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Table 2.3 ALU Operations

Operations on A Operations on B

— Multiply by w
Shift right —

— Add w,*A

Shift down —
— Add w,*A

Shift left —
— Add w,*A

Shift left —
— Add wy*A

Shift up —
— Add w*A

Shift up —
— Add w,*A

Shift right —
— Add w,*A

Shift right —
Add w*A

Shift left —
Shift down —

happens in a single pixel of B by considering how a mask would have to be
shifted in order to produce the result of Eq. (2.4-5) in that location. The first
operation on B produces w; multiplied by the pixel value at that location. Since
that value is zs, we have wsz; after this operation. The first shift to the right
brings the neighbor with value z, (see Fig. 2.15a) over that location. The next
operation multiplies z, by w, and adds the result to the location of the first
step. So at this point the result is w,z; + wszs at the location in question. The
next shift on A and ALU operation on B produce w,z, + w,z, + wsz; at that
location, and so on. The operations are done in parallel for all locations in B,
so this procedure takes place simultaneously at the other locations in that frame
buffer. In most ALUs, the operation of multiplying an image by a constant
(say, w;*A) followed by an ADD is done in one frame time. Thus the ALU
implementation of Eq. (2.4-5) for an entire image takes on the order of nine
frame times (9/30 sec). For an n x m mask it would take on the order of nm
frame times.

2.5 IMAGING GEOMETRY

In the following discussion we present several important transformations used
in imaging, derive a camera model, and treat the stereo imaging problem in
some detail.

© 1992 R. C. Gonzalez & R. E. Woods
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2.5.1 Some Basic Transformations

The material in this section deals with development of a unified representation
for problems such as image rotation, scaling, and translation. All transfor-
mations are expressed in a three-dimensional (3-D) Cartesian coordinate system
in which a point has coordinates denoted (X, Y, Z). In cases involving 2-D
images, we adhere to our previous convention of lowercase representation (x,
y) to denote the coordinates of a pixel. Referring to (X, Y, Z) as the world
coordinates of a point is common terminology.

Translation

Suppose that the task is to translate a point with coordinates (X, Y, Z) to a
new location by using displacements (X, Y,, Z,). The translation is easily
accomplished by using the equations:

X* = X + Xn
Y =Y+ Y, 2.5-1)
7= 7+ 2,

where (X*, Y*, Z*) are the coordinates of the new point. Equation (2.5-1)
may be expressed in matrix form by writing

e

x*] 1 o0 X,
Y*[=10 1 0 Y, (2.5-2)
z | 001 z

N~

It is often useful to concatenate several transformations to produce a com-
posite result, such as translation, followed by scaling and then rotation. The
use of square matrices simplifies the notational representation of this process
considerably. With this in mind, Eq. (2.5-2) can be written as follows:

X 100 Xx|[x
y* 010 Y| Y
= (2.5-3)
z* 001 2|z
1 000 1]L1

In terms of the values of X*, Y*, and Z*, Eqs. (2.5-2) and (2.5-3) are equivalent.
Throughout this section, we use the unified matrix representation

v = Av (2.5-4)

where A is a 4 X 4 transformation matrix, v is the column vector containing
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the original coordinates,

v = (2.5-6)

With this notation, the matrix used for translation is

]. U 0 X[:
01 0 Y,
T = (2.5-7)

00 1 Z

000 1
and the translation process is accomplished by using Eq. (2.5-4), so that v* =
Tv.
Scaling

Scaling by factors §,, §,, and S, along the X, Y, and Z axes is given by the
transformation matrix

S, 0 0 0
0S 0 0

§ = (2.5-8)
0 0 S 0
00 0 1

Rotation

The transformations used for 3-D rotation are inherently more complex than
the transformations discussed thus far. The simplest form of these transfor-
mations is for rotation of a point about the coordinate axes. To rotate a point
about another arbitrary point in space requires three transformations: the first



54 Digital Image Fundamentals

X

Figure 2.16 Rotation of a point about each of the coordinate axes. Angles are measured
clockwise when looking along the rotation axis toward the origin.

translates the arbitrary point to the origin, the second performs the rotation,
and the third translates the point back to its original position.

With reference to Fig. 2.16, rotation of a point about the Z coordinate axis
by an angle @ is achieved by using the transformation

cos 8 sind 0 0

—sin@ cos@ 0 0
R, = (2.5-9)
0 0 1 0

0 0 01

The rotation angle 8 is measured clockwise when looking at the origin from a
point on the + Z axis. This transformation affects only the values of X and Y
coordinates.

