
Digital Image
Processing
Using MATLAB®

Second Edition

Rafael C. Gonzalez
University of Tennessee

Richard E. Woods
MedData Interactive

Steven L. Eddins
The MathWorks, Inc.

Gatesmark Publishing®
A Division of Gatesmark,® LLC
www.gatesmark.com

Library of Congress Cataloging-in-Publication Data on File

Library of Congress Control Number: 2009902793

© 2009 by Gatesmark, LLC

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any
means, without written permission from the publisher.

Gatesmark Publishing® is a registered trademark of Gatesmark, LLC, www.gatesmark.com.

Gatesmark® is a registered trademark of Gatesmark, LLC, www.gatesmark.com.

MATLAB® is a registered trademark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA
01760-2098

The authors and publisher of this book have used their best efforts in preparing this book. These
efforts include the development, research, and testing of the theories and programs to determine
their effectiveness. The authors and publisher shall not be liable in any event for incidental or
consequential damages with, or arising out of, the furnishing, performance, or use of these
programs.

Printed in the United States of America

10   9   8   7   6   5   4   3   2   1

ISBN 978-0-9820854-0-0

Gatesmark Publishing
A Division of Gatesmark, LLC
www.gatesmark.com

1

1 Introduction

Preview
Digital image processing is an area characterized by the need for extensive
experimental work to establish the viability of proposed solutions to a given
problem. In this chapter, we outline how a theoretical foundation and state-
of-the-art software can be integrated into a prototyping environment whose
objective is to provide a set of well-supported tools for the solution of a broad
class of problems in digital image processing.

 1.1	 Background

An important characteristic underlying the design of image processing systems
is the significant level of testing and experimentation that normally is required
before arriving at an acceptable solution. This characteristic implies that the
ability to formulate approaches and quickly prototype candidate solutions
generally plays a major role in reducing the cost and time required to arrive at
a viable system implementation.

Little has been written in the way of instructional material to bridge the gap
between theory and application in a well-supported software environment for
image processing. The main objective of this book is to integrate under one
cover a broad base of theoretical concepts with the knowledge required to im-
plement those concepts using state-of-the-art image processing software tools.
The theoretical underpinnings of the material in the following chapters are
based on the leading textbook in the field: Digital Image Processing, by Gon-
zalez and Woods.† The software code and supporting tools are based on the
leading software in the field: MATLAB ® and the Image Processing Toolbox™

† R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed., Prentice Hall, Upper Saddle River,
NJ, 2008 .

2 Chapter 1 ■ Introduction

from The MathWorks, Inc. (see Section 1.3). The material in the book shares
the same design, notation, and style of presentation as the Gonzalez-Woods
text, thus simplifying cross-referencing between the two.

The book is self-contained. To master its contents, a reader should have
introductory preparation in digital image processing, either by having taken a
formal course of study on the subject at the senior or first-year graduate level,
or by acquiring the necessary background in a program of self-study. Familiar-
ity with MATLAB and rudimentary knowledge of computer programming are
assumed also. Because MATLAB is a matrix-oriented language, basic knowl-
edge of matrix analysis is helpful.

The book is based on principles. It is organized and presented in a text-
book format, not as a manual. Thus, basic ideas of both theory and software
are explained prior to the development of any new programming concepts.
The material is illustrated and clarified further by numerous examples rang-
ing from medicine and industrial inspection to remote sensing and astronomy.
This approach allows orderly progression from simple concepts to sophisticat-
ed implementation of image processing algorithms. However, readers already
familiar with MATLAB, the Image Processing Toolbox, and image processing
fundamentals can proceed directly to specific applications of interest, in which
case the functions in the book can be used as an extension of the family of tool-
box functions. All new functions developed in the book are fully documented,
and the code for each is included either in a chapter or in Appendix C.

