CHAPTER 5

8 IMAGE
RESTORATION

Things which we see are not by themselves
what we see. . . . It remains completely
unknown to us what the objects may be by
themselves and apart from the receptivity of our
senses. We know nothing but our manner of
perceiving them. . . .

Immanuel Kant

As in image enhancement, the ultimate goal of restoration techniques is to
improve an image in some sense. For the purpose of differentiation, we consider
restoration to be a process that attempts to reconstruct or recover an image
that has been degraded by using some a priori knowledge of the degradation
phenomenon. Thus restoration techniques are oriented toward modeling the
degradation and applying the inverse process in order to recover the original
image. This approach usually involves formulating a criterion of goodness that
will yield some optimal estimate of the desired result. By contrast, enhancement
techniques basically are heuristic procedures designed to manipulate an image
in order to take advantage of the psychophysical aspects of the human visual
system. For example, contrast stretching is considered an enhancement tech-
nique because it is based primarily on the pleasing aspects it might present to
the viewer, whereas removal of image blur by applying a deblurring function
is considered a restoration technique.

Early techniques for digital image restoration were derived mostly from
frequency domain concepts. However, this chapter focuses on a more modern,
algebraic approach, which has the advantage of allowing the derivation of
numerous restoration techniques from the same basic principles. Although a
direct solution by algebraic methods generally involves the manipulation of
large systems of simultaneous equations, we show that, under certain condi-
tions, computational complexity can be reduced to the same level as that re-
quired by traditional frequency domain restoration techniques.
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254 Image Restoration

The material developed in this chapter is strictly introductory. We consider
the restoration problem only from the point where a degraded, digital image
is given; thus we do not consider topics dealing with sensor, digitizer, and
display degradations. These subjects, although of importance in the overall
treatment of image restoration applications, are beyond the present discussion.
The references cited at the end of the chapter provide a guide to the voluminous
literature on these and related topics.

5.1 DEGRADATION MODEL

As Fig. 5.1 shows, the degradation process is modeled in this chapter as an
operator (or system) H, which together with an additive noise term 5(x, y)
operates on an input image f(x, y) to produce a degraded image g(x, y). Digital
image restoration may be viewed as the process of obtaining an approximation
to f(x, y), given g(x, y) and a knowledge of the degradation in the form of the
operator H. We assume that knowledge of n(x, y) is limited to information of
a statistical nature.

5.1.1 Some Definitions
The input—output relationship in Fig. 5.1 is expressed as
g(x, y) = H[f(x, y)] + n(x, ). (5.1-1)

For the moment, let us assume that 5(x, y) = 0so that g(x, y) = H[f(x, y)].
Then H is linear if

Hlkfi(x, y) + kafilx, )] = kH[fi(x, y)] + kH[f:(x, y)] (5.1-2)

where k; and k, are constants and f, (x, y) and f(x, y) are any two input images.
If k, = k, = 1, Eq. (5.1-2) becomes

H[fi(x, y) + £(x, )} = Hfi(x, )] + H[£:(x, y)] (5.1-3)
which is called the property of additivity; this property simply says that, if H

is a linear operator, the response to a sum of two inputs is equal to the sum
of the two responses.

n(x, y)

F(X, y) w— H gx,

Figure 5.1 A model of the image degradation process.
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With fo(x, y) = 0, Eq. (5.1-2) becomes

H[k.fi(x, )] = kiH[fi(x, y)] (5-1-4)

which is called the property of homogeneity. It says that the response to a
constant multiple of any input is equal to the response to that input multiplied
by the same constant. Thus a linear operator possesses both the property of
additivity and the property of homogeneity.

An operator having the input-output relationship g(x, y) = H[f(x, y)] is
said to be position (or space) invariant if

H{f(x — a,y — Pl = gx — &,y = B) (5.1-5)
for any f(x, y) and any « and B. This definition indicates that the response at
any point in the image depends only on the value of the input at that point
and not on the position of the point.

5.1.2 Degradation Model for Continuous Functions

With a slight (but equivalent) change in notation in the definition of the impulse
function, Eq. (3.3-46), f(x, y) can be expressed in the form

1) = [[ fa 3G~ @y - B dadB. (5.16)

Then, if n(x, y) = 0in Eq. (5.1-1),

g(x,y) = HIf(x,y)] = H[”f(a. oG — ayy — ) dadpl. (5.17)

If H is a linear operator and we extend the additivity property to integrals,
then

¢(x.y) = [[ Hf(@ Bo ~ @y - B) dads. (5.18)

Since f(a, B) is independent of x and y, and from the homogeneity property,

=

g(x, y) = ”f(a,ﬁ)H{B(x —a,y — p)l da dp. (5.19)
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The term

h(x, a,y, B) = H[8(x — a,y — B)] (5.1-10)

is called the impulse response of H. In other words, if n(x, y) = 0 in Eq.
(5.1-1), then h(x, a, y, B) is the response of H to an impulse of strength 1 at
coordinates (e, B8). In optics, the impulse becomes a point of light and 4 (x, a,
¥, B) is commonly referred to in this case as the point spread function (PSF),
as discussed in Section 4.1.2.

Substituting Eq. (5.1-10) into Eq. (5.1-9) yields the expression

gx,y) = J-f f(a, B)h(x, a, y, B) da dB (5.1-11)

which is called the superposition (or Fredholm) integral of the first kind. This
expression is of fundamental importance in linear system theory. It states that
if the response of H to an impulse is known, the response to any input f(a, 8)
can be calculated by means of Eq. (5.1-11). In other words, a linear system H
is completely characterized by its impulse response.

If H is position invariant, from Eq. (5.1-5),

H3(x — a,y = B)] = h(x — a,y — B). (5.1-12)

Equation (5.1-11) reduces in this case to

8.y = [[ fa BhG ~ ay — p) dadp (5.1-13)

which is the convolution integral defined in Eq. (3.3-30).
In the presence of additive noise the expression describing a linear deg-
radation model becomes

2.y = [[ fa Bhr ay, B dacdp + mEx ). S114)

If H is position invariant, Eq. (5.1-14) becomes

g = [ fla Bht: — ay — B dadp + n@x,y).  G115)
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The noise, of course, is assumed in both cases to be independent of position
in the image.

Many types of degradations can be approximated by linear, position in-
variant processes. The advantage of this approach is that the extensive tools
of linear system theory then become available for the solution of image res-
toration problems. Nonlinear and space variant techniques, although more
general (and usually more accurate), introduce difficulties that often have no
known solution or are very difficult to solve computationally. This chapter
focuses on linear, space invariant restoration techniques. However, even this
simplification can result in computational problems that, if attacked directly,
are beyond the practical capabilities of most present-day computers.

5.1.3 Discrete Formulation

The development of a discrete, space invariant degradation model is simplified
by starting with the 1-D case and temporarily neglecting the noise term. Suppose
that two functions f(x) and h(x) are sampled uniformly to form arrays of
dimensions A and B, respectively. In this case, x is a discrete variable in the
ranges, 0,1,2,...,A — 1forf(x)and 0, 1,2, ..., B — 1 for h(x).

The discrete convolution formulation given in Section 3.3.8 is based on the
assumption that the sampled functions are periodic, with a period M. Overlap
in the individual periods of the resulting convolution is avoided by choosing
M = A + B — 1 and extending the functions with zeros so that their length
is equal to M. Letting f.(x) and h.(x) represent the extended functions yields,
from Eq. (3.3-29), their convolution:

g(x) = }:,ﬂfe(m)ke(x - m) (5.1-16)

forx =0,1,2,..., M — 1. As both f,(x) and A.(x) are assumed to have a
period equal to M, g.(x) also has this period.
Using matrix notation, Eq. (5.1-16) can be expressed in the form

g = Hf (5.1-17)
where f and g are M-dimensional column vectors:

£(0)

f(1)

f= (5.1-18)

fe(M - 1)
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and
g.(0)
g.(1)
g = . (5.1-19)
g(M - 1)
and H is the M x M matrix
-ha(o) h\’(_l) hr(_z) he(_M + 1)-
h.(1) h.(0) h.(-1) o h(—-M + 2)
H=| Q) h.(1) h.(0) o h(-M + 3) (5.1-20)
| (M — 1) h(M - 2) h(M -3) - h(0)

Because of the periodicity assumption on A, (x), it follows that A.(x) = h.(M
+ x). This property allows Eq. (5.1-20) to be written in the form

= h.(0) h(M—1) h(M-2) -+ h(1)7
h.(1) h.(0) h(M - 1) - h(2)
H=| h(2) h.(1) h(0) o h(3) (5.1-21)
| A (M - 1) h(M-2) h(M —-3) - h.(0)_

The structure of this matrix plays a fundamental role throughout the re-
mainder of this chapter. In Eq. (5.1-21) the rows are related by a circular shift
to the right; that is, the right-most element in one row is equal to the left-most
element in the row immediately below. The shift is called circular because an
element shifted off the right end of a row reappears at the left end of the next
row. Moreover, in Eq. (5.1-21) the circularity of H is complete in the sense
that it extends from the last row back to the first row. A square matrix in which
each row is a circular shift of the preceding row, and the first row is a circular
shift of the last row, is called a circulant matrix. Keep in mind that the circular
behavior of H is a direct consequence of the assumed periodicity of A, (x).

Example: Suppose that A = 4 and B = 3. We may choose M = 6 and then
append two zeros to the samples of f(x) and three zeros to samples of & (x).
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In this case f and g are 6-D vectors and H is the 6 X 6 matrix

~h.(0) h.(5) h.(4) - h(1)7
h. (1) h(0) h(5) - h(2)
H=|hQ2 A1) hO - hQ@)
| h(5) h.(4) h(3) - h(0)]

However, as h.(x) = 0 forx = 3,4, 5, and h.(x) = h(x) forx = 0, 1, 2,

h(0) h(2) k(1)
k(1) h(0) h(2)
o = h(2) h(1) h(0)
h(2) k(1) h(0)
h(2) k(1) h(0)
I k(@) k(1)) RO)
where all elements not indicated in the matrix are zero. Qa

Extension of the discussion to a 2-D, discrete degradation model is straight-
forward. For two digitized images f(x, y) and h(x, y) of sizes A X B and C X
D, respectively, extended images of size M X N may be formed by padding
the above functions with zeros. As indicated in Section 3.3.8, one procedure
for doing this is to let

f(x,y) 0sx<A -1 and 0sy<B -1
felx, y) =
0 As<sx<sM-1 or Bs<ysN-1
and
h(x,y) 0sx<C-1 and 0sy<D -1
h(x,y) =
0 C<x<sM-1 o Ds<ysN-1

Treating the extended functions f.(x, y) and k. (x, y) as periodic in two dimen-
sions, with periods M and N in the x and y directions, respectively, yields, from
Eq. (3.3-35), the convolution of these two functions:

M-1 N-1

g(x.y) = > > flm, n)h(x —m,y - n) (5.1-22)

m=0 n=0
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forx=0,1,2,..., M —1andy =0,1,2,..., N — 1. The convolution
function g.(x, y) is periodic with the same period of f,(x, y) and h.(x, y).
Overlap of the individual convolution periods is avoided by choosing M = A +
C—-1and N= B + D — 1. To complete the discrete degradation model
requires adding an M X N extended discrete noise term 7.(x, y) to Eq.
(5.1-22) so that

N=-

g(x,y) = 2 X fulm, m)h.(x — m,y — n) + n.(x, y) (5.1-23)

m=0 n=0

forx=0,1,2,... , M—1andy=0,1,2,... ,N-1.