Rotation of a point about the X axis by an angle «a is performed by using
the transformation

1 0 0 0
0 cosa sina 0
R, = (2.5-10)
0 —-sma cosa (
0 0 0 1

Finally, rotation of a point about the Y axis by an angle $ is achieved by
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using the transformation
cos B 0 —sinp
0 1 0
simB 0 cosp
0 0 0 1

(2.5-11)

o o o

Concatenation and inverse transformations

The application of several transformations can be represented by a single 4 x
4 transformation matrix. For example, translation, scaling, and rotation about
the Z axis of a point v is given by

v" = Ry(S(Tv)) (2.5-12)
= Av

where A is the 4 x 4 matrix A = R,ST. These matrices generally do not
commute, so the order of application is important.

Although the discussion thus far has been limited to transformations of a
single point, the same ideas extend to transforming a set of m points simul-
taneously by using a single transformation. With reference to Eq. (2.5-5), let
Y., V2, . . ., V,, represent the coordinates of m points. For a 4 x m matrix V
whose columns are these column vectors, the simultaneous transformation of
all these points by a 4 x 4 transformation matrix A is given by

V* = AV, (2.5-13)

The resulting matrix V* is 4 X m. Its ith column, v*, contains the coordinates
of the transformed point corresponding to v,.

Many of the transformations discussed above have inverse matrices that
perform the opposite transformation and can be obtained by inspection. For
example, the inverse translation matrix is

100 —X,
oo -y, )
T loo1 -z 25-14)
000 1

Similarly, the inverse rotation matrix R, " is

cos (—6) sin(—8) 0 0
—sin (—#) cos(—6) 0 0

R, = (2.5-15)
0 0 10

0 0 0 1
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The inverses of more complex transformation matrices are usually obtained by
numerical techniques.

2.5.2 Perspective Transformations

A perspective transformation (also called an imaging transformation) projects
3-D points onto a plane. Perspective transformations play a central role in
image processing because they provide an approximation to the manner in
which an image is formed by viewing a 3-D world. These transformations are
fundamentally different from those discussed in Section 2.5.1 because they are
nonlinear in that they involve division by coordinate values.

Figure 2.17 shows a model of the image formation process. The camera
coordinate system (x, y, z) has the image plane coincident with the xy plane
and the optical axis (established by the center of the lens) along the z axis.
Thus the center of the image plane is at the origin, and the center of the lens
is at coordinates (0, 0, A). If the camera is in focus for distant objects, A is the
focal length of the lens. Here the assumption is that the camera coordinate
system is aligned with the world coordinate system (X, Y, Z). We remove this
restriction in Section 2.5.3.

Let (X, Y, Z) be the world coordinates of any point in a 3-D scene, as
shown in Fig. 2.17. We assume throughout the following discussion that Z >
A; that is, all points of interest lic in front of the lens. The first step is to obtain
a relationship that gives the coordinates (x, y) of the projection of the point
(X, Y, Z) onto the image plane. This is easily accomplished by the use of similar
triangles. With reference to Fig. 2.17,

»y

i [mage plane

7 "

A

Figure 2,17 Basic model of the imaging process. The camera coordinate system (x, y, z) is
aligned with the world coordinate system (X, Y, Z).

\ -7, 7

Lens center
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of similar triangles. With reference to Fig. 2.17,

x X
A Z A (2.5-16)
X
TA-Z
and
y 4
A Z - (2.5-17)
Y
TA-Z

where the negative signs in front of X and Y indicate that image points are
actually inverted,-as the geometry of Fig. 2.17 shows.

The image-plane coordinates of the projected 3-D point follow directly
from Eqgs. (2.5-16) and (2.5-17):

X = (2.5-18)

and
AY

Y o=

’ A—Z
These equations are nonlinear because they involve division by the variable Z.
Although we could use them directly as shown, it is often convenient to express
them in linear matrix form, as in Section 2.5.1 for rotation, translation, and
scaling. This is easily accomplished by using homogeneous coordinates.

