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76 

The listing for function imageStats2 should be: 
   function G = imageStats2(f) 
   G{1} = size(f); 
   G{2} = mean2(f); 
   G{3} = mean(f,2); 
   G{4} = mean(f,1); 
 

147 Ten lines from bottom 0.5% 5% 

150, 3rd line of 2nd full parag. lp = fir1(128,0.1) lp = fir1(128,0.06) 
241 [Solution to Proj 4.1(a)] in 
your Support Package S = complex(SG,0) SG = complex(SG,0) 

242 [Proj 4.2(b)] * *( , ) ( , )MNf x y F= u v   * *( , ) [ ( , )]MNf x y DFT F= u v   
242 [Solution to Proj 4.3(c)] in 
the Faculty Support Package] 

figure, imshow(g3)  
figure, imshow(g4) 

figure, imshow(g3,[])  
figure, imshow(g4,[]) 

243 [Proj 4.5(a)] ..FrequencyEmphasis(f,a,b,D0,n) ..FrequencyEmphasis(f,D0,n,a,b) 

244 [Proj 4.6(b)] . . . Fig. 4.16(b). . . . Fig. 4.15(b). 
244 [Solution to Proj 4.7(a)] in 
your Support Package 

Replace lines 52 & 53 with: CC(:,1) = r0 + delr(:); & CC(:,2) = c0 + 
delc(:); 

316, Proj. 5.1(c), line 2 Replace “in Eq. (5-13)” with (see the 1st row in Table 5.1) 

317, Proj. 5.6(a), in the Example . . . total of 32 squares in each size . . . total of 32 squares in each side 

317, Proj. 5.6(b), line 1 Replace “pixels in which each square has 8 pixels” by “8 squares”  

317, Proj. 5.6(b), line 2 Replace “a PSF” by “an OTF” 

374, Proj. 6.7(b) Replace the word “resizing” by the word “reducing.” 

457 basisImage basisImages 

459, Eqs. (8-10) and (8-11) Replace vy/N in the exponent of both equations by vy\M 

643 The 10th line should be: gboth = edge(f,'sobel',0.10,'nothinning'); 
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797 Two instances of fchcode should be freemanChainCode. 

852, middle of page gR{k} = P.X({:,k} gR{k} = PR.X({:,k} 

857, Eq. (13-48), swap b & c   H = [a c; c b] H = [a b; b c] 

857, Eq. (13-50) The square root should not enclose the denominator. 

980, Proj 14.3(b) Figs. 14.4(g)-(i) Figs. 14.5(g)-(i) 

   

   

   

   

   

   

   

   

   
Revised function imrecon in Proj 5.10(a) 
 
function g = imrecon(f,theta) 
%IMRECON Image reconstruction from projections. 
%   G = IMRECON(F,THETA) creates projections of grayscale image F, then 
%   reconstructs the image using backprojections at the angles supplied 
%   in the 1-D array THETA. The angles in THETA are in degrees. These 
%   are the angles of the normal to the direction of the beam, measured 
%   counterclockwise with respect to the x-axis, as illustrated in Fig. 
%   5.16. For example, to obtain a vertical projection, we use THETA = 0 
%   degrees. 
% 
%   The output reconstructed image is square, of size equal to the long 
%   dimention of the input mage. The output is scaled so the full 
%   intensity range [0,1]. 
%  
%    The objectives of this function are to illustrate conceptually the 
%    basics of image reconstruction from projections, as explained in 
%    Section 5.10. 
  
  
% Preliminaries 
% Generate a square image whose size will be the longest dimension of 
% the original, as required in the function definition. 
f = makeSquare(f); 
M = size(f,1); 
f = im2double(f); 
  
% Pad f with a border of zeros, large enough to accomodate the largest 
% possible rotated image. In general, for an image of size M x N, the 
% vertical top and bottom padding are ceil((D-M)/2). For the horizontal, 
% the padding the left and right padding are ceil((D-N)/2), where D is 
% the diameter of the image. But our images have been padded to be 
% square. 
D = ceil(sqrt(M^2 + M^2)); 
  
% Make D an even integer so that padding strips will be of the same size 
% on top, bottom, left, and right. 
if isodd(D) 
   D = D + 1; 
end 
  
% Padding value: 
pad = ceil((D - M)/2); 
  
% Pad the image 
f = padarray(f,[pad,pad],0,'both'); 
  
% Beam(s) is(are) normal to angle(s) provided.  
theta = theta + 90;  
  
g = zeros(size(f)); 
  
smearLength = size(g,2); 
  
% Projections and backprojections. 
  