Let{, g, and n represent MN-dimensional column vectors formed by stack-
ing the rows of the M X N functions f.(x, y), g.(x, y), and n.(x, y). The first
N elements of f, for example, are the elements in the first row of f.(x, y),
the next N elements are from the second row, and so on for all M rows of
fe(x, y). This convention allows Eq. (5.1-23) to be expressed in vector-matrix
form:

g =Hf +n (5.1-24)

where f, g, and n are of dimension (MN) X 1 and H is of dimension MN X
MN. This matrix consists of M* partitions, each partition being of size N x N
and ordered according to

—Hn HM—I HM~-2 Hl-
Hl H, HM—I Hz
H=|H H, H, - Hy (5.1-25)
_HM v Hy, Hy ;3 - Hu_

Each partition H; is constructed from the jth row of the extended function
h.(x, y), as follows:

-he(jso) he(j’N_ 1) h,(f,N_ 2) h,(f', 1)-
h!(}v 1) h,(],()) he(f’N_ 1) h,(},Z)
H = | h(,2) h.(j,1) h.(j,0) o h(B3) | (5.1-26)
_he()'-’N_ 1) h,(],N_ 2) ke(J!N - 3) k‘(},O)_

where, as in Eq. (5.1-21), use was made of the periodicity of A.(x, y). Here,
H; is a circulant matrix, and the blocks of H are subscripted in a circular manner.
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For these reasons, the matrix H in Eq. (5.1-25) is often called a block-circulant
matrix.

Most of the discussion in the following sections centers on the discrete
degradation model given in Eq. (5.1-24). Keep in mind that derivation of this
expression was based on the assumption of a linear, space invariant degradation
process. As indicated earlier, the objective is to estimate the image f(x, y)
given g(x, y) and a knowledge of k(x, y) and n(x, y). In terms of Eq. (5.1-
24), this objective requires estimating f, given g and some knowledge about H
and n.

Although Eq. (5.1-24) seems deceptively simple, a direct solution of this
expression to obtain the elements of f is a monumental processing task for
images of practical size. If, for example, M = N = 512, H is of size 262,144
X 262,144. Thus to obtain f directly would require the solution of a system of
262,144 simultaneous linear equations. Fortunately, the complexity of this prob-
lem can be reduced considerably by taking advantage of the circulant properties
of H.

5.2 DIAGONALIZATION OF CIRCULANT
AND BLOCK-CIRCULANT MATRICES

We show in this section that solutions that are computationally feasible may
be obtained from the model in Eq. (5.1-24) by diagonalizing the H matrix. In
order to simplify the explanation we begin the discussion by considering cir-
culant matrices and then extend the procedure to block-circulant matrices.

5.2.1 Circulant Matrices
Consider an M X M circulant matrix H of the form

= h.(0) h(M = 1) h(M —=2) - h(1)7
h.(1) h.(0) he(M = 1) -+ h.(2)
H=|h(Q) h.(1) he(0) = he(3) (5.2-1)
| h(M — 1) h(M -2) h(M—3) -+ h(0)]

Let us define a scalar function A(k) and a vector w(k) as

2 2
AK) = h(0) + h,(M — 1 i“=k| + h (M - 2 '—24
(k) (0) ( )exp|jor ( )exp v (5.22)

+ o h,(])exp[j%’w - l)k]
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where j = V —1, and

ns

w(k) = exp['——Zk] (5.2-3)

exp[j 2E‘W(M = l)kl !

fork =0,1,2,...,M — 1. It can be shown by matrix multiplication that

Hw(k) = A(K)w(k). (5.2-4)
This expression indicates that w(k) is an eigenvector of the circulant matrix H
and that A(k) is its corresponding eigenvalue (see Section 3.6).

Next, let us form an M x M matrix W by using the M eigenvectors of H
as columns:

= [w(0) w(l) w@) - wM - 1)) (5.2-5)
The kith element of W, denoted by W(k, i), is given by

W(k,i) = exp[ —kl] | (5.2-6)

fork,i =0,1,2,..., M — 1. The orthogonality properties of the complex
exponential allows writing the inverse matrix, W~', by inspection; its kith ele-
ment, symbolized as W™'(k, i), is

Wik, i) = — exp[ ;—k:] (5.2-7)
From Eqgs. (5.2-6) and (5.2-7),
WW™ = W'W = I (5:2-8)
where I is the M X M identity matrix.

The importance of the existence of the inverse matrix W™' is that it guar-
antees that the columns of W (the eigenvectors of H) are linearly independent.
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From elementary matrix theory (Noble [1969]) H then may be expressed in
the form

H = WDW"! (5.2-9)
or
D = W 'HW (5.2-10)

where D is a diagonal matrix whose elements D (k, k) are the eigenvalues of
H; that is,

D(k, k) = A(k). (5.2-11)

Equation (5.2-10) indicates that H is diagonalized by using W' and W in the
order indicated.

5.2.2 Block-Circulant Matrices

The transformation matrix for diagonalizing block circulants is constructed as
follows. Let

wy(i, m) = exp [j %im] (5.2-12)
and
.2
wy(k, n) = exp [; -ﬁknl. (5.2-13)

Based on this notation, we define a matrix W of size MN X MN and containing
M? partitions of size N x N. The imth partition of W is

W(i, m) = Wu(i, m)w;\r (5.2-14)
fori,m=0,1,2,...,M — 1. Then Wyis an N X N matrix with elements
Wa(k, n) = wx(k, n) (5.2-15)

fork,n=20,1,2,...,N— 1.
The inverse matrix W™ is also of size MN x MN with M? partitions of
size N X N. The imth partition of W', symbolized as W' (i, m), is

W-'(i, m) = s wi' (i, m)Wg' (5.2-16)

X
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where wy' (i, m) is

wy'(i, m) = exp[-j z—ﬂim] (5.2-17)
M
fori,m =0,1,2,...,M — 1. The matrix W5' has elements
Wi'(k, n) = %w;'(k, n) (5.2-18)
where
_ 2w
wy'(k, n) = exp|—j ?kn] (5.2-19)
fork,n=20,1,2,...,N — 1. It can be verified by direct substitution of the
elements of W and W~ that
WW-! = W'W = | (5.2-20)

where I is the MN X MN identity matrix.
From the results in Section 5.2.1, and if H is a block-circulant matrix, it
can be shown (Hunt [1973]) that

H = WDW ! (5.2-21)
or
D = W 'HW (5.222)

where D is a diagonal matrix whose elements D (k, k) are related to the discrete
Fourier transform of the extended function A.(x, y) discussed in Section 5.1.3.
Moreover, the transpose of H, denoted H', is

H' = WD*W-! (5.2-23)
where D* is the complex conjugate of D.

5.2.3 Effects of Diagonalization on the Degradation Model

The matrix H in the discrete, 1-D model of Eq. (5.1-17) is circulant, so it may
be expressed in the form of Eq. (5.2-9). Equation (5.1-17) then becomes

g = WDW-'f. (5.2-24)
Rearranging this equation yields |

Wlg = DW-'f, (5.2-25)
g
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The product W~'f is an M-dimensional column vector. From Eq. (5.2-7) and
the definition of fin Section 5.1.3, the kth element of the product W~'f, denoted
F(k), is

F(k) = bl'! E f.()exp ;—k:] (5.2-26)
fork = 0,1,2,...,M — 1. This expression is recognized as the discrete
Fourier transform of the extended sequence f.(x). In other words, multiplication
of f by W™! yields a vector whose elements are the Fourier transforms of the
elements of f. Similarly, W™'g yields the Fourier transform of the elements of
g, denoted G(k), k=0,1,2,... , M - 1.

Next, we examine the matrix D in Eq. (5.2-25). The discussion in Section
5.2.1 showed that the main diagonal elements of D are the eigenvalues of the
circulant matrix H. The eigenvalues are given in Eq. (5.2-2) which, using the
fact that

exp

j%r(M - i)k] = exp[ j—lkl (5.2-27)
may be written in the form

Ak) = h.(0) + h-(l)exp[—f%k] + h.(Z)exp[—jzﬁZk]

(5.2-28)
+ -+ + h(M — 1)exp —f%(M = 1)"]‘

From Egs. (5.2-11) and (5.2-28),
D(k, k) = A(k) = Mz h,(i)exp{—j%:-kil (5.2-29)

fork =0,1,2,...,M — 1. The right-hand side of this equation is MH (k),
where H (k) is the discrete Fourier transform of the extended sequence h.(x).
Thus

D(k, k) = MH(k). (5.2-30)

These transforms can be combined into one result. Since D is a diagonal
matrix, the product of D with any vector multiplies each element of that vector
by a single diagonal element of D. Consequently, the matrix formulation given
in Eq. (5.2-25) can be reduced to a term-by-term product of 1-D Fourier
transform sequences. In other words,

G(k) = MH (k) F(k) (5.2-31)
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fork=0,1,2,...,M — 1, where G(k) are the elements of the vector W™'g
and MH (k) F(k) the elements of vector DW™'f. The right-hand side of Eq.
(5.2-31) is the convolution of f,(x) and A.(x) in the frequency domain (see
Section 3.3.8). Computationally, this result implies considerable simplification,
because G(k), H(k), and F(k) are M-sample discrete transforms, which can
be obtained by using a fast Fourier transform algorithm.

A procedure similar to the preceding development yields equivalent results
for the 2-D degradation model. Multiplying both sides of Eq. (5.1-24) by W™!
and using Egs. (5.2-20) and (5.2-21) yields

Wig=DW'f + W'n (5.2-32)

where W' is an MN X MN matrix whose elements are given in Eq. (5.2-16),

D is an MN X MN diagonal matrix, H is the MN X MN block-circulant matrix

defined in Eq. (5.1-25), and f and g are vectors of dimension MN formed by
stacking the rows of the extended images f.(x, y) and g.(x, y), respectively.