The homogeneous coordinates of a point with Cartesian coordinates (X,

Y, Z) are defined as (kX, kY, kZ, k), where k is an arbitrary, nonzero constant.
Clearly, conversion of homogeneous coordinates back to Cartesian coordinates
is accomplished by dividing the first three homogeneous coordinates by the
fourth. A point in the Cartesian world coordinate system may be expressed in
vector form as

(2.5-19)

X
w=|Y (2.5-20)
LZ

and its homogeneous counterpart is given by

kX
kY
kZ
Lk
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If we define the perspective transformation matrix as

L0 0 07
01 00
P=100 10 (2.5-22)
00 —1 1
L A .

the product Pw, yields a vector denoted ¢;:

c, = Pw,
1 0 0 0[kX
0 1 0 0| kY

=lo o0 1 0llkz (2.5-23)
00 -1 1|k
L A .
- ix -
kY
= kZ
_—]Cz+k
L A .

The elements of ¢, are the camera coordinates in homogeneous form. As in-
dicated, these coordinates can be converted to Cartesian form by dividing each
of the first three components of ¢, by the fourth. Thus the Cartesian coordinates
of any point in the camera coordinate system are given in vector form by

LT AX
* X - Z
AY
c=vl= |7 (2.5-24)
AZ
S P

The first two components of ¢ are the (x, y) coordinates in the image plane
of a projected 3-D point (X, Y, Z), as shown earlier in Eqs. (2.5-18) and (2.5-
19). The third component is of no interest in terms of the model in Fig. 2.17.
As shown next, this component acts as a free variable in the inverse perspective
transformation.
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The inverse perspective transformation maps an image point back into 3-
D. Thus from Eq. (2.5-23),

w, = P ¢, (2.5-25)
where P Is
1 0 0 07
01 0 0
Pl=100 10 (2.5-26)
00 1 1
L A

Suppose that an image point has coordinates (xa, yo, 0), where the 0 in the
z location simply indicates that the image plane is located at z = 0. This point
may be expressed in homogeneous vector form as

kxq
kyq
c, = (2.5-27)
0
k

Application of Eq. (2.5-25) then yields the homogeneous world coordinate
vector

kxy
kyo
W, = 0 (2.5-28)
k
or, in Cartesian coordinates,
X Xy
we|v|=1y (2.5-29)
Z 0

This result obviously is unexpected because it gives Z = 0 for any 3-D point.
The problem here is caused by mapping a 3-D scene onto the image plane,
which is a many-to-one transformation. The image point (x,, y,) corresponds
to the set of collinear 3-D points that lie on the line passing through (x,, yo, 0)
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and (0, 0, A). The equations of this line in the world coordinate system come
from Egs. (2.5-18) and (2.5-19); that is,

X = i‘f(a - 2) (2.5-30)
and
y=20-2z 2.5-
=5 ( )- (2.5-31)

Equations (2.5-30) and (2.5-31) show that unless something is known about
the 3-D point that generated an image point (for example, its Z coordinate),
it is not possible to completely recover the 3-D point from its image. This
observation, which certainly is not unexpected, can be used to formulate the
inverse perspective transformation by using the z component of ¢, as a free
variable, instead of 0. Thus, by letting

kx,
ky,
kz
k

(2.5-32)

Lo
Il

it follows from Eq. (2.5-25) that

k-x[.‘

k}'n
W, = (2 -

n
Lad
(5]
—

= |22 (2.5-34)
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In other words, treating z as a free variable yields the equations

x = Mo
Atz

y = 2 (2.5-35)
A+ z

7 - Az
Atz

Solving for z in terms of Z in the last equation and substituting in the first two
expressions yields

gt

=T -2 (2.5-36)

and

Yy = ’f(,\ - 2) (2.5-37)

which agrees with the observation that recovering a 3-D point from its image
by means of the inverse perspective transformation requires knowledge of at
least one of the world coordinates of the point. We address this problem again
in Section 2.5.5.

2.5.3 Camera Model
Equations (2.5-23) and (2.5-24) characterize the formation of an image by
projection of 3-D points onto an image plane. These two equations thus con-
stitute a basic mathematical model of an imaging camera. This model is based
on the assumption that the camera and world coordinate systems are coincident.
In this section we consider a more general problem in which the two coordinate
systems are allowed to be separate. However, the basic objective of obtaining
the image-plane coordinates of any particular world point remains the same.

Figure 2.18 shows a world coordinate system (X, ¥, Z) used to locate both
the camera and 3-D points (denoted by w). Figure 2.18 also shows the camera
coordinate system (x, y, z) and image points (denoted by ¢). The assumption
is that the camera is mounted on a gimbal, which allows pan through an angle
6 and tilt through an angle . Here, pan is the angle between the x and X axes,
and filt is the angle between the z and Z axes. The offset of the center of the
gimbal from the origin of the world coordinate system is denoted by w,, and
the offset of the center of the imaging plane with respect to the gimbal center
is denoted by vector r, with components (r,, 2, 13).

