
DIPUM3E Errata
Page 1

Digital Image Processing Using MATLAB
3rd edition

Gonzalez, Woods, and Eddins

Gatesmark Publishing
© 2020

Book Website: www.ImageProcessingPlace.com

February 17, 2022

ERRATA SHEET

Some of the corrections listed may already be incorporated in your printing of the book

Page

Reads

Should Read

76

The listing for function imageStats2 should be:
 function G = imageStats2(f)
 G{1} = size(f);
 G{2} = mean2(f);
 G{3} = mean(f,2);
 G{4} = mean(f,1);

147 Ten lines from bottom 0.5% 5%

150, 3rd line of 2nd full parag. lp = fir1(128,0.1) lp = fir1(128,0.06)
241 [Solution to Proj 4.1(a)] in
your Support Package S = complex(SG,0) SG = complex(SG,0)

242 [Proj 4.2(b)] * *(,) (,)MNf x y F= u v * *(,) [(,)]MNf x y DFT F= u v
242 [Solution to Proj 4.3(c)] in
the Faculty Support Package]

figure, imshow(g3)
figure, imshow(g4)

figure, imshow(g3,[])
figure, imshow(g4,[])

243 [Proj 4.5(a)] ..FrequencyEmphasis(f,a,b,D0,n) ..FrequencyEmphasis(f,D0,n,a,b)

244 [Proj 4.6(b)] . . . Fig. 4.16(b). . . . Fig. 4.15(b).
244 [Solution to Proj 4.7(a)] in
your Support Package

Replace lines 52 & 53 with: CC(:,1) = r0 + delr(:); & CC(:,2) = c0 +
delc(:);

316, Proj. 5.1(c), line 2 Replace “in Eq. (5-13)” with (see the 1st row in Table 5.1)

317, Proj. 5.6(a), in the Example . . . total of 32 squares in each size . . . total of 32 squares in each side

317, Proj. 5.6(b), line 1 Replace “pixels in which each square has 8 pixels” by “8 squares”

317, Proj. 5.6(b), line 2 Replace “a PSF” by “an OTF”

374, Proj. 6.7(b) Replace the word “resizing” by the word “reducing.”

457 basisImage basisImages

459, Eqs. (8-10) and (8-11) Replace vy/N in the exponent of both equations by vy\M

643 The 10th line should be: gboth = edge(f,'sobel',0.10,'nothinning');

Gonzalez/Woods/Eddins
Digital Image Processing Using MATLAB, 3rd ed.
Errata Sheet
Page 2 of 4
17 February, 2022

797 Two instances of fchcode should be freemanChainCode.

852, middle of page gR{k} = P.X({:,k} gR{k} = PR.X({:,k}

857, Eq. (13-48), swap b & c H = [a c; c b] H = [a b; b c]

857, Eq. (13-50) The square root should not enclose the denominator.

980, Proj 14.3(b) Figs. 14.4(g)-(i) Figs. 14.5(g)-(i)

Revised function imrecon in Proj 5.10(a)

function g = imrecon(f,theta)
%IMRECON Image reconstruction from projections.
% G = IMRECON(F,THETA) creates projections of grayscale image F, then
% reconstructs the image using backprojections at the angles supplied
% in the 1-D array THETA. The angles in THETA are in degrees. These
% are the angles of the normal to the direction of the beam, measured
% counterclockwise with respect to the x-axis, as illustrated in Fig.
% 5.16. For example, to obtain a vertical projection, we use THETA = 0
% degrees.
%
% The output reconstructed image is square, of size equal to the long
% dimention of the input mage. The output is scaled so the full
% intensity range [0,1].
%
% The objectives of this function are to illustrate conceptually the
% basics of image reconstruction from projections, as explained in
% Section 5.10.

% Preliminaries
% Generate a square image whose size will be the longest dimension of
% the original, as required in the function definition.
f = makeSquare(f);
M = size(f,1);
f = im2double(f);

% Pad f with a border of zeros, large enough to accomodate the largest
% possible rotated image. In general, for an image of size M x N, the
% vertical top and bottom padding are ceil((D-M)/2). For the horizontal,
% the padding the left and right padding are ceil((D-N)/2), where D is
% the diameter of the image. But our images have been padded to be
% square.
D = ceil(sqrt(M^2 + M^2));

% Make D an even integer so that padding strips will be of the same size
% on top, bottom, left, and right.
if isodd(D)
 D = D + 1;
end

% Padding value:
pad = ceil((D - M)/2);

% Pad the image
f = padarray(f,[pad,pad],0,'both');

% Beam(s) is(are) normal to angle(s) provided.
theta = theta + 90;

g = zeros(size(f));

smearLength = size(g,2);

% Projections and backprojections.

