).

A pixel p is adjacent to a pixel g if they are connected. We can define 4-,
8-, or m-adjacency depending on the type of connectivity specified. Two image
subsets S, and S, are adjacent if some pixel in S, is adjacent to some pixel in ..

A path from pixel p with coordinates (x, y) to pixel g with coordinates
(s, £) is a sequence of distinct pixels with coordinates

(xna ,Vn), (xl‘)’1), L] (xm yn)

42 Digital Image Fundamentals

0 1 1 0 | ——--1 0 |====1
E
[i
0 10 0 170 0 .0
\\\ \\\
0o 0 I 0o 0 0 0

(a) (b) (<)

Figure 2.13 (a) Arrangement of pixels; (b) 8-neighbors of the center pixel; (c) m-neighbors
of the same pixel. The dashed lines are paths between that pixel and its neighbors.

where (xo, yo) = (x, y) and (x,, y,) = (s, 1), (x,, y,) is adjacent to (x,_;, y._1),
1 <i = n, and n is the length of the path. We can define 4-, 8-, or m-paths
depending on the type of adjacency specified.

If p and g are pixels of an image subset S, then p is connected to g in S if
there is a path from p to g consisting entirely of pixels in §. For any pixel p in
S, the set of pixels in S that are connected to p is called a connected component
of §. Hence any two pixels of a connected component are connected to each
other, and distinct connected components are disjoint.

The ability to assign different labels to various disjoint, connected com-
ponents of an image is of fundamental importance in automated image analysis.
In the following section we develop a simple sequential connected component
labeling procedure that operates on two rows of a binary image at a time. We
develop a different approach based on morphology in Section 8.4.

2.4.3 Labeling of Connected Components

Imagine scanning an image pixel by pixel, from left to right and from top to
bottom and assume for the moment that we are interested in 4-connected
components. Let p denote the pixel at any step in the scanning process and let
r and f denote the upper and left-hand neighbors of p, respectively. The nature
of the scanning sequence ensures that when we get to p, points r and ¢ have
already been encountered (and labeled if they were 1’s).

With the preceding concepts established, let us consider the following pro-
cedure. If the value of p is 0, simply move on to the next scanning position. If
the value of p is 1, examine r and ¢. If they are both 0, assign a new label to
p (as far as we know, based on the current information, this is the first time
that this connected component has been encountered). If only one of the two
neighbors is 1, assign its label to p. If they are both 1 and have the same label,
assign that label to p. If they are both 1 and have different labels, assign one
of the labels to p and make a note that the two labels are equivalent (that is,
points r and ¢ are connected through p). At the end of the scan, all points with
value 1 have been labeled, but some of these labels may be equivalent. All we
need to do now is sort all pairs of equivalent labels into equivalence classes

2.4 Some Basic Relationships Between Pixels 43

(see Section 2.4.4), assign a different label to each class, and then do a second
pass through the image, replacing each label by the label assigned to its equiv-
alence class.

To label 8-connected components we proceed in the same way, but the two
upper diagonal neighbors of p, denoted by ¢ and s, also have to be examined.
The nature of the scanning sequence ensures that these neighbors have already
been processed by the time the procedure gets to p. If p is 0, move on to the
next scanning position. If p is 1 and all four neighbors are 0, assign a new label
to p. If only one of the neighbors is 1, assign its label to p. If two or more
neighbors are 1, assign one of the labels to p and make a note of the appropriate
equivalences. After completing the scan of the image sort the equivalent label
pairs into equivalence classes, assign a unique label to each class, and do a
second scan through the image, replacing each label by the label assigned to
its equivalence class.

2.4.4 Relations, Equivalence, and Transitive Closure

The labeling algorithm discussed in the previous section suggests the usefulness
of formal tools for handling relationships and equivalences in pixel processing.
Let us consider briefly some important concepts that are the bases of such
relationships and equivalences.

A binary relation” R on a set A is a set of pairs of elements from A. If the
pair (a, b) is in R, the notation often used is @Rb which, in words, is interpreted
to mean “q is related to b.”” Take for example, the set of points A = {p,, p,,
Ds, pap arranged as

™ P2
Pa
Pa

and define the relation “4-connected.” In this case, R is the set of pairs of
points from A that are 4-connected; that is, R = {(p., p2), (P2, P1), (P1, P3),
(ps, p1)}. Thus p, is related to p,, and p, is related to p;, and vice versa, but p,
is not related to any other point under the relation “4-connected”.