The left-hand side of Eq. (5.2-32) is a vector of dimension MN x 1. Let

us denote its elements G(0, 0), G(0, 1), ..., G(0O, N - 1); G(1, 0), G(1,

,..., G4, N-1)...;GM-1,00,GM -1,1),...,GM - 1,

N — 1). It can be shown (Hunt [1973]) that

ux

+

G = 5 5 S, ax yexp| a2 + 2)

5.2-33
=0 y=0 M N ( )

foru=201,2...,M—-1,andv =0,1,2,..., N— 1. Equation
(5.2-33) is the 2-D Fourier transform of g.(x, y). In other words, the elements
of W™'g correspond to the stacked rows of the Fourier transform matrix with
elements G(u, v) foru =0,1,2,.. ., M —landv=0,1,2,...,N —
1. Similarly, the vectors W~'f and W~'n are MN-dimensional and contain
elements F(u, v) and N(u, v), where

3 -1_ M-1 N-1 (E t_)_’]
F(u,v) = i §_jo 2:. fo(x, y)cxp[— j2 v (5.2-34)
and
_ L s+ 2)
N(u, v) = S 20 ,Z, n.(x, y)exp[ ;”241'( v TN (5.2-35)
foru=0,1,2,..., M—1landv=20,1,2,...,N — 1.

Finally, the elements of the diagonal matrix D are related to the Fourier
transform of the extended impulse response function A.(x, y); that is,

1 M ux vy
Hu,v) = 7= 2,0 zo h.(x, y)exp| — ;‘Zw(ﬁ e "ﬁ] (5.2-36)
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foru=0,1,2,...,M - 1,andv=0,1,2,...,N — 1. The MN diagonal
clements of D are formed as follows. The first N elements are H(0, 0),
H(0,1),...,H(, N — 1); the next, H(1,0), H{, 1), . . ., H(1,N - 1);
and so on, with the last N diagonal elements being H(M — 1, 0), H M -1,
1), ..., H(M — 1, N — 1). The off-diagonal elements, of course, are zero.
The entire matrix formed from the preceding elements is then multiplied by
MN to obtain D. A more concise way of expressing this construction is as

k
MNH({—], k mod N) ifi =k
D(k, i) = N

. 3) (5.2-37)

0 ifi #k
where [c] is used to denote the greatest integer not exceeding ¢, and k mod N
is the remainder obtained by dividing k by N.

Equations (5.2-33)—(5.2-36) can be used to show that the individual ele-
ments of Eq. (5.2-32) are related by the expression

G(u, v) = MNH(u, v)F(u, v) + N(u, v) (5.2-38)

foru=0,1,2,...,M—-1,andv=20,1,2,...,N—- 1

The term MN is simply a scale factor, which for notational purposes can
be absorbed conveniently in H(u, v). With this notation, Egs. (5.2-37) and
(5.2-38) may be expressed as

g mer] -

D(k, i) =
(-9 (5.2-39)
0 ifi #k
fork,i =0,1,2,...,MN — 1, and
G(u,v) = H(u, v)F(u,v) + N(u, v) (5.2-40)

foru=01,2,...,M-—1adv=20,1,2,...,N - 1, with H(u, v)
now scaled by the factor MN.

The significance of Eq. (5.2-38) or (5.2-40) is that the large system of
equations implicit in the model in Eq. (5.1-24) can be reduced to computation
of a few discrete Fourier transforms of size M X N. If M and N are integer
powers of 2, for example, this is a simple problem if we use an FFT algorithm.
As mentioned earlier, however, the problem becomes an almost impossible
computational task if approached directly from the model in Eq. (5.1-24).

We use the model in Eq. (5.1-24) in the following sections as the basis for
deriving several image restoration approaches. We then simplify the results,
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which are in matrix form, by using the concepts introduced in this section.
Keep in mind that the simplifications achieved are the result of assuming that
(1) the degradation is a linear, space invariant process, and (2) all images are
treated as extended, periodic functions.

Equation (5.2-40) could have been written directly from Eq. (5.1-15) via
the convolution theorem. However, our objective was to show that the same
result could be achieved by a matrix formulation. In so doing, we established
a number of important matrix properties for use in Section 5.3 to develop a
unified approach to restoration.

5.3 ALGEBRAIC APPROACH TO RESTORATION

As indicated in Section 5.1.3, the objective of image restoration is to estimate
an original image f from a degraded image g and some knowledge or assump-
tions about H and n. Assuming that these quantities are related according to
the model in Eq. (5.1-24) allows formulation of a class of image restoration
problems in a unified linear algebraic framework.

Central to the algebralc approach is the concept of seeking an estimate of
f, denoted f, that minimizes a predefined criterion of performance. Because
of their simplicity, this chapter focuses on least squares criterion functions.
This choice has the added advantage of yielding a central approach for the
derivation of several well-known restoration methods. These methods are
the result of considering either an unconstrained or a constrained approach to
the least squares restoration problem.

5.3.1 Unconstrained Restoration
From Eq. (5.1-24), the noise term in the degradation model is

n =g — Hf. (5.3-1)
In the absence of any knowledge about m, a meaningful criterion function is
to seek an f such that Hf approximates g in a least squares sense by assuming

that the norm of the noise term is as small as possible. In other words, we want
to find an f such that

Inl? = |lg — HA? (53-2)
is minimum, where, by definition,

Inl? = n"n and |g — Hf|® = (g — Hf)"(g — HF)
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are the squared norms of n and (g — Hf), respectively. Equation (5.3-2) allows
the equivalent view of this problem as one of minimizing the criterion function

J() = g — Hf|P (5.3-3)

with respect to f. Aside from the requirement that it minimize Eq. (5.3-3), f
is not constrained in any other way.

Minimization of Eq. (5.3-3) is straightforward. We simply differentiate J
with respect to f and set the result equal to the zero vector; that is,

WO _ - _our(g - ). (5.3-4)
of
Solving Eq. (5.3-4) for f yields
f = (H'H) 'Hg. (5.3-5)

Letting M = N so that H is a square matrix and assuming that H™' exists
reduces Eq. (5.3-5) to

= H'(H")'H'g (5.3-6)
= H'g.

5.3.2 Constrained Restoration

In this section, we consider the least squares restoration problem as one of
minimizing functions of the form ||Qf||2 where Q is a linear operator on f,
subject to the constraint ||g — Hf|? = |n|P. This approach introduces consid-
erable flexibility in the restoration process because it yields different solutions
for different choices of Q. The constraint imposed on a solution is consistent
with the model in Eq. (5.1-24).

The addition of an equality constraint in the minimization problem can be
handled without difficulty by using the method of Lagrange multipliers (Elsgolc
[1961]). The procedure calls for expressing the constraint in the form a(lg -
Hi|P - [In|?) and then appending it to the function ||Qf|P. In other words, we
seek an f that minimizes the criterion function

J(E) = IQfF + a(lg — HEF — [In|P) (5.37)

where « is a constant called the Lagrange multiplier. After the constraint has
been appended, minimization is carried out in the usual way.
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Differentiating Eq. (5.3-7) with respect to f and setting the result equal
to the zero vector yields

_r—a‘z (:) = 0 = 2Q7Qf — 2aH'(g — Hf). (5.3-8)

The solution is obtained by solving Eq. (5.3-8) for f; that is,

f=(HH + yQ'Q) 'H'g (5.3-9)

where y = 1/a. This quantity must be adjusted so that the constraint is satisfied,
a problem considered later in this chapter. Equations (5.3-6) and (5.3-9) are
the bases for all the restoration procedures discussed in the following sections.
In Section 5.4, for example, we show that Eq. (5.3-6) leads to the traditional
inverse-filter restoration method. Similarly, the general formulation in Eq.
(5.3-9) can be used to derive results such as the classical Wiener filter, as well
as other restoration techniques. To do so simply requires selecting an appro-
priate transformation matrix Q and using the simplifications derived in Section
3.2.

5.4 INVERSE FILTERING

5.4.1 Formulation

We begin the derivation of image restoration techniques by considering the
unconstrained result in Eq. (5.3-6). If we assume that M = N and use Eq.
(5.2-21), Eq. (5.3-6) becomes

-

— H_lg
= (WDW ") 'g (5.4-1)
= WD 'W-'g.
Premultiplying both sides of Eq. (5.4-1) by W' yields
W-'f = D 'Wg. (5.4-2)

From the discussion in Section 5.2.3, the elements comprising Eq. (5.4-2) may
be written in the form

G(u, v)

ﬁ'(u, v) = Hu, v)

(5.4-3)



5.4 Inverse Filtering 271

foru,v=20,1,2,...,N — 1. According to Eq. (5.2-39), H(u, v) is assumed
to be scaled by N? and, because D is a diagonal matrix, its inverse is easily
obtained by inspection.

The image restoration approach given by Eq. (5.4-3) is commonly referred
to as the inverse filter method. This terminology arises from considering
H(u, v) as a “filter” function that multiplies F(u, v) to produce the transform
of the degraded image g(x, y). The division of G(u, v) by H(u, v) indicated
in Eq. (5.4-3) then constitutes an inverse filtering operation in this context.
The restored image, of course, is obtained by using the relation

e y) = &' [Fu, v)] (5.4-0)
= § '[G(u, v)IH(u, v)]
forx,y = 0,1, 2, , N — 1. This procedure is normally implemented by

means of an FFT algonthm.

Note in Eq. (5.4-4) that computational difficulties will be encountered in
the restoration process if H (u, v) vanishes or becomes very small in any region
of interest in the uv plane. If the zeros of H(u, v) are located at a few known
points in the uv plane, they generally can be neglected in the computation
of F(u, v) without noticeably affectmg the restored result.

A more serious difficulty arises in the presence of noise. Substituting Eq.
(5.2-40) into Eq. (5.4-3) yields

N(u, v)

F(u,v) = F(u, v) + He vy

(5.4-5)

This expression clearly indicates that if H(u, v) is zero or becomes very small,
the term N(u, v)/H (u, v) could dominate the restoration result & '[ F(u, v)].
In practice H(u, v) often drops off rapidly as a function of distance from the
origin of the uv plane. The noise term, however, usually falls off at a much
slower rate. In such situations, reasonable results often can be obtained by
carrying out the restoration in a limited neighborhood about the origin in order
to avoid small values of H (u, v).