Over 120 custom functions are developed in the chapters that follow. These
functions extend by nearly 45% the set of about 270 functions in the Image
Processing Toolbox. In addition to addressing specific applications, the new
functions are good examples of how to combine existing MATLAB and tool-
box functions with new code to develop prototype solutions to a broad spec-
trum of problems in digital image processing. The toolbox functions, as well
as the functions developed in the book, run under most operating systems.
Consult the book web site (see Section 1.5) for a complete list.

 1.2	 What Is Digital Image Processing?

An image may be defined as a two-dimensional function, f x y(,), where x and y
are spatial coordinates, and the amplitude of f at any pair of coordinates (,)x y
is called the intensity or gray level of the image at that point. When x, y, and
the amplitude values of f are all finite, discrete quantities, we call the image a
digital image. The field of digital image processing refers to processing digital
images by means of a digital computer. Note that a digital image is composed
of a finite number of elements, each of which has a particular location and
value. These elements are referred to as picture elements, image elements, pels,
and pixels. Pixel is the term used most widely to denote the elements of a digi-
tal image. We consider these definitions formally in Chapter 2.

Vision is the most advanced of our senses, so it is not surprising that im-
ages play the single most important role in human perception. However, un-
like humans, who are limited to the visual band of the electromagnetic (EM)

We use the term custom
function to denote a
function developed in
the book, as opposed to
a "standard" MATLAB
or Image Processing
Toolbox function.

 1.2 ■ What Is Digital Image Processing? 3

spectrum, imaging machines cover almost the entire EM spectrum, ranging
from gamma to radio waves. They can operate also on images generated by
sources that humans do not customarily associate with images. These include
ultrasound, electron microscopy, and computer-generated images. Thus, digital
image processing encompasses a wide and varied field of applications.

There is no general agreement among authors regarding where image pro
cessing stops and other related areas, such as image analysis and computer
vision, begin. Sometimes a distinction is made by defining image processing
as a discipline in which both the input and output of a process are images. We
believe this to be a limiting and somewhat artificial boundary. For example,
under this definition, even the trivial task of computing the average intensity
of an image would not be considered an image processing operation. On the
other hand, there are fields, such as computer vision, whose ultimate goal is
to use computers to emulate human vision, including learning and being able
to make inferences and take actions based on visual inputs. This area itself is
a branch of artificial intelligence (AI), whose objective is to emulate human
intelligence. The field of AI is in its infancy in terms of practical developments,
with progress having been much slower than originally anticipated. The area of
image analysis (also called image understanding) is in between image process-
ing and computer vision.

There are no clear-cut boundaries in the continuum from image processing
at one end to computer vision at the other. However, a useful paradigm is to
consider three types of computerized processes in this continuum: low-, mid-

, and high-level processes. Low-level processes involve primitive operations,
such as image preprocessing to reduce noise, contrast enhancement, and image
sharpening. A low-level process is characterized by the fact that both its inputs
and outputs typically are images. Mid-level processes on images involve tasks
such as segmentation (partitioning an image into regions or objects), descrip-
tion of those objects to reduce them to a form suitable for computer process-
ing, and classification (recognition) of individual objects. A mid-level process
is characterized by the fact that its inputs generally are images, but its out-
puts are attributes extracted from those images (e.g., edges, contours, and the
identity of individual objects). Finally, high-level processing involves “making
sense” of an ensemble of recognized objects, as in image analysis, and, at the far
end of the continuum, performing the cognitive functions normally associated
with human vision.

Based on the preceding comments, we see that a logical place of overlap
between image processing and image analysis is the area of recognition of in-
dividual regions or objects in an image. Thus, what we call in this book digital
image processing encompasses processes whose inputs and outputs are images
and, in addition, encompasses processes that extract attributes from images, up
to and including the recognition of individual objects. As a simple illustration
to clarify these concepts, consider the area of automated analysis of text. The
processes of acquiring an image of a region containing the text, preprocessing
that image, extracting (segmenting) the individual characters, describing the
characters in a form suitable for computer processing, and recognizing those

4 Chapter 1 ■ Introduction

individual characters, are in the scope of what we call digital image processing
in this book. Making sense of the content of the page may be viewed as being
in the domain of image analysis and even computer vision, depending on the
level of complexity implied by the statement “making sense of.” Digital image
processing, as we have defined it, is used successfully in a broad range of areas
of exceptional social and economic value.