A binary relation R over set A is said to be

(a) reflexive if for each g in A, aRa;
(b) symmetric if for each a and b in A, aRb implies bRa; and
(¢) transitive if for a, b, and ¢ in A, aRb and bRc implies aRc.

A relation satisfying these three properties is called an equivalence relation.

' In this context, the word binary refers to “two,” and has nothing to do with binary images.

44 Digital Image Fundamentals

An important property of equivalence relations is that, if R is an equivalence

relation on a set A, then A can be divided into k£ disjoint subsets, called

equivalence classes, for some k between | and o, inclusive, such that aRb if

and only if a and b are in the same subset.

Expressing a relation in terms of a binary matrix is useful. For example,
letting R = {(a. a), (a, b). (b, d), (d, b), (¢,)} yields the matrix

a b ¢ d e

all 1 0 0 0

bfo 0 0 1 0

B=c{0O 0 0 0 1

dyo 10 0 0

elO 0 0 0 0

if a 1 is inserted in the locations corresponding to elements that are related
and O’s are inserted elsewhere. If the relation in question were reflexive, all
the main diagonal terms would be 1; if R were symmetric, B would be a
symmetric matrix.

As indicated above, transitivity implies if aRb and bRc then aRc. In the
example just given, a is related to & and b is related to d because (a, b) and
(b, d) arc in R. However, we note that (a, d) is not in the set R. The set
containing these “implied” relations is called the fransitive closure of R and 1s
denoted by R". Here, R™ = {(a, a), (a, b), (a, d), (b, b), (b, d). (d, b). (d, d),
(¢, e)}. The fact that the set includes the pairs (b, b) and (d, d) follows from
the definition of transitivity (that is, bRd and dRb, so bRb; and dRb and bRd,
so dRd). Expressed in matrix form,

a b ¢ d e

all 10 1 0
blo 1 0 1 0

L -

where the 1-valued elements determine the members of the transitive closure
R’ . A straightforward procedure for computing matrix B* from a given matrix
B is as follows.

Let B be an # X n binary matrix representing a relation R over an alphabet

2.4 Some Basic Relationships Between Pixels 45

A of n symbols and compute the matrix
B =B+ BB + BBB + - + (B) (2.4-1)

where (B)" = BBB . . . B (n times). The 1-valued elements of the matrix B*
represent the transitive closure, R*, of relation R (Gries [1971]). The matrix
operations are carried out in the usual manner, except that all multiplications
are replaced by logical ANDs and all additions (including those shown in Eq.
2.4-1) are replaced by logical ORs. The order of operations in Eq. (2.4-1) is
B, B(B), B(BB), B(BBB), . . . so that, at each step, we simply multiply the
result up to that point by B. We leave it as an exercise to show that Eq. (2.4-
1) gives the same result for B* as in the example above.

Implementation of Eq. (2.4-1) requires on the order of n* AND and OR
operations. Warshall [1962] developed a more efficient algorithm that requires
only OR operations involving the elements of B that have value 1:

Step 1. Setj = 1.

Step 2. Fori = 1,2,...,n,ifb(i,j) = 1, then, fork = 1,2, ... ,n,
set b(i, k) = b(i, k) + b(]. k).

Step 3. Increment j by 1.

Step 4. 1f j = n, go to Step 2; otherwise go to Step 5.

Step 5. Stop. The result is B™ in place of B.

It is instructive to verify that this procedure yields the same result as Eq. (2.4-
1) for the example earlier in this section.

In practice (as in the algorithm presented at the end of Section 2.4.3) the
assumption typically is that the relations are equivalence relations, in which
case matrix B is symmetric and all the main diagonal terms are set to 1 prior
to use of either Eq. (2.4-1) or Warshall’s algorithm to compute the transitive
closure. The equivalence classes of the various symbols in the alphabet leading
to matrix B* can then be determined by scanning this matrix from left to right
and from top to bottom. When a 1 is encountered in, say, row i and column
j, we set the symbol associated with the jth column equal to the symbol asso-
ciated with the ith row (they are equivalent), zero out the jth column, and
continue the scan of matrix B*.

2.4.5 Distance Measures

For pixels p, g, and z, with coordinates (x, y), (s,), and (u, v) respectively,
D is a distance function or metric it

@@ D(p,q) =0 (D(p.q) = 0itfp = q),

() D(p, q) = D(q, p). and

() D(p,z) = D(p, q) + D(q, 2).

46 Digital Image Fundamentals

The Euclidean distance between p and g is defined as

Ddp.q) =[x =5 + (v — " (2.4-2)

For this distance measure, the pixels having a distance less than or equal to
some value r from (x, y) are the points contained in a disk of radius r centered
at (x, y).