Example: Figure 5.2(a) shows a point image f(x, y), and Fig. 5.2(b) shows a
degraded image g(x, y) obtained by blurring f(x, y). Consndermg the point
source to be an approximation to a unit impulse function gives

G(u,v) = H(u, v)F(u, v)
= H(u, v)
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(a)

Figure 5.2 Blurring of a point source to obtain H(u, v).

because ¥[8(x, y)] = 1. This expression indicates that the transfer function
H (u. v) can be approximated by the Fourier transform of the degraded image.
The procedure of blurring a known function to obtain an approximation to
H (u, v) is a useful one in practice because it can often be used in a trial-and-
error approach to restore images for which the blurring function H (u, v) is not
known a priori.

The result of applying the same blurring function as above to the ideal
image shown in Fig. 5.3(a) is shown in Fig. 5.3(b). The restored image shown
in Fig. 5.3(c) was obtained by using Eq. (5.4-4) for values of u and v near
enough to the origin of the uv plane to avoid excessively small values of H (u,
v). The result of carrying out the restoration for a larger neighborhood is shown
in Fig. 5.3(d). These results clearly point out the difficulties introduced by a
vanishing function H (u, v). Q

If H(u, v), G(u, v), and N(u, v) all are known, an exact inverse filtering
expression can be obtained directly from Eq. (5.2-40); that is,

G(u,v) N, V)

Fe.V) = Htu,v) ~ Hea, )

(5.4-6)

In addition to the potential difficulties with H(u, v) outlined in the preceding
example, a problem with this formulation is that the noise is seldom known
well enough to allow computation of N(u, v).

5.4.2 Removal of Blur Caused by Uniform Linear Motion

There are practical applications in which H (u, v) can be obtained analytically,
but the solution has zero values in the frequency range of interest. In Section
5.4.1, we gave an example of the difficulties caused by a vanishing H(u, v). In
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the following discussion we consider the problem of restoring an image that
has been blurred by uniform linear motion. We singled out this problem because
of its practical implications and also because it lends itself well to an analytical
formulation. Solution of the uniform blurring case also demonstrates how zeros
of H(u, v) can be handled computationally. These considerations are important,
because they often arise in practice in other contexts of image restoration by
inverse filtering.

Suppose that an image f(x, y) undergoes planar motion and that x,() and
Yo(t) are the time varying components of motion in the x and y directions,
respectively. The total exposure at any point of the recording medium (say,
film) is obtained in this case by integrating the instantaneous exposure over
the time interval during which the shutter is open. Assuming that shutter open-
ing and closing takes place instantaneously and that the optical imaging process
is perfect isolates the effect of image motion. Then, if T is the duration of the

Figure 5.3 Example of image restoration by inverse filtering: (a) original image f(x, y); (b)
degraded (blurred) image g(x, y); (c) result of restoration by considering a neighborhood
about the origin of the uv plane that does not include excessively small values of H (u, v); (d)
result of using a larger neighborhood in which this condition does not hold. (From McGlamery
[1967].)
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exposure, it follows that

80 = | flx = 50,y ~ (0] d (5.47)

where g(x, y) is the blurred image.
From Eq. (3.1-9), the Fourier transform of Eq. (5.4-7) is

G(u,v) = ” g(x, y)exp[—j2m(ux + vy)] dx dy
== (5.4-8)

- ,[ I U :ﬂx = xo(f), y = yo(0)] d‘]expl—ﬁﬂ(ux + vy)] dx dy.

Reversing the order of integration allows Eq. (5.4-8) to be expressed in the
form

G(u,v) = EUI flx = %),y — yo(Dlexp[—j2m(ux + vy)] dx dy| dt. (5.4-9)

The term inside the outer brackets is the Fourier transform of the displaced
function f[x — x(£), ¥y — yo()]. Using Eq. (3.3-7b) then yields the relation

G(u, v)

]

L F(u, v)exp{—j2m[ux,(t) + vyo(1)]} dt (5.4-10)

F(u, v) j :exp{— j2a[uxo(f) + vyo(D]} dt

where the last step follows from the fact that F(u, v) is independent of 7.
By defining

H(u,v) = J:exp{—ﬂar[uxo(t) + vyo(D]} dt (5.4-11)

Eq. (5.4-10) may be expressed in the familiar form
G(u,v) = H(u, v)F(u, v). (5.4-12)

If the nature of the motion variables x,(f) and y.(f) is known, the transfer
function H (1, v) can be obtained directly from Eq. (5.4-11). As an illustration,
suppose that the image in question undergoes uniform linear motion in the x
direction only, at a rate given by xo(f) = at/T. When ¢ = T, the image has
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been displaced by a total distance a. With yo(f) = 0, Eq. (5.4-11) yields

T

H(u,v) = Lexp[—ﬂwuxa(t)] dt

J-uexp[—}'Zaruath] dt (5.4-13)

T . .
——sin (7rua)e ™.
mua

Obviously, H vanishes at values of u given by u = n/a, where n is an integer.
When f(x, y) is zero (or known) outside an interval 0 < x < L, the problem
presented by Eq. (5.4-13) can be avoided and the image completely recon-
structed from a knowledge of g(x, y) in this interval. Because y is time invariant,
suppressing this variable temporarily allows Eq. (5.4-7) to be written as

80 = [ flx - (@)

£ at
=Juf(x—?,)d! 0=x=<L.

(5.4-14)

Substituting 7 = x — at/T in this expression and ignoring a scale factor yields
glx) = f _f(ndr O=xs<L. (5.4-15)

Then, by differentiation with respect to x (using Liebnitz’s rule),

g(x)=f(x) —f(x—-a) Osxs<L (5.4-16)
or

fx) =g'(x) + fx —a) O=<xs<L. (5.4-17)

In the following development a convenient assumption is that L = Ka,
where K is an integer. Then the variable x may be expressed in the form

xX=2z+ ma (5.4-18)

where z takes on values in the interval [0, a] and m is the integral part of
. (x/a). For example, if a = 2 and x = 3.5, then m = 1 (the integral part of
3.5/2), and z = 1.5. Clearly, z + ma = 3.5, as required. Note also that, for
L = Ka, the index m can assume any of the integer values 0,1, ..., K — 1.
For instance, whenx = L,thenz = gaandm = K — 1.
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Substitution of Eq. (5.4-18) into Eq. (5.4-17) yields
f(z + ma) = g'(z + ma) + flz + (m — 1)a]. (5.4-19)

Next, denoting ¢(z) as the portion of the scene that moves into the range 0 <
z < a during exposure gives

6(z) =f(z-a) O<z<a. (5.4-20)
Equation (5.4-19) can be solved recursively in terms of ¢(z). Thus form = 0,

fz) =82 + fz — a) (5.4-21)
= g'(2) + ¢(2).

For m = 1, Eq. (5.4-19) becomes
f(z + a) = g'(z + a) + f(2). (5.4-22)
Substituting Eq. (5.4-21) into Eq. (5.4-22) yields
flz +a)=g'(z+a) +g(2) + $2). (5.4-23)
In the next step, letting m = 2 results in the expression
fz + 2a) = g'(z + 2a) + f(z + a) (5.4-24)
or, substituting Eq. (5.4-23) for f(z + a),
flz +2a) = g'(z + 2a) + g'(z + a) + g'(2) + &(2). (5.4-25)

Continuing with this procedure finally yields

f(z + ma) = 2, g'(z + ka) + ¢(2). (5.4-26)

k=0

However, as x = z + ma, Eq. (5.4-26) may be expressed in the form
f(x) = S o'(x — ka) + d(x —ma) O<x<L. (5.4-27)
k=0

Because g(x) is known, the problem is reduced to that of estimating ¢ (x).
One way to estimate this function directly from the blurred image is as

follows. First note that, as x varies from 0 to L, m ranges from 0 to K — 1.

The argument of ¢ is (x — ma), which is always in the range 0 < x — ma <
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a, so ¢ is repeated K times during the evaluation of f(x) for 0 < x < L. Next,
defining

fa) = 3 ¢'(x - ja) (5.4-28)

i=0

allows rewriting Eq. (5.4-27) as

¢(x — ma) = f(x) - fx). (5.4-29)
Evaluating the left-hand and right-hand sides of Eq. (5.4-29) for ka < x <
(k + 1)a, and adding the results for k = 0,1, ..., K — 1 gives
K-1 K-1 _
Ko(x) = D f(x + ka) = 2. f(x + ka) O0<x<a (5.4-30)
k=0 k=0

where m = 0 because 0 = x < a. Dividing through by X yields
K-1 1 K-1
d(x) = = > flx + ka) — — X f(x + ka). (5.4-31)
K k=0 K k=0

The first sum on the right-hand side of this expression is, of course, unknown.
However, for large values of K it approaches the average value of f. Thus this
sum may be taken as a constant A, giving the approximation

d(x)=A — — 2 fx +ka) O0=x<a (5.4-32)
or
1 K-1

d(x — ma) = A—EZf(x+lm—ma) 0<xs<L. (5.4-33)

Substituting Eq. (5.4-28) for f yields'

K

M=

¢(x — ma)=A - g(x+ka—ma—;a)

(5.4-34)

- 2
P
1

- =
Lt~

S L

¥
N
I

g[x—ma+(k—,r)a]

o
n

=

—
1]

' Note that the limit on the second summation is k instead of m. If we had started from Eq.
(5.4-18) with x + ka — ma instead of x, the limit in the summation of Eq. (5.4-28) would
have been k because, from Eq. (5.4-18),x + (ka — ma) = z + ma + (ka — ma) = z +
ka.




278 Image Restoration

From Egs. (5.4-28) and (5.4-29), we have the final result:

K-1 &k

f(x)=A - lK > > glx — ma+ (k- a] + 2 g'(x — ja) (5.4-35)

k=0 j=0 j=1

for 0 = x = L. Reintroducing the suppressed variable y yields

K-1 &k

flx,y) = A — X > Y glx—ma+ (k- jayl + D g(x—jay (54-36)

for 0 = x, y = L. As before, f(x, y) is assumed to be a square image. Inter-
changing x and y in the right-hand side of Eq. (5.4-36) would give the recon-
struction of an image that moves only in the y direction during exposure. The
concepts presented can also be used to derive a deblurring expression that takes
into account simultaneous uniform motion in both directions.