 1.3	 Background on MATLAB and the Image Processing
	 Toolbox
MATLAB is a high-performance language for technical computing. It inte
grates computation, visualization, and programming in an easy-to-use environ
ment where problems and solutions are expressed in familiar mathematical
notation. Typical uses include the following:

	 •	 Math and computation
 	•	 Algorithm development
	 •	 Data acquisition
	 •	 Modeling, simulation, and prototyping
	 •	 Data analysis, exploration, and visualization
	 •	 Scientific and engineering graphics
	 •	 Application development, including building graphical user interfaces

MATLAB is an interactive system whose basic data element is a matrix. This
allows formulating solutions to many technical computing problems, especially
those involving matrix representations, in a fraction of the time it would take
to write a program in a scalar non-interactive language such as C.

The name MATLAB stands for Matrix Laboratory. MATLAB was written
originally to provide easy access to matrix and linear algebra software that
previously required writing FORTRAN programs to use. Today, MATLAB
incorporates state of the art numerical computation software that is highly
optimized for modern processors and memory architectures.

In university environments, MATLAB is the standard computational tool
for introductory and advanced courses in mathematics, engineering, and sci-
ence. In industry, MATLAB is the computational tool of choice for research,
development, and analysis. MATLAB is complemented by a family of appli-
cation-specific solutions called toolboxes. The Image Processing Toolbox is a
collection of MATLAB functions (called M-functions or M-files) that extend
the capability of the MATLAB environment for the solution of digital image
processing problems. Other toolboxes that sometimes are used to complement
the Image Processing Toolbox are the Signal Processing, Neural Networks,
Fuzzy Logic, and Wavelet Toolboxes.

The MATLAB & Simulink Student Version is a product that includes
a full-featured version of MATLAB, the Image Processing Toolbox, and
several other useful toolboxes. The Student Version can be purchased at
significant discounts at university bookstores and at the MathWorks web site
(www.mathworks.com).

As we discuss in more
detail in Chapter 2,
images may be treated
as matrices, thus making
MATLAB software a
natural choice for image
processing applications.

1.4 ■ Areas of Image Processing Covered in the Book 5

 1.4	 Areas of Image Processing Covered in the Book

Every chapter in the book contains the pertinent MATLAB and Image Pro-
cessing Toolbox material needed to implement the image processing methods
discussed. When a MATLAB or toolbox function does not exist to implement
a specific method, a custom function is developed and documented. As noted
earlier, a complete listing of every new function is available. The remaining
twelve chapters cover material in the following areas.

Chapter 2: Fundamentals. This chapter covers the fundamentals of MATLAB
notation, matrix indexing, and programming concepts. This material serves as
foundation for the rest of the book.

Chapter 3: Intensity Transformations and Spatial Filtering. This chapter covers
in detail how to use MATLAB and the Image Processing Toolbox to imple-
ment intensity transformation functions. Linear and nonlinear spatial filters
are covered and illustrated in detail. We also develop a set of basic functions
for fuzzy intensity transformations and spatial filtering.

Chapter 4: Processing in the Frequency Domain. The material in this chapter
shows how to use toolbox functions for computing the forward and inverse
2-D fast Fourier transforms (FFTs), how to visualize the Fourier spectrum, and
how to implement filtering in the frequency domain. Shown also is a method
for generating frequency domain filters from specified spatial filters.

Chapter 5: Image Restoration. Traditional linear restoration methods, such
as the Wiener filter, are covered in this chapter. Iterative, nonlinear methods,
such as the Richardson-Lucy method and maximum-likelihood estimation for
blind deconvolution, are discussed and illustrated. Image reconstruction from
projections and how it is used in computed tomography are discussed also in
this chapter.