NL = numel(theta); 
  
% A wait bar is included because this is a slow-running function for 
% large images and/or a large number of angle increments. 
bar = waitbar(0,'Working...'); 
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for I = 1:NL 
    % For simplicity, rotate image instead of the sensors, thus the use 
    % of -theta below. This is equivalent to leaving the image stationary 
    % and rotating the sensors. 
    rot = imrotate(f,-theta(I),'bilinear','crop'); 
    
   % Sum rows to obtain projection. 
   p = sum(rot,2);  
    
    % "Smear" the projections across image. 
    smeared = repmat(p,1,smearLength); 
     
    % Rotate g to insert projection. 
   g = imrotate(g,-theta(I),'bilinear','crop'); 
  
   % Insert projection. 
   g = g + smeared; 
    
   % Rotate back. 
   g = imrotate(g,theta(I),'bilinear','crop'); 
  
   waitbar(I/NL) 
end 
  
close(bar) 
  
% Crop back to original size. 
g = g(pad+1:pad+M, pad+1:pad+M); 
  
% Scale output to the full [0,1] range. 
g = intensityScaling(g); 
  
%----------------------------------------------------------------------% 
function g = makeSquare(f) 
  
[M,N] = size(f); 
D = abs(M - N); 
if isodd(D) 
   D = D + 1; 
end 
if M > N 
   padVector = [0,D/2]; 
elseif M < N 
   padVector = [D/2,0]; 
else 
   padVector = [0,0]; 
end 
  
% Pad the image. 
f = padarray(f,padVector,0,'both'); 
  
% Dimensions could be off by 1 pixel. Make sure image is square. 
[M,N] = size(f); 
if M ~= N && M < N 
   moreRows = N  - M; 
   % Make the image square by replicating rows. 
   g = padarray(f,[moreRows,0],'replicate','post'); 
elseif M ~= N && M > N 
   moreColumns = M - N; 
   g = padarray(f,[0,moreColumns],'replicate','post'); 
else 
   g = f; 
end 
     
%----------------------------------------------------------------------% 
 

Revised function imHueRange in Project 7.9(a) 
 
function [im,imhuerange] = imHueRangeNEW(image,angrange,type) 
%IMHUERANGE Extracts angular range from HSV,HSI,HSL images. 
%   [IM,IMHUERANGE] = IMHUERANGE(IMAGE,ANGRANGE,TYPE) extracts from the 
%   H component of an HSV,HSI,or HSL IMAGE a range of angles specified 
%   in ANGRANGE, a vector [LOW,HIGH] containing the lower and upper 
%   limits of the range. Both LOW and HIGH must be whole numbers in the 
%   range [0,359], with LOW <= HIGH. If ANGRANGE is a scalar in [0,359], 
%   only that angular value is extracted. For example to extract 
%   10-degrees on either side of yellow (60 degrees) we specify LOW = 
%   50, and HIGH = 70. TYPE denotes whether the input image is 'HSV', 
%   'HSI', or 'HSL'. This is a required input to protect from an 
%   errorneous M-by-N-by-3 input like an RGB or CMY image. 
  
if nargin ~= 3 
   error ('Incorrect number of inputs') 
elseif ~(isequal(type,'HSV') || isequal(type,'HSI') || isequal(type,'HSL')) 
   error('Unknown image type') 
end 
  
% Scale the image so that its values will be in the range [0,359] which 
% is the range of allowed values of angrange. 
image = im2double(image)*359; 
  
if isscalar(angrange) 
   low = angrange; 
   high = angrange; 
else 
   low = angrange(1); 
   high = angrange(2); 
end 
  
% Hue component image. 
H = image(:,:,1); 
% Every pixel of H is an angle value. Set to zero all pixels of H whose 
% values are outside the range [low,high]. 
imhuerange = zeros(size(H)); 
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idx = find(H >= low & H <= high); 
imhuerange(idx) = H(idx); 
  
% Reconstruct the output image, im. This image will be of the same type 
% (HSV, HSI, or HSV) as the input image, image. 
im = cat(3,imhuerange,image(:,:,2),image(:,:,3) 
 

Revised Solution to Project 7.9(b) 
 
f = imread('dying-star-ngc6543a.tif'); 
figure, imshow(f); 
  
% Input has to be HSV,HSI,or HSL 
hsv = rgb2hsv(f); 
  
  
% Green is at 120-degrees. Extract a range around that value. 
angrange = [90 150]; % Determined experimentally. 
  
[im,newH] = imHueRangeNEW(hsv,angrange,'HSV'); 
  
% Show the new hue compoment of the image. 
figure, imshow(newH,[]) 
  
% Make a binary mask out of newH. Because function imHueReange already 
% set to 0 all values outside angrange, we can use it directly to make a 
% mask with values only in the range. 
mask = im2double(newH > 0); 
  
% Apply the mask to each component of hsv. 
hsv = im2double(hsv); 
for k = 1:3 
   hsv(:,:,k) = mask.*hsv(:,:,k); 
end 
  
% Convert to rgb for display. 
rgb = hsv2rgb(hsv); 
  
% As the following image shows, the regions were extracted 
% successfully. A small region in the center was also extracted because 
% white contains green. 
figure, imshow(rgb) 

 
Revised Solution to Project 7.9(c) 
 
f = imread('firebreather-midres.tif'); 
figure, imshow(f); 
  
% Input has to be HSV,HSI,or HSL 
hsv = rgb2hsv(f); 
  
% Flames are between yellow (60 degrees) and red (0 degrees). Choose a 
% range around 30 
angrange = [22 38]; 
  
[im,newH] = imHueRange(hsv,angrange,'HSV'); 
  
% Show the new hue image. 
figure, imshow(newH,[]) 
  
% Make a binary mask out of newH 
mask = im2double(newH > 0); 
  
% Apply the mask to each component of hsv. 
hsv = im2double(hsv); 
for k = 1:3 
   hsv(:,:,k) = mask.*hsv(:,:,k); 
end 
  
% Convert to rgb. 
rgb = hsv2rgb(hsv); 
figure, imshow(rgb) 
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