NL = numel(theta);

% A wait bar is included because this is a slow-running function for
% large images and/or a large number of angle increments.
bar = waitbar(0,'Working...');

Gonzalez/Woods/Eddins
Digital Image Processing Using MATLAB, 3rd ed.
Errata Sheet
Page 3 of 4
17 February, 2022

for I = 1:NL
 % For simplicity, rotate image instead of the sensors, thus the use
 % of -theta below. This is equivalent to leaving the image stationary
 % and rotating the sensors.
 rot = imrotate(f,-theta(I),'bilinear','crop');

 % Sum rows to obtain projection.
 p = sum(rot,2);

 % "Smear" the projections across image.
 smeared = repmat(p,1,smearLength);

 % Rotate g to insert projection.
 g = imrotate(g,-theta(I),'bilinear','crop');

 % Insert projection.
 g = g + smeared;

 % Rotate back.
 g = imrotate(g,theta(I),'bilinear','crop');

 waitbar(I/NL)
end

close(bar)

% Crop back to original size.
g = g(pad+1:pad+M, pad+1:pad+M);

% Scale output to the full [0,1] range.
g = intensityScaling(g);

%--%
function g = makeSquare(f)

[M,N] = size(f);
D = abs(M - N);
if isodd(D)
 D = D + 1;
end
if M > N
 padVector = [0,D/2];
elseif M < N
 padVector = [D/2,0];
else
 padVector = [0,0];
end

% Pad the image.
f = padarray(f,padVector,0,'both');

% Dimensions could be off by 1 pixel. Make sure image is square.
[M,N] = size(f);
if M ~= N && M < N
 moreRows = N - M;
 % Make the image square by replicating rows.
 g = padarray(f,[moreRows,0],'replicate','post');
elseif M ~= N && M > N
 moreColumns = M - N;
 g = padarray(f,[0,moreColumns],'replicate','post');
else
 g = f;
end

%--%

Revised function imHueRange in Project 7.9(a)

function [im,imhuerange] = imHueRangeNEW(image,angrange,type)
%IMHUERANGE Extracts angular range from HSV,HSI,HSL images.
% [IM,IMHUERANGE] = IMHUERANGE(IMAGE,ANGRANGE,TYPE) extracts from the
% H component of an HSV,HSI,or HSL IMAGE a range of angles specified
% in ANGRANGE, a vector [LOW,HIGH] containing the lower and upper
% limits of the range. Both LOW and HIGH must be whole numbers in the
% range [0,359], with LOW <= HIGH. If ANGRANGE is a scalar in [0,359],
% only that angular value is extracted. For example to extract
% 10-degrees on either side of yellow (60 degrees) we specify LOW =
% 50, and HIGH = 70. TYPE denotes whether the input image is 'HSV',
% 'HSI', or 'HSL'. This is a required input to protect from an
% errorneous M-by-N-by-3 input like an RGB or CMY image.

if nargin ~= 3
 error ('Incorrect number of inputs')
elseif ~(isequal(type,'HSV') || isequal(type,'HSI') || isequal(type,'HSL'))
 error('Unknown image type')
end

% Scale the image so that its values will be in the range [0,359] which
% is the range of allowed values of angrange.
image = im2double(image)*359;

if isscalar(angrange)
 low = angrange;
 high = angrange;
else
 low = angrange(1);
 high = angrange(2);
end

% Hue component image.
H = image(:,:,1);
% Every pixel of H is an angle value. Set to zero all pixels of H whose
% values are outside the range [low,high].
imhuerange = zeros(size(H));

Gonzalez/Woods/Eddins
Digital Image Processing Using MATLAB, 3rd ed.
Errata Sheet
Page 4 of 4
17 February, 2022

idx = find(H >= low & H <= high);
imhuerange(idx) = H(idx);

% Reconstruct the output image, im. This image will be of the same type
% (HSV, HSI, or HSV) as the input image, image.
im = cat(3,imhuerange,image(:,:,2),image(:,:,3)

Revised Solution to Project 7.9(b)

f = imread('dying-star-ngc6543a.tif');
figure, imshow(f);

% Input has to be HSV,HSI,or HSL
hsv = rgb2hsv(f);

% Green is at 120-degrees. Extract a range around that value.
angrange = [90 150]; % Determined experimentally.

[im,newH] = imHueRangeNEW(hsv,angrange,'HSV');

% Show the new hue compoment of the image.
figure, imshow(newH,[])

% Make a binary mask out of newH. Because function imHueReange already
% set to 0 all values outside angrange, we can use it directly to make a
% mask with values only in the range.
mask = im2double(newH > 0);

% Apply the mask to each component of hsv.
hsv = im2double(hsv);
for k = 1:3
 hsv(:,:,k) = mask.*hsv(:,:,k);
end

% Convert to rgb for display.
rgb = hsv2rgb(hsv);

% As the following image shows, the regions were extracted
% successfully. A small region in the center was also extracted because
% white contains green.
figure, imshow(rgb)

Revised Solution to Project 7.9(c)

f = imread('firebreather-midres.tif');
figure, imshow(f);

% Input has to be HSV,HSI,or HSL
hsv = rgb2hsv(f);

% Flames are between yellow (60 degrees) and red (0 degrees). Choose a
% range around 30
angrange = [22 38];

[im,newH] = imHueRange(hsv,angrange,'HSV');

% Show the new hue image.
figure, imshow(newH,[])

% Make a binary mask out of newH
mask = im2double(newH > 0);

% Apply the mask to each component of hsv.
hsv = im2double(hsv);
for k = 1:3
 hsv(:,:,k) = mask.*hsv(:,:,k);
end

% Convert to rgb.
rgb = hsv2rgb(hsv);
figure, imshow(rgb)

	ERRATA SHEET