Example: The image shown in Fig. 5.4(a) was blurred by uniform linear motion
in one direction during exposure, with the total distance traveled being ap-
proximately equal to "4 the width of the photograph. Figure 5.4(b) shows the
deblurred result obtained by using Eq. (5.4-36) with x and y interchanged
because motion is in the y direction. The error in the approximation given by
this equation is not objectionable. a

Figure 5.4 (a) Image blurred by uniform linear motion; (b) image restored by using Eq.
(5.4-36). (From Sondhi [1972].)
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5.5 LEAST MEAN SQUARE (WIENER) FILTER

Let R, and R, be the correlation matrices of f and n, defined respectively by
the equations

R, = E{ff"} (5.5-1)
and
R. = E{mn"} (5.5-2)

where E{-} denotes the expected value operation, and f and n are as defined
in Section 5.1.3. The ijth element of Ry is given by E{f.f}, which is the cor-
relation between the ith and the jth elements of f. Similarly, the ijth element
of R, gives the correlation between the two corresponding elements in n. Since
the elements of f and m are real, E{f,f} = E{ff}, E{nn} = E{nn}, and it
follows that R, and R, are real symmetric matrices. For most image functions
the correlation between pixels (that is, elements of f or n) does not extend
beyond a distance of 20 to 30 pixels in the image, so a typical correlation matrix
has a band of nonzero elements about the main diagonal and zeros in the right
upper and left lower corner regions. Based on the assumption that the corre-
lation between any two pixels is a function of the distance between the pixels
and not their position, Ry and R, can be made to approximate block-circulant
matrices and therefore can be diagonalized by the matrix W with the procedure
described in Section 5.2.2 (Andrews and Hunt [1977]). Using A and B to denote
matrices gives

R, = WAW ! (5.5-3)
and
R, = WBW . (5.5-4)

Just as the elements of the diagonal matrix D in the relation H = WDW™!
correspond to the Fourier transform of the block elements of H, the elements
of A and B are the transforms of the correlation elements in R, and R,, re-
spectively. As indicated in Problem 3.4, the Fourier transform of these cor-
relations is called the power spectrum (or spectral density) of f.(x, y) and
n.(x, y), respectively and is denoted S;(u, v) and S,(u, v) in the following
discussion.
Defining

Q'Q = R/'R, (5.5-5)
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and substituting this expression in Eq. (5.3-9) gives
f= (H'H + yR;'R,)"'H'g. (5.5-6)
Using Eqs. (5.2-21), (5.2-23), (5.5-3), and (5.5-4) yields
f = (WD*DW-' + yWA~-'BW ')~ ' WD*W-'g. (5.5-7)

Multiplying both sides by W~' and performing some matrix manipulations
reduces Eq. (5.5-7) to

W-'f = (D*D + yA 'B)"'D*W'g. (5.5-8)

Keeping in mind the meaning of the elements of A and B, recognizing that the
matrices inside the parentheses are diagonal, and making use of the concepts
developed in Section 5.2.3, allows writing the elements of Eq. (5.5-8) in the
form

_ H*(u, v)

[IH(u, VP + y[S,, v)IS(u, v)] b (5.5-9)
_ [ 1 |H(u, v) ]
H(u, v) |H(u, V)] + y[S,(u, v)/Si(u, v)]

F(u, v)

2

G(u, v)

foru,v =10,1,2,...,N — 1, where |H(u, v)f = H*(u, v)H(u, v) and it
is assumed that M = N.

When y = 1, the term inside the outer brackets in Eq. (5.5-9) reduces to
the so-called Wiener filter. If vy is variable this expression is called the parametric
Wiener filter. In the absence of noise, S, (u, v) = 0 and the Wiener filter reduces
to the ideal inverse filter discussed in Section 5.4. However, when y = 1, the
use of Eq. (5.5-9) no longer yields an optimal solution in the sense defined in
Section 5.3.2 because, as pointed out in that section, y must be adjusted to
satisfy the constraint ||g — Hf|? = ||n|’. It can be shown however, that the
solution obtained with y = 1 is optimal in the sense that it minimizes the
quantity E{[f(x, y) — f(x, y)J'}. Clearly, this is a statistical criterion that treats
f and f as random variables.

When S, (u, v) and S;(u, v) are unknown (a problem often encountered in
practice) approximating Eq. (5.5-9) by the relation

1 |H (u, v
H(u,v) |Hu, v)} + K

Fu,v) = G(u, v) (5.5-10)
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where K is a constant, sometimes is useful. An example of results obtained
with (5.5-10) follows. The problem of selecting the optimal vy for image res-
toration is discussed in some detail in Section 5.6.

Example: The first column in Fig. 5.5 shows three pictures of a domino cor-
rupted by linear motion (at —45° with respect to the horizontal) and noise
whose variance at any point in the image was proportional to the brightness
of the point. The three images were generated by varying the constant of
proportionality so that the ratios of maximum brightness to noise amplitude
were 1, 10, and 100, respectively, as shown on the left in Fig. 5.5. The Fourier
spectra of the degraded images are shown in Fig. 5.5(b).

Since the effects of uniform linear motion can be expressed analytically,
an equation describing H (u, v) can be obtained without difficulty, as shown in
Section 5.4.2. Figure 5.5(c) was obtained by direct inverse filtering following
the procedure described in Section 5.4.1. The results are dominated by noise,
but as the third image shows, the inverse filter successfully removed the deg-
radation (blur) caused by motion. By contrast, Fig. 5.5(d) shows the results

(b) T ) ()

Figure 5.5 Example of image restoration by inverse and Wiener filters: (a) degraded images
and (b) their Fourier spectra; (c) images restored by inverse filtering; (d) images restored by
Wiener filtering; (e) Fourier spectra of images in (d). (From Harris [1968].)
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obtained using Eq. (5.5-10) with K = 2¢?, where o is the noise variance. The
improvements over the direct inverse filtering approach are obvious, particu-
larly for the third image. Figure 5.5(e) shows the Fourier spectra of the restored
images. a

5.6 CONSTRAINED LEAST SQUARES RESTORATION

The least mean squares approach derived in Section 5.5 is a statistical procedure
because the criterion for optimality is based on the correlation matrices of the
image and noise functions. This implies that the results obtained by using a
Wiener filter are optimal in an average sense. The restoration procedure de-
veloped in this section, however, is optimal for each given image and requires
knowledge only of the noise mean and variance. Also considered is the problem
of adjusting <y to satisfy the constraint leading to Eq. (5.3-9).

As indicated in Section 5.3.2, the restoration solution obtained by using
Eq. (5.3-9) depends on the choice of the matrix Q. Owing to ill-conditioning,
that equation sometimes yields solutions that are obscured by large oscillating
values. Therefore the feasibility of choosing Q so that these adverse effects are
minimized is of interest. One possibility, suggested by Phillips [1962], is to
formulate a criterion of optimality based on a measure of smoothness such as,
for example, minimizing some function of the second derivative. In order to
see how this criterion can be expressed in a form compatible with Eq. (5.3-9),
let us first consider the 1-D case.

For a discrete function f(x), x = 0, 1, 2, . . . , the second derivative at a
point x may be approximated by the expression

a%f_? ~fx + 1) = 2f(x) + f(x — 1). (5.6-1)

A criterion based on this expression, then, might be to minimize (8*f/dx*)* over
x; that is,

minimize { >, [f(x + 1) — 2f(x) + f(x — D]} (5.6-2)

or, in matrix notation,

minimize {f "C"Cf} (5.6-3)
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where

-2 1
i =8 1
F = i =2 1 564
. =% 4
i =2
1

=

is a “smoothing” matrix, and f is a vector whose elements are the samples of
fCx). , _ , .

In the 2-D case we consider a direct extension of Eq. (5.6-1). In this case
the criterion is to

Ff(x,y) . ¥ 0]
v + 3y (5.6-5)

minimize

where the derivative function is approximated by the expression
f &
I+ T ofte, ) - fx +1,9) - fx = 1,3)]
+ [2f(x,y) = flx,y + 1) = flx,y = 1)]

~4f(x,y) = [f(x + L,y) + fx = 1, y) + f(x,y + 1) (5.6:6)
+ f(x,y = DI

The derivative function given in Eq. (5.6-5) is the Laplacian operator discussed
in Section 3.3.7.

Equation (5.6-6) can be implemented directly in a computer. However, the
same operation can be carried out by convolving f(x, y) with the operator

0 -1 0
px,y)=|-1 4 -1 (5.6-7)
0 -1 0

As indicated in Section 5.1.3, wraparound error in the discrete convolution
process is avoided by extending f(x, y) and p(x, y). Having already considered
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the formation of f,(x, y), we form p.(x, y) in the same manner:

plx,y) 0=sx=2 and 0<y=<2

(x! s
p(x.7) 0 3=sx=sM-1 or 3=sysN-1

If f(x,y)isof size A X B,wechoose M=A +3 —-1andN=B + 3 -1,

because p(x, y) is of size 3 x 3.
The convolution of the extended functions then is

M=-1 N-1

g(x,) = 2 2 fulm, m)p.(x — m,y - n) (5.6-8)

m=0 n=

which agrees with Eq. (5.1-23).

Following an argument similar to the one given in Section 5.1.3 allows
expression of the smoothness criterion in matrix form. First, we construct a
block-circulant matrix of the form

-Co CM—l Cu—z e Cl-
C] Cﬂ CM—-[ Cz

c=|C. C € - G (5.69)
_CM—I CM—: CM—3 Cn_

where each submatrix C; is an N X N circulant constructed from the jth row
of p.(x, y); that is,

pz(j! O) pf(j’ N - 1) pe(.f! 1)
p.(j, 1) p.(j, 0) e pe(j, 2)

c - . (5.6-10)
pe(j’ N - 1) pe(j: N - 2) e Pe(j! 0)

Since C is block circulant, it is diagonalized by the matrix W defined in
Section 5.2.2. In other words,

E = WICW (5.6-11)
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where E is a diagonal matrix whose elements are given by

k] ) - j
P{|=|, kmod N| ifi=k
E(k, i) = ([N " e

0 ifi#k

(5.6-12)

as in Eq. (5.2-39). In this case P(u, v) is the 2-D Fourier transform of
p.(x, y). As with Egs. (5.2-37) and (5.2-39), the assumption is that Eq.
(5.6-12) has been scaled by the factor MN.

The convolution operation described above is equivalent to implementing
Eq. (5.6-6), so the smoothness criterion of Eq. (5.6-5) takes the same form as
Eq. (5.6-3):

minimize {f"C"Cf} (5.6-13)

where f is an MN-dimensional vector and C is of size MN X MN. By letting
Q = C, and recalling that | Qf|> = (Qf)"(Qf) = f'Q"QHf, this criterion may be
expressed as

minimize || Qf|P (5.6-14)

which is the same form used in Section 5.3.2. In fact, if we require that the
constraint |g — Hf|? = |n|? be satisfied, the optimal solution is given by Eq.
(5.39) withQ = C:

f = (H'H + yC'C)'H'g. (5.6-15)

Using Eqgs. (5.2-21), (5.2-23), and (5.6-11), allows Eq. (5.6-15) to be ex-
pressed as

f = (WD*DW-' + yWE*EW ') 'WD*W~'g. (5.6-16)

Multiplying both sides by W~' and performing some matrix manipulations
reduces Eq. (5.6-16) to

W-'f = (D*D + yE*E) 'D*W-'g. (5.6-17)

Keeping in mind that the elements inside the parentheses are diagonal and
making use of the concepts developed in Section 5.2.3, allows expressing the
elements of Eq. (5.6-17) in the form

H*(u, v)
|H(u, V[ + y|P(u, v)F

F(u,v) = G(u, v) (5.6-18)
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foru,v=0,1,2,...,N — 1, where |H(u, v)} = H*(u, v)H(u, v), and we
have assumed that M = N. Note that Eq. (5.6-18) resembles the parametric
Wiener filter derived in Section 5.5. The principal difference between Egs.
(5.5-9) and (5.6-18) is that the latter does not require explicit knowledge of
statistical parameters other than an estimate of the noise mean and variance.