The D, distance (also called city-block distance) between p and g is defined
as

Dip.gq) = |x = s/ + |y =1 (2.4-3)

In this case the pixels having a D, distance from (x, y) less than or equal to
some value r form a diamond centered at (x, y). For example, the pixels with
D, distance = 2 from (x, y) (the center point) form the following contours of
constant distance:

2
rJ

)
b —

The pixels with D, = 1 are the 4-neighbors of (x, y).
The Dy distance (also called chessboard distance) between p and ¢ is defined
as

D(p, q) = max(|x — s|, |y —). (2.4-4)

In this case the pixels with Dy distance from (x, y) less than or equal to some
value r form a square centered at (x, v). For example, the pixels with D, distance
= 2 from (x, y) (the center point) form the following contours of constant
distance:

ST SO RN SN oS I §8

2 2
1 1
I 01
1 1
2 2

SV IN SORN SO TN NS I S

The pixels with Dy = 1 are the 8-neighbors of (x, y).

The D, distance between two points p and ¢ is equal to the length of the
shortest 4-path between these two points. The same applies to the Dy distance.
In fact, we can consider both the D, and D; distances between p and g regardless
of whether a connected path exists between them because the definitions of
these distances involve only the coordinates of these points. For m-connectivity,

2.4 Some Basic Relationships Between Pixels 47

however, the value of the distance (length of the path) between two pixels
depends on the values of the pixels along the path and those of their neighbors.
For instance, consider the following arrangement of pixels and assume that p,
p., and p, have a value of 1 and that p, and p, can have a value of 0 or 1:

P3P
Py D2
p

If only connectivity of pixels valued 1 is allowed, and p, and p; are 0, the m
distance between p and p. is 2. If either p, or ps is 1, the distance is 3. If both
p, and p; are 1, the distance is 4.

2.4.6 Arithmetic/Logic Operations

Arithmetic and logic operations between pixels are used extensively in most
branches of image processing. The arithmetic operations between two pixels p
and g are denoted as follows:

Addition: p + g

Subtraction: p — g
Multiplication: p=*q (also, pg and p X g)

Division: p + g

Arithmetic operations on entire images are carried out pixel by pixel. The
principal use of image addition is for image averaging to reduce noise. Image
subtraction is a basic tool in medical imaging, where it is used to remove static
background information. One of the principal uses of image multiplication (or
division) is to correct gray-level shading resulting from nonuniformities in il-
lumination or in the sensor used to acquire the image. Arithmetic operations
involve only one spatial pixel location at a time, so they can be done “in place,”
in the sense that the result of performing an arithmetic operation at location
(x, y) can be stored in that location in one of the existing images, as that
location will not be visited again.

The principal logic operations used in image processing are AND, OR,
and COMPLEMENT, denoted as follows:

AND: pANDyg (also, p - q)
OR: pORg (also, p + q)
COMPLEMENT: NOTqg (also, g)

These operations are functionally complete in the sense that they can be com-
bined to form any other logic operation. Logic operations apply only to binary

48 Digital Image Fundamentals

images, whereas arithmetic operations apply to multivalued pixels. Logic op-
erations are basic tools in binary image processing, where they are used for
tasks such as masking, feature detection, and shape analysis. Logic operations
on entire images are performed pixel by pixel. Because the AND operation of
two binary variables i1s 1 only when both variables are 1, the result at any
location in a resulting AND image is 1 only if the corresponding pixels in the
two input images are 1. As logic operations involve only one pixel location at
a time, they can be done in place, as in the case of arithmetic operations. Figure
2.14 shows various examples of logic operations, where black indicates 1 and
white indicates 0. The XOR (exclusive OR) operation yields a 1 when one or
the other pixel (but not both) is 1, and it yields a 0 otherwise. This operation
is unlike the OR operation, which is 1 when one or the other pixel is 1, or
both pixels are 1.

In addition to pixel-by-pixel processing on entire images, arithmetic and
logic operations are used in neighborhood-oriented operations. Neighborhood
processing typically is formulated in the context of so-called mask operations
(the terms template, window, and filter also are often used to denote a mask).
The idea behind mask operations is to let the value assigned to a pixel be a
function of its gray level and the gray level of its neighbors. For instance,
consider the subimage area shown in Fig. 2.15(a), and suppose that we want
to replace the value of z; with the average value of the pixelsin a3 x 3 region
centered at the pixel with value z;. To do so entails performing an arithmetic
operation of the form

1
Z=-§‘(Z.+21+"'+Z.,):?ZZ,

and assigning to zs the value of z.