The concepts developed in Sections 2.5.1 and 2.5.2 provide all the necessary
tools to derive a camera model based on the geometric arrangement of Fig.
2.18. The approach is to bring the camera and world coordinate systems into
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Xo

S z

X

Figure 2.18 Imaging geometry with two coordinate systems. (From Fu, Gonzalez, and Lee
[1987].)

alignment by applying a set of transformations. After doing so, we simply apply
the perspective transformation of Eq. (2.5-22) to obtain the image-plane co-
ordinates for any world point. In other words, we first reduce the problem to
the geometric arrangement shown in Fig. 2.17 before applying the perspective
transformation.

Suppose that, initially, the camera was in normal position, in the sense that
the gimbal center and origin of the image plane were at the origin of the world
coordinate system, and all axes were aligned. The geometric arrangement of
Fig. 2.18 may then be achieved in several ways. Let us assume the following
sequence of steps: (1) displacement of the gimbal center from the origin, (2)
pan of the x axis, (3) tilt of the z axis, and (4) displacement of the image plane
with respect to the gimbal center.
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Obviously, the sequence of these mechanical steps does not affect the world
points because the set of points seen by the camera after it was moved from
normal position is quite different. However, applying exactly the same sequence
of steps to all world points can achieve normal position again. A camera in
normal position satisfies the arrangement of Fig. 2.17 for application of the
perspective transformation. Thus the problem is reduced to applying to every
world point a set of transformations that correspond to the steps listed earlier.

Translation of the origin of the world coordinate system to the location of
the gimbal center is accomplished by using the transformation matrix

100 —-X,
010 -V,

G = _ (2.5-38)
001 —Z
000 1

In other words, a homogeneous world point w, that was at coordinates (X,
Y,, Z) is at the origin of the new coordinate system after the transformation
Gw,.

As indicated earlier, the pan angle is measured between the x and X axes.
In normal position, these two axes are aligned. In order to pan the x axis
through the desired angle, we simply rotate it by 6. The rotation is with respect
to the z axis and is accomplished by using the transformation matrix R, of Eq.
(2.5-9). In other words, application of this matrix to all points (including the
point Gw,) effectively rotates the x axis to the desired location. When using
Eq. (2.5-9) it is important to keep clearly in mind the convention established
in Fig. 2.16. That is, angles arc considered positive when points are rotated
clockwise, which implies a counterclockwise rotation of the camera about the
2 axis. The unrotated (0°) position corresponds to the case when the x and X
axes are aligned.

At this point the z and Z axes are still aligned. Since tilt is the angle between
these two axes. we tilt the camera an angle a by rotating the z axis by . The
rotation is with respect to the x axis and is accomplished by applying the
transformation matrix R, of Eq. (2.5-10) to all points (including the point
R,Gw,). Again, a counterclockwise rotation of the camera implies positive
angles, and the 0° mark is when the z and Z axes are aligned.’

According to the discussion in Section 2.5.4, the two rotation matrices can
be concatenated into a single matrix, R = R, R,. Then, from Egs. (2.5-9) and

" A useful way to visualize these transformations is to construct an axis system (for exampie,
with pipe cleaners), label the axes x, y, and z, and perform the rotations manually, one axis
at a time.
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(2.5-10),

cos 8 sin # 0

R =

0
—sinffcosa cosfcosa sina O
(2.5-39)

0

sin # sin a —cos fsin ¢ cos «
0 0 0 1

Finally, displacement of the origin of the image plane by vector r is achieved
by the transformation matrix

1 00 —r
0 1 0 = Fs
C- (2.5-40)
001 —n
000 1

Thus applying to w;, the series of transformations CRGw, brings the world and
camera coordinate systems into coincidence. The image-plane coordinates of
a point w, are finally obtained by using Eq. (2.5-23). In other words, a ho-
mogeneous world point that is being viewed by a camera satisfying the geometric
arrangement shown in Fig. 2.18 has the following homogeneous representation
in the camera coordinate system:

¢, = PCRGw, (2.5-41)

Equation (2.5-41) represents a perspective transformation involving two co-
ordinate systems.