The general formulation given in Eq. (5.3-9) requires that y be adjusted
to satisfy the constraint |g — Hf|F = |n|’. Thus the solution given in Eq.
(5.6-18) can be optimal only when v satisfies this condition. An iterative pro-
cedure for estimating this parameter follows.

Define a residual vector r as

r=g — HL (5.6-19)
Substituting Eq. (5.6-15) for f yields
r=g- HHH + yC'C)"'H'g. (5.6-20)

Equation (5.6.20) indicates that r is a function of y. In fact, it can be shown
(Hunt [1973]) that

¢(y) = r'r (5.6-21)
= ||l

is a monotonically increasing function of y. What we want to do is adjust y so
that

[rl? = n|* % a, (5.6-22)

where a is an accuracy factor. Clearly, if |[r|* = |n|f the constraint ||g — l-lf||2
= |In|f will be strictly satisfied, in view of Eq. (5.6-19).

Because ¢(y) is monotonic, finding a y that satisfies Eq. (5.6-17) is not
difficult. One simple approach is to

(1) specify an initial value of y;

(2) compute f and |r|?; and

(3) stop if Eq. (5.6-22) is satisfied; otherwise return to step 2 after increasing
v if [[r|? < |n|f — a or decreasing vy if [|r|} > ||n|? + a.

Other procedures such as a Newton—Raphson algorithm can be used to improve
speed of convergence.

Implementation of these concepts requires some knowledge about |n|?.
The variance of 7.(x, y) is

(]

n = E{(n(x,y) — 2]} (5.6-23)
E[ni(x, )] — 7
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where

= (M — l)l(N -1) 2 2 7%, ) (5.6-24)

is the mean value of 7.(x, y). If a sample average is used to approximate the
expected value of ni(x, y), Eq. (5.6-23) becomes

i [ l 2 =
=MD =D 2 Z 7(x, y) — W (5.6-25)

The summation term simply indicates squaring and adding all values in the
array 7.(x, ), x=0,1,2,... , M - 1, andy =0,1,2,...,N — 1. This
manipulation is simply the product n"n, which, by definition, equals |[n|F. Thus
Eq. (5.6-25) reduces to

R
Oy = (M _ 1)(N = 1) 7. (5.6-26)
or
m|f = (M — 1)(N — 1)[0? + 7). (5.6-27)

The importance of this equation is that it allows determination of a value for
the constraint in terms of the noise mean and variance, quantities that, if not
known, can often be approximated or measured in practice.

The constrained least squares restoration procedure can be summarized as
follows.

Step 1. Choose an initial value of y and obtain an estimate of [n|f by using
Eq. (5.6-27).

Step 2. Compute F (u, v) using Eq. (5.6-18). Obtain f by taking the inverse
Fourier transform of F(u, v).

Step 3. Form the residual vector r according to Eq. (5.6-19) and compute
é(y) = IIrlP.

Step 4. Increment or decrement 7.

(@) ¢(y) < |n|f — a. Increment y according to the algorithm given above
or other appropriate method (such as a Newton—Raphson procedure).

(b) ¢(y) > |n|? + a. Decrement vy according to an appropriate algorithm.
Step 5. Return to step 2 and continue unless step 6 is true.

Step 6. ¢(y) = |m|f = a, where a determines the accuracy with which the
constraint is satisfied. Stop the estimation procedure, with f for the present
value of y being the restored image.
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Example: Figure 5.6(b) was obtained by convolving the Gaussian-shaped point
spread function

XE + 2\
Bxsy)= e"p(_ 2400y)

with the original image shown in Fig. 5.6(a) and adding noise drawn from a
uniform distribution in the interval [0, 0.5]. Figure 5.6(c) shows the result of

24

w
>

4 8 e ———

s o alb s e St

R v P

(d)

Figure 5.6 (a) Original image; (b) image blurred and corrupted by additive noise; (c) image
restored by inverse filtering; (d) image restored by the method of constrained least squares.
(From Hunt [1973].)
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using the algorithm with y = 0 (inverse filter). The ill-conditioned nature of
the solution is evident by the dominance of the noise on the restored image.
Figure 5.6(d) was obtained by using the preceding algorithm to seek a vy that
would satisfy the constraint. The variance and mean of the uniform density in
the interval [0, 0.5] were used to estimate |n|?, and the accuracy factor a was
chosen so that a = 0.025||n|?. The improvement of the constrained solution
over direct inverse filtering is clearly visible. Q

5.7 INTERACTIVE RESTORATION

So far, we have focused on a strictly analytical approach to restoration. In
many applications, the practical approach is to take advantage of human in-
tuition, coupled with the versatility of a digital computer, to restore images
interactively. In this case, the observer controls the restoration process and,
by “tuning” the available parameters, is able to obtain a final result that may
be quite adequate for a specific purpose.

One of the simplest cases of image corruption that lends itself well to
interactive restoration is the occurrence of a 2-D sinusoidal interference pattern
(often called coherent noise) superimposed on an image. Let n(x, y) denote a
sinusoidal interference pattern of amplitude A and frequency components (u,,
Vvo); that is,

n(x, y) = A sin(ugx + voy). (5.7-1)

Direct substitution of Eq. (5.7-1) into Eq. (3.1-9) yields the Fourier transform
of n(x, y):

(5.7-2)

_fA Uy Vo Uy Vo
N(u,v)—T[ﬁ(u _ﬂ’v_é_q;) = 6(u+~2-;,v+;7).
In other words, the Fourier transform of a 2-D sine function is a pair of impulses
of strength —A/2 and A/2 located at coordinates (uo/27r, vo/27) and ( — u,/2,
—vo/27), respectively, of the frequency plane. In this case the transform has
only imaginary components.

With the only degradation considered being additive noise, it follows from
Eq. (5.2-40) that

G(u,v) = F(u, v) + N(u, v). (5.7-3)

A display of the magnitude of G (u, v) contains the magnitude of the sum of
F(u, v) and N(u, v). If A is large enough, the two impulses of N(u, v) usually
appear as bright dots on the display, especially if they are located relatively
far from the origin so that the contribution of the components of F(u, v) is
small.
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If n(x, y) were known completely, the original image, of course, could be
recovered by subtracting the interference from g(x, y). As this situation is
seldom the case, a useful approach is to identify visually the location of impulse
components in the frequency domain and use a bandreject filter (see Section
4.6.3) at these locations.

Example: The image shown in Fig. 5.7(a) was corrupted by a sinusoidal pattern
of the form shown in Eq. (5.7-1). The Fourier spectrum of this image, shown

f%\\\:\\\\\\\

(b) (c)

Figure 5.7 Example of sinusoidal interference removal: (a) corrupted image; (b) Fourier
spectrum showing impulses due to sinusoidal pattern; (c) image restored by using a band-
reject filter with a radius of 1.
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(b)

Figure 5.8 (a) Picture of the Martian terrain taken by Mariner 6; (b) Fourier spectrum.
Note the periodic interference in the image and the corresponding spikes in the spectrum.
(Courtesy of NASA, Jet Propulsion Laboratory.)

in Fig. 5.7(b), clearly exhibits a pair of symmetric impulses resulting from
sinusoidal interference. Figure 5.7(c) was obtained by manually placing (from
a computer console) two bandreject filters of radius 1 at the location of the
impulses and then taking the inverse Fourier transform of the result. For all
practical purposes, the restored image is free of interference. Q

The presence of a single, clearly defined interference pattern, such as the
one just illustrated, seldom occurs in practice. Notable examples are images
derived from electro-optical scanners, such as those commonly used in space
missions. A common problem with these sensors is interference caused by
coupling and amplification of low-level signals in the electronic circuitry. As a
result, images reconstructed from the scanner output tend to contain a pro-
nounced, 2-D periodic structure superimposed on the scene data.

Figure 5.8(a), an example of this type of periodic image degradation, shows
a digital image of the Martian terrain taken by the Mariner 6 spacecraft. The
interference pattern is quite similar to the one shown in Fig. 5.7(a), but the
former pattern is considerably more subtle and, consequently, harder to detect
in the frequency plane.

Figure 5.8(b) shows the Fourier spectrum of the image in question. The
starlike components were caused by the interference, and several pairs of com-
ponents are present, indicating that the pattern was composed of more than
just one sinusoidal component. When several interference components are
present, the method discussed above is not always acceptable because it may
remove too much image information in the filtering process. In addition, these
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components generally are not single-frequency bursts. Instead, they tend to
have broad skirts that carry information about the interference pattern. These
skirts are not always easily detectable from the normal transform background.

A procedure that has found acceptance in processing space-related scenes
consists of first isolating the principal contributions of the interference pattern
and then subtracting a variable, weighted portion of the pattern from the
corrupted image. Although we develop the procedure in the context of a specific
application, the basic approach is quite general and can be applied to other
restoration tasks when multiple periodic interference is a problem.

The first step is to extract the principal frequency components of the in-
terference pattern. This extraction can be done by placing a bandpass filter
H(u, v) at the location of each spike (see Section 4.6.3). If H (u, v) is constructed
to pass only components associated with the interference pattern, it follows
that the Fourier transform of the pattern is given by the relation

P(u,v) = H(u, v)G(u, v) (5.7-4)

where G (u, v) is the Fourier transform of the corrupted image g(x, y) and,
for N x N digitization, u and v take on values in the range 0, 1, . ..
N - 1.