With reference to the mask shown in Fig. 2.15(b), the same operation can
be obtained in more general terms by centering the mask at zs multiplying each
pixel under the mask by the corresponding coefficient, and adding the results;
that is,

9
Z= Wiz b Wazy b WeZo = D Wiz; (2.4-5)

i=1

Ifweletw, =1/9,i =1, 2, , 9, this operation yields the same result as
the averaging procedure Just dlsc,ussed

Equation (2.4-5) is used widely in image processmg Proper selection of
the coefficients and application of the mask at each pixel position in an image
makes possible a variety of useful image operations, such as noise reduction,
region thinning, and edge detection. However, applying a mask at each pixel
location in an image is a computationally expensive task. For example, applying
a3 x 3 mask to a 512 x 512 image requires nine multiplications and eight

2.4 Some Basic Relationships Between Pixels

A NOT (A)

NOT

o

A B (A) AND (B)

|
. AND I i
r————= [
o> | B

| !

1 |

| —— J

L
A B (A) OR (B)

A B (A) XOR (B)
- L B
A B [NOT (4)]AND (B)

NOT—-

49

Figure 2.14 Some examples of logic operations on binary images.

50 Digital Image Fundamentals

.
I 3 W W2 W1
. Iy 5 ,, . W4 Ws We
7 Iy 24 w3 wy Wy
.
.
(a) (b)

Figure 2.15 (a) Subarea of an image showing pixel values; (b) a 3 x 3 mask with general
coefficients.

additions at each pixel location, for a total of 2,359,296 multiplications and
2,097,152 additions.

As indicated in Section 1.4.3, most modern image processors are equipped
with an Arithmetic—Logic Unit (ALU), whose function is to perform arithmetic
and logic operations in parallel, typically at video-frame rates. For U.S. stan-
dard video, an ALU can perform an arithmetic or logic operation between two
512 x 512 images in 1/30 sec. (This time interval is often called one frame or
one frame time.) Given the importance of mask operations in image processing
it is of interest to consider in some detail how to use an ALU to accelerate
mask processing. For the purpose of illustration, we consider the 3 X 3 mask
shown in Fig. 2.15(b) and the implementation expressed by Eq. (2.4-5). How-
ever, the method is easily extendible to an n x m mask and other arithmetic
or logic operations.

The algorithm given here requires two image frame buffers with the ca-
pability to scroll and pan by one pixel location (see Section 1.4.2). Let frame
buffer A contain the image to which the mask is to be applied. At the end of
the process, frame buffer B will contain the result of the operation. Recall that
ALU operations are performed on all pixels in one frame time, whereas all
buffer shifts are performed virtually instantaneously. We assume that all shifts
are by one pixel. Letting B = A initially, and using a dash to indicate no
operation, we follow the procedure shown in Table 2.3. The last two shifts are
required because, at the end of the last operation on B, the image is in a
position equivalent to having the mask with its w; coefficient over the z; position.
The two shifts correct this misalignment.

The key to understanding the procedure in Table 2.3 is to examine what

2.5 Imaging Geometry 51

Table 2.3 ALU Operations

Operations on A Operations on B

— Multiply by w;
Shift right —

— Add wA
Shift down —

— Add w,*A4
Shift left —

— Add w,*A
Shift left —

— Add w,*A
Shift up —

— Add w,* A
Shift up —

— Add w,*A
Shift right —

— Add w,*A
Shift right —

— Add w,*4
Shift left —
Shift down —

happens in a single pixel of B by considering how a mask would have to be
shifted in order to produce the result of Eq. (2.4-5) in that location. The first
operation on B produces ws multiplied by the pixel value at that location. Since
that value is zs, we have wszs after this operation. The first shift to the right
brings the neighbor with value z, (see Fig. 2.15a) over that location. The next
operation multiplies z, by w, and adds the result to the location of the first
step. So at this point the result is w.z, + wsz; at the location in question. The
next shift on A and ALU operation on B produce w,z, + wiz; + wszs at that
location, and so on. The operations are done in parallel for all locations in B,
so this procedure takes place simultaneously at the other locations in that frame
buffer. In most ALUs, the operation of multiplying an image by a constant
(say, w=A) followed by an ADD is done in one¢ frame time. Thus the ALU
implementation of Eq. (2.4-5) for an entire image takes on the order of nine
frame times (9/30 sec). For an n X m mask it would take on the order of nm
frame times.

2.5 IMAGING GEOMETRY

In the following discussion we present several important transformations used
in imaging, derive a camera model, and treat the stereo imaging problem in
some detail.