As indicated in Section 2.5.2, we obtain the Cartesian coordinates (x, y)
of the imaged point by dividing the first and second components of ¢, by the
fourth. Expanding Eq. (2.5-41) and converting to Cartesian coordinates yields

(X — Xo)eos 8 + (Y — Y,)sin 6 — r,

x=A = (X — XysinOsine + (Y — Ycos fsina — (Z — Z)cos @ + r, + A
(2.5-42)
and
S = A —(X — Xy)sin fcosa + (Y — Yjeos fcos a + (Z — Z)sina — r,

—(X = Xysin fsina + (Y — Y)cos Osina — (Z — Z)cos a + ry + A
(2.5-43)

which are the image coordinates of a point w whose world coordinates are (X,
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Y, Z). These equations reduce to Egs. (2.5-18) and (2.5-19) when X, = Y, =
Zo=0rn=rn=rn=0,anda = 8§ = 0°.

Example: As an illustration of the concepts just discussed, suppose that we
want to find the image coordinates of the corner of the block shown in Fig.
2.19. The camera is offset from the origin and is viewing the scene with a pan
of 135° and a tilt of 135°. We will follow the convention that transformation
angles are positive when the camera rotates counterclockwise, viewing the
origin along the axis of rotation.

Let us examine in detail the steps required to move the camera from normal
position to the geometry shown in Fig. 2.19. The camera is in normal position
in Fig. 2.20(a) and displaced from the origin in Fig. 2.20(b). Note that, after
this step, the world coordinate axes are used only to establish angle references.
That is, after displacement of the world coordinate origin, all rotations take
place about the new (camera) axes. Figure 2.20(c) shows a view along the z
axis of the camera to establish pan. In this case the rotation of the camera
about the z axis is counterclockwise, so world points are rotated about this axis
in the opposite direction, which makes 6 a positive angle. Figure 2.20(d) shows
a view, after pan, along the x axis of the camera to establish tilt. The rotation
about this axis is counterclockwise, which makes « a positive angle. The world
coordinate axes are shown as dashed lines in the latter two figures to emphasize
that their only use is to establish the zero reference for the pan and tilt angles.
We do not show the final step of displacing the image plane from the center
of the gimbal.

N

Figure 2.19 Camera viewing a 3-D scene. (From Fu, Gonzalez, and Lee [1987].)
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Figure 2.20 (a) Camera in normal position; (b) gimbal center displaced from origin; (c)
observer view of rotation about z axis to determine pan angle; (d) observer view of rotation
about x axis for tilt. (From Fu, Gonzalez, and Lee (1987].)

The following parameter values apply to this problem:

Xy =0m Y, = 0m Zy = 1m;
o = 135° 6 = 135%
0.03 m r,=r; = 0.02m A=35mm = 0.035m

r

The corner in question is at coordinates (X, Y, Z) = (1, 1, 0.2).
To compute the image coordinates of the block corner, we simply substitute
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the parameter values into Eqgs. (2.5-42) and (2.5-43); that is,

—0.03
—1.53 + A

Similarly,

+0.42
—-1.53 + A

Substituting A = 0.035 yields the image coordinates
x = 0.0007m and y = —0.009 m.

Note that these coordinates are well within a 1 x 1in. (0.025 x 0.025 m)
imaging plane. It is easily verified that use of a lens with a 200-mm focal length,
for example, would have imaged the corner of the block outside the boundary
of a plane with these dimensions (that is, outside the effective field of view of
the camera).

Finally, note that all coordinates obtained with Eqgs. (2.5-42) and (2.5-43)
are with respect to the center of the image plane. A change of coordinates is
required to use the convention established earlier that the origin of an image
is at its top left corner. a

2.5.4 Camera Calibration

In Section 2.5.3 we developed explicit equations for the image coordinates (x,
y), of a world point w. As shown in Eqs. (2.5-42) and (2.5-43), implementation
of these equations requires knowledge of the focal length, offsets, and angles
of pan and tilt. Although these parameters could be measured directly, deter-
mining one or more of the parameters using the camera itself as a measuring
device often is more convenient (especially when the camera moves frequently).
This requires a set of image points whose world coordinates are known, and
the computational procedure used to obtain the camera parameters using these
known points often is referred to as camera calibration.