Formation of H(u, v) requires considerable judgment about what is or is
not an interference spike. For this reason, the bandpass filter generally is
constructed interactively by observing the spectrum of G(u, v) on a display.
After a particular filter has been selected, the corresponding pattern in the
spatial domain is obtained from the expression

?

px,y) = & "{H(u, v)G(u, v)}. (5.7-5)

Because the corrupted image is formed by the addition of f(x, y) and the
interference, if p(x, y) were known completely, subtracting the pattern from
g(x, y) to obtain f(x, y) would be a simple matter. The problem, of course, is
that this filtering procedure usually yields only an approximation of the true
pattern. The effects of components not present in the estimate of p(x, y) can
be minimized by instead subtracting from g(x, y) a weighted portion of
p(x, y) to obtain an estimate of f(x, y):

fx,y) = g(x, y) — w(x, y)p(x, y) (5.7-6)

where }(x, y) is the estimate of f(x, y) and w(x, y) is to be determined. The
function w(x, y) is called a weighting or modulation function, and the objective
of the procedure is to select this function so that the result is optimized in some
meaningful way. One approach is to select w(x, y) so that the variance of
f(x, y) is minimized over a specified neighborhood of every point (x, y).
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Consider a neighborhood of size (2X + 1) by (2Y + 1) about a point
(x, y). The “local” variance of f(x, y) at coordinates (x, y)is

1 A =
® ) = X T DEY T ) MZX"HZ_Y{f(x + m,y + n) - f(x, y)F

(5.7-7)
where jT’(x, y) is the average value of }"(x, y) in the neighborhood; that is,

609 = G DET T2, 2 e tmy e 679

==X n=-Y

Points on or near the edge of the image can be treated by considering partial
neighborhoods.
Substituting Eq. (5.7-6) into Eq. (5.7-7) yields

. B 1 X Y
PEY) = BRI ET + D a2y IEE T Y1) (5.7-9)

—w@+m,y+n)px+my+n)]-[8kxy) —wky)p .

Assuming that w(x, y) remains essentially constant over the neighborhood gives
the approximations

w(x + m,y + n) = w(x,y) (5.7-10)
for — X<m=<Xand -Y=<n<Y,;also
wix, P, y) = wix, )P, y) (5.7-11)
in the neighborhood. With these approximations, Eq. (5.7-9) becomes

; ~ 1 X ¥
P = G T DAY T D) k. EE Ty ) (5.7-12)

- w(x, y)px + m,y + n)] = [8(x,y) — wx, )P}

To minimize o*(x, y) we solve

o’ (x,y) _
e 0 (5.7-13)
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for w(x, y). The result is

PG — B )P )
pix.y) = p(x. y) ' (5.7-14)

"J(x‘ y) =

To obtain the restored image f(x, y) we compute w(x, y) from Eg-
(5.7-14) and then make use of Eq. (5.7-6). As w(x, y) is assumed to be constant
in a neighborhood, computing this function for every value of x and y in the
image is unnecessary. Instead, w(x, y) is computed for one point in each
nonoverlapping neighborhood (preferably the center point) and then used to
process all the image points contained in that neighborhood.

Example: Figures 5.9 through 5.11 show the result of applying the above tech-
nique to the image shown in Fig. 5.8(a). In this case N = 512 and a neigh-
borhood with X = Y = 15 was selected. Figure 5.9 shows the Fourier spectrum
of the corrupted image, but the origin was not shifted to the center of the
frequency plane. Figure 5.10(a) shows the spectrum of P(u, v), where only the
noise spikes are present. Figure 5.10(b) shows the interference pattern p(x, y)
obtained by taking the inverse Fourier transform of P(u, v). Note the similarity
between this pattern and the structure of the noise present in Fig. 5.8(a). Finally,
Fig. 5.11 shows the processed image obtained by using Eq. (5.7-6). The periodic

Figure 5.9 Fourier spectrum (without shifting) of the image shown in Fig. 5.8(a). (Courtesy
of NASA, Jet Propulsion Laboratory.)
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Figure 5.10 (a) Fourier spectrum of P(u, v); (b) corresponding interference pattern
p(x, y). (Courtesy of NASA, Jet Propulsion Laboratory.)

Figure 5.11 Processed image. (Courtesy of NASA, Jet Propulsion Laboratory.)
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interference, for all practical purposes, has been removed, leaving only spotty
noise that is not periodic. This noise can be processed by other methods, such
as median filtering. Qa

5.8 RESTORATION IN THE SPATIAL DOMAIN

After a suitable frequency domain restoration filter has been obtained by any
of the methods discussed earlier, implementing the solution in the spatial do-
main via a convolution mask in order to expedite processing (see Section 4.1)
often is desirable. As indicated in Section 4.5, the coefficients of a convolution
mask can be obtained directly from a given filter function via Eq. (4.5-12).
Although the discussion in Section 4.5 deals with enhancement, the concepts
developed there are equally applicable to restoration; the difference lies in the
nature of the filter.

Example: Figure 5.12(a) shows an infrared image of a set of military targets
in a field. The image is corrupted by nearly periodic scanner interference, visible
as a “ripple” effect in the vertical direction. Because of its periodic nature, the
interference produces bursts of concentrated energy in the vertical axis of the
Fourier spectrum of the image, as shown in Fig. 5.13(a).

A simple approach for reducing the effect of the interference is to use a
notch filter, H(u, v), which attenuates the values of the Fourier transform in
the vertical axis and multiplies all other values of the transform by 1, in a
manner analogous to the procedure discussed in Section 5.7. Figure 5.13(b)
shows such a filter superimposed on the spectrum, where the dark bands are
the attenuated regions.

Figure 5.12(b) shows the result of using the notch filter and taking the
inverse Fourier transform. Note that, for all practical purposes, the interference
was eliminated from the image. The image shown in Fig. 5.12(c) was obtained
by applying a9 X 9 convolution mask (see Section 4.1) to the original, corrupted
image. The coefficients of this mask were generated from the notch filter by
using Eq. (4.5-12). This small mask is only an approximation of the Fourier
filtering process, so some vertical lines are still visiblé in the processed image.
A second pass of the mask further reduced the interference (at the cost of some
noticeable blurring), as Fig. 5.12(d) shows. a

5.9 GEOMETRIC TRANSFORMATIONS

We conclude this chapter with an introductory discussion on the use of geo-
metric transformations for image restoration. Unlike the techniques discussed
so far, geometric transformations generally modify the spatial relationships
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Figure 5.12 (a) Infrared image showing interference; (b) image restored using a notch filter
in the frequency domain; (c) image restored using a 9 x 9 convolution mask; (d) result of
applying the mask a second time. (From Meyer and Gonzalez [1983].)

between pixels in an image. Geometric transformations often are called rubber-
sheet transformations, because they may be viewed as the process of *“printing”
an image on a sheet of rubber and then stretching this sheet according to some
predefined set of rules.

In terms of digital image processing, a geometric transformation consists
of two basic operations: (1) a spatial transformation, which defines the “re-
arrangement’’ of pixels on the image plane; and (2) a gray-level interpolation,
which deals with the assignment of gray levels to pixels in the spatially trans-
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Figure 5.13 (a) Fourier spectrum of the image in Fig. 5. 12(a); (b) Notch filter superimposed
on the spectrum. (From Meyer and Gonzalez [1983].)

formed image. We discuss the fundamental ideas underlying these concepts,
and their use in the context of image restoration, in the following sections.

5.9.1 Spatial Transformations

Suppose that an image f with pixel coordinates (x, y) undergoes geometric
distortion to produce an image g with coordinates (£, ). This transformation
may be expressed as

H)
|

= r(x,y) (5.9-1)

and

y

where r(x, y) and s(x, y) represent the spatial transformations that produced
the geometrically distorted image g(%, y). For example, if r(x, y) = x/2 and
s(x, y) = y/2, the “distortion” is simply a shrinking of the size of f(x, y) by
one-half in both spatial directions.

If r(x, y) and s(x, y) were known analytically, recovering f(x, y) from the
distorted image g(%, §) by applying the transformations in reverse might be
possible theoretically. In practice, however, formulating analytically a single
set of functions r(x, y) and s (x, y) that describe the geometric distortion process
over the entire image plane generally is not possible. The method used most
frequently to overcome this difficulty is to formulate the spatial relocation of
pixels by the use of fiepoints, which are a subset of pixels whose location in
the input (distorted) and output (corrected) images is known precisely.

s(x, ) (5.9-2)
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Figure 5.14 shows quadrilateral regions in a distorted and corresponding
corrected image. The vertices of the quadrilaterals are corresponding tiepoints.
Suppose that the geometric distortion process within the quadrilateral regions
is modeled by a pair of bilinear equations so that

r(x,y) = ax + ¢y + cxy + ¢, (5.9-3)
and
s(x,¥) = csx + ¢y + xy + . (5.9-4)
Then, from Egs. (5.9-1) and (5.9-2),
L=cx+ 6y + axy + ¢ (5.9-5)
and
¥ =csx + ey + ¢xy + cs. (5.9-6)

Since there are a total of eight known tiepoints, these equations can be easily
solved for the eight coefficients ¢;,, i = 1,2, . . . , 8. The coefficients constitute
the model used to transform all pixels within the quadrilateral region charac-
terized by the tiepoints used to obtain the coefficients. In general, enough
tiepoints are needed to generate a set of quadrilaterals that cover the entire
image, with each quadrilateral having its own set of coefficients.

The procedure used to generate the corrected image is straightforward. For
example, to generate f(0, 0), substitute (x, y) = (0, 0) into Egs. (5.9-5) and
(5.9-6) and obtain a pair of coordinates (£, ) from those equations. Then, let
f(0,0) = g(£, y), where £ and y are the coordinate values just obtained. Next,
substitute (x, y) = (0, 1) into Egs. (5.9-5) and (5.9-6), obtain another pair of
values (£, y), and let f(0, 1) = g(%, y) for those coordinate values. The pro-
cedure continues pixel by pixel and row by row until an array whose size does

e

Figure 5.14 Corresponding tiepoints in two image segments.
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not exceed the size of image g is obtained. A column (rather than a row) scan
would yield identical results. Also, a bookkeeping procedure is essential to
keep track of which quadrilaterals apply at a given pixel location in order to
use the proper coefficients.

5.9.2 Gray-Level Interpolation

The method just discussed steps through integer values of the coordinates
(x, y) to yield the corrected image f(x, y). However, depending on the coef-
ficients ¢;, Egs. (5.9-5) and (5.9-6) can yield noninteger values for £ and .
Because the distorted image g is digital, its pixel values are defined only at
integer coordinates. Thus using noninteger values for £ and y causes a mapping
into locations of g for which no gray levels are defined. Inferring what the gray-
level values at those locations should be, based only on the pixel values at
integer coordinate locations, then becomes necessary. The technique used to
accomplish this is called gray-level interpolation.

The simplest scheme for gray-level interpolation is based on a nearest
neighbor approach. This method, also called zero-order interpolation, is illus-
trated in Fig. 5.15. This figure shows: (1) the mapping of integer coordinates
(x, y) into fractional coordinates (£, y) by means of Egs. (5.9-5) and (5.9-6);
(2) the selection of the closest integer coordinate neighbor to (£, ¥); and (3)
the assignment of the gray level of this nearest neighbor to the pixel located at
(x, y).

