Digital Image Processing Using MATLAB 3rd edition

Gonzalez, Woods, and Eddins Gatesmark Publishing © 2020 Book Website: www.ImageProcessingPlace.com

February 17, 2022

ERRATA SHEET

Some of the corrections listed may already be incorporated in your printing of the book

Page	Reads	Should Read
76	<pre>The listing for function imageStats2 should be: function G = imageStats2(f) G{1} = size(f); G{2} = mean2(f); G{3} = mean(f,2); G{4} = mean(f,1);</pre>	
147 Ten lines from bottom	0.5%	5%
150, 3 rd line of 2 nd full parag.	lp = fir1(128,0.1)	lp = fir1(128,0.06)
241 [Solution to Proj 4.1(a)] in your Support Package	<pre>S = complex(SG,0)</pre>	SG = complex(SG,0)
242 [Proj 4.2(b)]	$MNf^*(x,y) = F^*(u,v)$	$MNf^*(x,y) = DFT[F^*(u,v)]$
242 [Solution to Proj 4.3(c)] in the Faculty Support Package]	<pre>figure, imshow(g3) figure, imshow(g4)</pre>	<pre>figure, imshow(g3,[]) figure, imshow(g4,[])</pre>
243 [Proj 4.5(a)]	<pre>FrequencyEmphasis(f,a,b,D0,n)</pre>	<pre>FrequencyEmphasis(f,D0,n,a,b)</pre>
244 [Proj 4.6(b)]	Fig. 4.16(b).	Fig. 4.15(b).
244 [Solution to Proj 4.7(a)] in your Support Package	Replace lines 52 & 53 with: CC(:,1) = r0 + delr(:); & CC(:,2) = c0 + delc(:);	
316, Proj. 5.1(c), line 2	Replace "in Eq. (5-13)" with (see the 1 st row in Table 5.1)	
317, Proj. 5.6(a), in the Example	total of 32 squares in each size	total of 32 squares in each side
317, Proj. 5.6(b), line 1	Replace "pixels in which each square has 8 pixels" by "8 squares"	
317, Proj. 5.6(b), line 2	Replace "a PSF" by "an OTF"	
374, Proj. 6.7(b)	Replace the word "resizing" by the word "reducing."	
457	basisImage	basisImages
459, Eqs. (8-10) and (8-11)	Replace vy/N in the exponent of both equations by $vy M$	
643	The 10 th line should be: gboth = edge(f, 'sobel', 0.10, 'nothinning');	

Gonzalez/Woods/Eddins Digital Image Processing Using MATLAB, 3rd ed. Errata Sheet Page 2 of 4 17 February, 2022

797	Two instances of fchcode should be freemanChainCode.	
852, middle of page	gR{k} = P.X({:,k}	gR{k} = PR.X({:,k}
857, Eq. (13-48), swap b & c	$\mathbf{H} = [a \text{ c}; c b]$	$\mathbf{H} = [a \ b; b \ c]$
857, Eq. (13-50)	The square root should not enclose the denominator.	
980, Proj 14.3(b)	Figs. 14.4(g)-(i)	Figs. 14.5(g)-(i)

Revised function imrecon in Proj 5.10(a)

function g = imrecon(f,theta)
%IMRECON Image reconstruction from projections.

- % %
- %

WELUW image reconstruction from projections. G = IMRECON(F,THETA) creates projections of grayscale image F, then reconstructs the image using backprojections at the angles supplied in the 1-D array THETA. The angles in THETA are in degrees. These are the angles of the normal to the direction of the beam, measured counterclockwise with respect to the x-axis, as illustrated in Fig. 5.16. For example, to obtain a vertical projection, we use THETA = 0 degrees.

The output reconstructed image is square, of size equal to the long dimention of the input mage. The output is scaled so the full intensity range [0,1].

The objectives of this function are to illustrate conceptually the basics of image reconstruction from projections, as explained in Section 5.10. % %

% e.

% % %

% Preliminaries

x rreliminaries
% Generate a square image whose size will be the longest dimension of
% the original, as required in the function definition.
f = makeSquare(f);
M = size(f,1);
f = im2double(f);

% Pad f with a border of zeros, large enough to accomodate the largest % possible rotated image. In general, for an image of size M x N, the % vertical top and bottom padding are ceil((D-M)/2). For the horizontal, % the padding the left and right padding are ceil((D-N)/2), where D is % the diameter of the image. But our images have been padded to be

% square. D = ceil(sqrt(M^2 + M^2));

% Make D an even integer so that padding strips will be of the same size % on top, bottom, left, and right. if isodd(D) D = D + 1; end

% Padding value: pad = ceil((D - M)/2);

% Pad the image
f = padarray(f,[pad,pad],0,'both');

% Beam(s) is(are) normal to angle(s) provided. theta = theta + 90;

g = zeros(size(f));

smearLength = size(g,2);

% Projections and backprojections.