With reference to Eq. (2.5-41), let A = PCRG. The elements of A contain
all the camera parameters and, from Eq. (2.5-41), ¢, = Aw,. Letting k = 1
in the homogeneous representation yields

Ci an @y s du|| X
Cpa Gy G @ Gul|| Y
_ (2.5-44)
Cra ay  ayp an aul|| £
Cpa, Qy Gy dyn aedl]

Based on the discussion in Sections 2.5.2 and 2.5.3, the camera coordinates in
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Cartesian form are

X = Cmlty (2.5-45)
and

Y = CialCpa (2.5-46)

Substituting ¢,, = xc¢, and ¢,; = ycu in Eq. (2.5-44) and expanding the matrix
product yields

XChy = apX + apY + apZ + ay
Y = auX + an¥ + anZ + a, (2.5-47)
Cha = AnX + anY + anZ + du,

where expansion of ¢,; was ignored because it is related to z.
Substitution of c¢,, in the first two equations of (2.5-47) yields two equations
with 12 unknown coefficients:

anX + apY + asZ — ayxX — apx¥ — asxZ — aux + a, = 0 (2.5-48)
anX + Y + anZ — anyX — anyY — anyZ — auy + a, = 0. (2.5-49)

The calibration procedure then consists of (1) obtaining m = 6 world points
(there are two equations) with known coordinates (X, Y, Z),i = 1,2, .. .,
m; (2) imaging these points with the camera in a given position to obtain the
corresponding image points (x;, y;),i = 1,2, . . ., m; and (3) using these results
in Egs. (2.5-48) and (2.5-49) to solve for the unknown coefficients. Many
numerical techniques exist for finding an optimal solution to a linear system of

equations, such as the one given by these equations (see, for example, Noble
[1969]).

2.5.5 Stereo Imaging

Recall that mapping a 3-D scene onto an image plane is a many-to-one trans-
formation. That is, an image point does not uniquely determine the location
of a corresponding world point. However, the missing depth information can
be obtained by using stereoscopic (stereo for short) imaging techniques.

As Fig. 2.21 shows, stereo imaging involves obtaining two separate image
views of an object (a single world point w in this discussion). The distance
between the centers of the two lenses is called the baseline, and the objective
is to find the coordinates (X, Y, Z) of the point w having image points (x, y,)
and (x;, y,). The assumption is that the cameras are identical and that the
coordinate systems of both cameras are perfectly aligned, differing only in the
location of their origins, a condition usually met in practice. Recall that, after
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Figure 2.21 Model of the stereo imaging process. (From Fu, Gonzalez, and Lee {1987].)

the camera and world coordinate systems have been brought into coincidence,
the xy plane of the image is aligned with the XY plane of the world coordinate
system. Then, under the above assumption, the Z coordinate of w is exactly
the same for both camera coordinate systems.

Let us bring the first camera into coincidence with the world coordinate
system, as shown in Fig. 2.22. Then, from Eq. (2.5-30), w lies on the line with
(partial) coordinates

X, = ?(/\ - Z) (2.5-50)

where the subscripts on X and Z indicate that the first camera was moved to
the origin of the world coordinate system, with the second camera and w
following, but keeping the relative arrangement shown in Fig. 2.21. If, instead,
the second camera is brought to the origin of the world coordinate system, w
lies on the line with (partial) coordinates

X, = %(a - 7). (2.5-51)

However, because of the separation between cameras and because the Z co-
ordinate of w is the same for both camera coordinate systems, it follows that

X,=X,+ B (2.5-52)
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Figure 2.22 Top view of Fig. 2.21 with the first camera brought into coincidence with the
world coordinate svstem. (From Fu, Gonzalez, and Lee [1987].)

and
Z,=2Z =2 (2.5-53)

where B is the baseline distance.
Substituting Eqgs. (2.5-52) and (2.5-53) into Eq. (2.5-50) and (2.5-51) gives

X, = %()\ - ) (2.5-54)
and
X, + B = %(,\ - 7). (2.5-55)
Subtracting Eq. (2.5-54) from (2.5-55) and solving for Z yields
Z - h”‘_‘BL (2.5-56)

which indicates that if the difference between the corresponding image coor-
dinates x. and x, can be determined, and the baseline and focal length are
known, calculating the Z coordinate of w is a simple matter. The X and Y
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world coordinates then follow directly from Eqgs. (2.5-30) and (2.5-31) using
either (x,, y;) or (xa, y2).

The most difficult task in using Eq. (2.5-56) to obtain Z is to actually find
two corresponding points in different images of the same scene. As these points
generally are in the same vicinity, a frequently used approach is to select a
point within a small region in one of the image views and then attempt to find
the best matching region in the other view by using correlation techniques, as
discussed in Chapter 9. When the scene contains distinct features, such as
prominent corners, a feature-matching approach generally yields a faster so-
lution for establishing correspondence. The calibration procedure developed
in Section 2.5.4 is directly applicable to stereo imaging by simply treating the
cameras independently.
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