Although nearest neighbor interpolation is simple to implement, this
method often has the drawback of producing undesirable artifacts, such as
distortion of straight edges in images of fine resolution. Smoother results can
be obtained by using more sophisticated techniques, such as cubic convolution
interpolation (Bernstein [1976]), which fits a surface of the (sin x)/x type through
a much larger number of neighbors (say, 16) in order to obtain a smooth
estimate of the gray level at any desired point. However, from a computational
point of view this technique is costly, and a reasonable compromise is to use
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Figure 5.15 Gray-level interpolation based on the nearest neighbor concept.
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(a) (b)

Figure 5.16 (a) Distorted image; (b) image after geometric correction. (From O’Handley
and Green [1972].)

a bilinear interpolation approach that uses the gray levels of the four nearest
neighbors. In other words, the idea is that the gray level of each of the four
integral nearest neighbors of a nonintegral pair of coordinates (%, y) is known.
The gray-level value of (%, y), denoted v (%, ¥), can then be interpolated from
the values of its neighbors by using the relationship

v(£,9) =at + by + cky + d (5.9-7)

where the four coefficients are easily determined from the four equations in
four unknowns that can be written using the four known neighbors of (£, y).
When these coefficients have been determined, v (%, y) is computed and this
value is assigned to the location in f(x, y) which yielded the spatial mapping
into location (%, ¥). It is easy to visualize this procedure with the aid of Fig.
5.15. The exception is that, instead of using the gray-level value of the nearest
neighbor to (£, y), we actually interpolate a value at location (£, y) and use
this value for the gray-level assignment at (x, y).

Example: The methods developed in this section and Section (5.9.1) can be
illustrated by applying these techniques to the problem of correcting an image
that has been distorted geometrically. The image in question is shown in Fig.
5.16(a). This image exhibits the “barrel” distortion found in many vidicon-
based imaging cameras. The rectilinear grid shown in Fig. 5.16(a) is severely
distorted, particularly near the edges of the image. Note also that the distortion
is not uniform and that the degree of distortion increases nonlinearly as a
function of distance from the center of the image.
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As indicated in Section 5.9.1, the use of Egs. (5.9-5) and (5.9-6) requires
knowledge of tiepoints in both the distorted and corrected images. In this
particular case, tiepoints are the reseau marks visible in Fig. 5.16(a) as small
dark dots scattered throughout the image. (Reseau marks are small metallic
squares embedded directly on the surface of the imaging tube.) As the locations
of these marks are known precisely, they serve as ideal tiepoints. Figure 5.16(b)
shows the result of using Egs. (5.9-5) and (5.9-6) for spatial mappings and Eq.
(5.9-7) for gray-level interpolation. Note the significant degree of geometric
correction achieved by using these equations. a

The preceding example indicates but one of the many possible uses of
geometric transformations for image restoration. Another important applica-
tion is image registration, or finding correspondence between two images. The
procedure for image registration is the same as the method just illustrated for
geometric correction. However, the emphasis is on transforming an image so
that it will correspond with another image of the same scene but viewed perhaps
from another perspective. Other applications of the techniques discussed in
this section include rectification of display distortions, map projections, and
cartographic projections. The books by Castleman [1979] and Green [1983]
contain numerous examples of these applications.

Establishing corresponding tiepoints in two images in many cases can be a
rather difficult task. Not every situation is characterized by the availability of
controlled artifacts such as reseau marks. When marks are not known a priori,
tiepoints are usually established by using correlation techniques (see Chapter
9) to find corresponding features in two images. However, correlation measures
are affected by factors such as noise and image rotation and thus generally
yield less precise spatial correspondences between tiepoints.

5.10 CONCLUDING REMARKS

The principal concepts developed in this chapter are a formulation of the image
restoration problem in the framework of linear algebra and the subsequent
simplification of algebraic solutions based on the properties of circulant and
block-circulant matrices.

Most of the restoration techniques derived in preceding sections are based
on a least squares criterion of optimality. The use of the word optimal in this
context refers strictly to a mathematical concept, not to optimal response of
the human visual system. In fact, the present lack of knowledge about visual
perception precludes a general formulation of the image restoration problem
that takes into account observer preferences and capabilities. In view of these
limitations, the advantage « ¢ the procedures followed in this chapter is the
development of a basic approach from which a set of previously known (but
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not unified) results can be derived. Thus the power of the algebraic approach
is evident in the simplicity by which methods such as the Wiener and constrained
least squares filters can be obtained, starting from the same basic principles.

The key points leading to the results in the first eight sections of this chapter
are based on the assumption of linear, space invariant degradations. This as-
sumption leads immediately to the convolution integral, whose discrete for-
mulation can be expressed in terms of the basic degradation model given in
Eq. (5.1-24). The assumed periodicity of the input functions further simplified
the problem by producing circulant and block-circulant matrices. In terms of
implementation, these matrices allow all the derived restoration techniques to
be carried out in the frequency domain by means of a 2-D FFT algorithm, thus
greatly reducing the computational complexity posed by the original matrix
formulation of the degradation process.

The material in Section 5.8 provides a convenient way to implement in the
spatial domain an approximation of the results in Sections 5.2-5.7. Finally, the
discussion in Section 5.9 introduces the problem of restoring images that have
been distorted geometrically.
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For further reading on the general topic of image restoration, see Bates and McDonnell

[1986], Stark [1987], Jain [1989], and Kak and Slaney [1988]. The latter reference deals
almost exclusively with computerized tomographic imaging, a topic that although beyond
our discussion, is of considerable interest in medical imaging.
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Consider a linear, position invariant image degradation system with impulse response
h(x — a,y — B) = e”le =" + 0-8%_Guppose that the input to the system is an image
consisting of a line of infinitesimal width located at x = 4, and modeled by f(x, y) =
8(x — a). Assuming no noise, what is the output image g(x, y)?

Show the validity of Eq. (5.2-8).

A professor of archeology doing research on currency exchange practices during the
Roman empire recently became aware that four Roman coins crucial to his research
are listed in the holdings of the British Museum in London. Unfortunately, he was
told after arriving there that the coins recently had been stolen. Further research on
his part revealed that the museum keeps photographs of every item for which it is
responsible. Unfortunately, the photos of the coins in question are blurred to the point
where the date and other small markings are not readable. The blurring was caused
by the camera being out of focus when the pictures were taken. You are hired as a
consultant to determine whether computer processing can be utilized to restore the
images to the point where the professor can read the markings. You are told that the
original camera used to take the photos is still available, as are other representative
coins of the same era. Propose a step-by-step solution to this problem.

Derive an equation analogous to Eq. (5.4-13), but for arbitrary uniform velocity in
both the x and y directions.

Consider the problem of image blurring caused by uniform acceleration in the x di-
rection. If the image is at rest at time ¢ = 0 and accelerates with a uniform acceleration
x,(t) = at’/2 for a time T, find the transfer function H(u, v).

A space probe is designed to transmit images from a planet as it approaches it for
landing. During the last stages of landing, one of the control thrusters fails, resulting
in rapid rotation of the craft about its vertical axis. The images sent during the last
two seconds prior to landing are blurred as a consequence of this circular motion. The
camera is located in the bottom of the probe, along its vertical axis, and pointing down.
Fortunately, the rotation of the craft is also about its vertical axis, so the images are
blurred by uniform rotational motion. In addition, during the acquisition time of each
image the craft rotation was limited to #/8 radians. The image acquisition process can
be modeled as an ideal shutter that is open only during the time the craft rotated the
/8 radians. You may assume that vertical motion was negligible during image acqui-
sition. How would you use the concepts you have learned in this chapter to restore
the images? You are not being asked to provide a specific solution. Rather, you are
asked to provide a basic approach to the solution.

Provide a specific solution (in the form of equations) to Problem 5.6, listing any
assumptions that you made in arriving at that solution.
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a) Show how Eq. (5.5-8) follows from Eq. (5.5-7).
b) Show how Eq. (5.5-9) follows from Eq. (5.5-8).

Image blurring caused by long-term exposure to atmospheric turbulence can be mod-

eled by the transfer function H(u, v) = exp[— (& + v*)/2¢”]. Assume negligible noise.

What is the equation of the Wiener filter you would use to restore an image blurred

by this type of degradation?

Assume that the model in Fig. 5.1 is linear and position-invariant and show that the

power spectrum of the output is given by |G(u, v)| = |H(u, v)}*|F(u, v)|* +

[N (u, v)|*. Refer to Eq. (5.2-40).

Cannon [1974] suggested a restoration filter R (u, v) satisfying the condition | F(u, v)|?

= |R(u, v)|!| G(u, Av)lz and based on the premise of forcing the power spectrum of the

restored image, |F(u, v)’, to equal the power spectrum of the original image,

| F(u, v)|*.

a) Find R(u, v) in terms of |F(u, v)|*, |H(u, v)|*, and |N(u, v)|*. (Hint: Refer to Fig.
5.1, Eq. (5.2-40), and Problem 5.10.)

b) Use your result in (a) to state a result in the form of Eq. (5.5-9).

Suppose that each element of an image is normalized to the range [0, 1]. Then it is
possible to interpret each such element as the probability of a certain number of photons
hitting that particular element location in the image. Entropy is defined as E = —p
In p, where p is a probability, and In is the natural logarithm (see Chapter 6). We
define E = —f" In f to be the entropy of an image that has been normalized and has
been expressed in vector form. In this notation, the vector In f is formed by taking the
natural logarithm of each component of f. A useful filter for addressing degradations
based on a random grain model (similar to modeling film grain) is obtained by per-
forming a constrained least squares minimization of the negative of the entropy. Show
that the resulting restored image is given by the transcendental equation f =
exp[—-1 — 2aH" (g — HI)].

A linear approximation to the maximum entropy solution given in Problem 5.12 can
be obtained by expanding the exponential in a Taylor series and then keeping only
the linear part of the expansion. Show that this approach results in the constrained
least squares formulation in Eq. (5.3-9) but with Q = L

A certain x-ray imaging geometry produces a blurring degradation that can be modeled
as the convolution of the sensed image with the spatial, circularly symmetric function
h(r) = [(r* — 20%)/olexp[ - r’/20?], where r* = x* + y*. Obtain the transfer function
of a constrained least squares filter you could use to deblur the images produced by
this x-ray system. You may assume that the images are square.

Start with Eq. (5.7-12) and derive Eq. (5.7-14).
Suppose that, instead of using quadrilaterals, you used triangular regions in Section

5.9 to establish a spatial transformation and gray-level interpolation. What would be
the equations analogous to Egs. (5.9-5), (5.9-6), and (5.9-7) for triangular regions?