NL = numel(theta);

% A wait bar is included because this is a slow-running function for % large images and/or a large number of angle increments. bar = waitbar(0,'Working...');

Gonzalez/Woods/Eddins *Digital Image Processing Using MATLAB, 3rd ed.* Errata Sheet Page 3 of 4 17 February, 2022

for I = 1:NL \$%\$ For simplicity, rotate image instead of the sensors, thus the use % of -theta below. This is equivalent to leaving the image stationary % and rotating the sensors. rot = imrotate(f,-theta(I),'bilinear','crop'); % Sum rows to obtain projection. p = sum(rot, 2);% "Smear" the projections across image. smeared = repmat(p,1,smearLength); % Rotate g to insert projection. g = imrotate(g,-theta(I),'bilinear','crop'); % Insert projection. g = g + smeared; % Rotate back. g = imrotate(g,theta(I),'bilinear','crop'); waitbar(I/NL) end close(bar) % Crop back to original size. g = g(pad+1:pad+M, pad+1:pad+M); % Scale output to the full [0,1] range. g = intensityScaling(g); _____% [M,N] = size(f);[M,N] = Size(T)
D = abs(M - N);
if isodd(D)
D = D + 1; end if M > N padVector = [0,D/2]; elseif M < N padVector = [D/2,0]; else padVector = [0,0];
end % Pad the image. f = padarray(f,padVector,0,'both'); % Dimensions could be off by 1 pixel. Make sure image is square. [M,N] = size(f);
if M ~= N && M < N
moreRows = N -</pre> - M: moreRows = N - M; % Make the image square by replicating rows. g = padarray(f,[moreRows,0],'replicate','post'); elseif M ~= N && M > N moreColumns = M - N; morecolumns = M - N; g = padarray(f,[0,moreColumns],'replicate','post'); else g = f; end

%-----%

Revised function imHueRange in Project 7.9(a)

function [im,imhuerange] = imHueRangeNEW(image,angrange,type)
XIMHUERANGE Extracts angular range from HSV,HSI,HSL images.
% [IM,IMHUERANGE] = IMHUERANGE(IMAGE_ANGRANGE,TYPE) extracts from the
% H component of an HSV,HSI,or HSL IMAGE a range of angles specified
% in ANGRANGE, a vector [LOW,HIGH] containing the lower and upper
% limits of the range. Both LOW and HIGH must be whole numbers in the
% range [0,359], wit LOW <= HIGH. If ANGRANGE is a scalar in [0,359]
% only that angular value is extracted. For example to extract
% 18-degrees on either side of yellow (60 degrees) we specify LOW =
% 50, and HIGH = 70. TYPE denotes whether the input image is 'HSV',
% 'HSI', or 'HSL'. This is a required input to protect from an
% errorneous M-by-N-by-3 input like an RGB or CMY image.
if nargin ~= 3
error ('Incorrect number of inputs')
elseif ~(isequal(type,'HSV') || isequal(type,'HSI') || isequal(type,'HSL'))
error('Unknown image type')
end
% Scale the image so that its values will be in the range [0,359] which
% is the range of allowed values of angrange.
image = im2double(image)*359;
if isscalar(angrange)
low = angrange;
high = angrange(1);
high = angrange(2);
end
% H = image(:,:,1);
% Every pixel of H is an angle value. Set to zero all pixels of H whose
% values are outside the range [low,high].
imhuerange = zeros(Size(H));
</pre>

Gonzalez/Woods/Eddins *Digital Image Processing Using MATLAB, 3rd ed.* Errata Sheet Page 4 of 4 17 February, 2022

idx = find(H >= low & H <= high); imhuerange(idx) = H(idx);

% Reconstruct the output image, im. This image will be of the same type % (HSV, HSI, or HSV) as the input image, image, image, image(:,:,2),image(:,:,3)

Revised Solution to Project 7.9(b)

f = imread('dying-star-ngc6543a.tif');
figure, imshow(f);

% Input has to be HSV,HSI,or HSL hsv = rgb2hsv(f);

% Green is at 120-degrees. Extract a range around that value. angrange = [90 150]; % Determined experimentally.

[im,newH] = imHueRangeNEW(hsv,angrange,'HSV');

% Show the new hue compoment of the image. figure, imshow(newH,[])

% Make a binary mask out of newH. Because function imHueReange already % set to 0 all values outside angrange, we can use it directly to make a % mask with values only in the range. mask = imZdouble(newH > 0);

% Apply the mask to each component of hsv. hsv = im2double(hsv); for k = 1:3

for k = 1:3
 hsv(:,:,k) = mask.*hsv(:,:,k);
end

% Convert to rgb for display.
rgb = hsv2rgb(hsv);

% As the following image shows, the regions were extracted % successfully. A small region in the center was also extracted because % white contains green. figure, imshow(rgb)

Revised Solution to Project 7.9(c)

f = imread('firebreather-midres.tif');
figure, imshow(f);

% Input has to be HSV,HSI,or HSL hsv = rgb2hsv(f);

% Flames are between yellow (60 degrees) and red (0 degrees). Choose a % range around 30 angrange = [22 38];

[im,newH] = imHueRange(hsv,angrange,'HSV');

% Show the new hue image. figure, imshow(newH,[])

% Make a binary mask out of newH
mask = im2double(newH > 0);

% Apply the mask to each component of hsv. hsv = im2double(hsv); for k = 1:3 hsv(:,:,k) = mask.*hsv(:,:,k); end

% Convert to rgb. rgb = hsv2rgb(hsv); figure, imshow(rgb)