Chapter 6: Geometric Transformations and Image Registration. This chap-
ter discusses basic forms and implementation techniques for geometric im-
age transformations, such as affine and projective transformations. Interpola-
tion methods are presented also. Different image registration techniques are
discussed, and several examples of transformation, registration, and visualiza-
tion methods are given.

Chapter 7: Color Image Processing. This chapter deals with pseudocolor and
full-color image processing. Color models applicable to digital image process
ing are discussed, and Image Processing Toolbox functionality in color process-
ing is extended with additional color models. The chapter also covers applica-
tions of color to edge detection and region segmentation.

6 Chapter 1 ■ Introduction

Chapter 8: Wavelets. The Image Processing Toolbox does not have wavelet
transform functions. Although the MathWorks offers a Wavelet Toolbox, we de-
velop in this chapter an independent set of wavelet transform functions that al-
low implementation all the wavelet-transform concepts discussed in Chapter 7
of Digital Image Processing by Gonzalez and Woods.

Chapter 9: Image Compression. The toolbox does not have any data compres
sion functions. In this chapter, we develop a set of functions that can be used
for this purpose.

Chapter 10: Morphological Image Processing. The broad spectrum of func
tions available in toolbox for morphological image processing are explained
and illustrated in this chapter using both binary and gray-scale images.

Chapter 11: Image Segmentation. The set of toolbox functions available for
image segmentation are explained and illustrated in this chapter. Functions
for Hough transform processing are discussed, and custom region growing and
thresholding functions are developed.

Chapter 12: Representation and Description. Several new functions for
object representation and description, including chain-code and polygonal
representations, are developed in this chapter. New functions are included
also for object description, including Fourier descriptors, texture, and moment
invariants. These functions complement an extensive set of region property
functions available in the Image Processing Toolbox.

Chapter 13: Object Recognition. One of the important features of this chapter
is the efficient implementation of functions for computing the Euclidean and
Mahalanobis distances. These functions play a central role in pattern matching.
The chapter also contains a comprehensive discussion on how to manipulate
strings of symbols in MATLAB. String manipulation and matching are impor-
tant in structural pattern recognition.

In addition to the preceding material, the book contains three appendices.

Appendix A: This appendix summarizes Image Processing Toolbox and cus-
tom image-processing functions developed in the book. Relevant MATLAB
functions also are included. This is a useful reference that provides a global
overview of all functions in the toolbox and the book.

Appendix B: Implementation of graphical user interfaces (GUIs) in MATLAB are
discussed in this appendix. GUIs complement the material in the book because
they simplify and make more intuitive the control of interactive functions.

Appendix C: The code for many custom functions is included in the body of
the text at the time the functions are developed. Some function listings are
deferred to this appendix when their inclusion in the main text would break
the flow of explanations.

 1.5 ■ The Book Web Site 7

 1.5	 The Book Web Site

An important feature of this book is the support contained in the book web
site. The site address is

www.ImageProcessingPlace.com

This site provides support to the book in the following areas:

	 •	 Availability of M-files, including executable versions of all M-files in the
book

	 •	 Tutorials
	 •	 Projects
	 •	 Teaching materials
	 •	 Links to databases, including all images in the book
	 •	 Book updates
	 •	 Background publications

The same site also supports the Gonzalez-Woods book and thus offers comple-
mentary support on instructional and research topics.

 1.6	 Notation

Equations in the book are typeset using familiar italic and Greek symbols, as
in f x y A x y(,) sin()= u v+ and f(,) tan (,) (,)u v u v u v= []−1 I R . All MATLAB
function names and symbols are typeset in monospace font, as in fft2(f),
logical(A), and roipoly(f, c, r).

The first occurrence of a MATLAB or Image Processing Toolbox function
is highlighted by use of the following icon on the page margin:

Similarly, the first occurrence of a new (custom) function developed in the
book is highlighted by use of the following icon on the page margin:

The symbol is used as a visual cue to denote the end of a function
listing.

When referring to keyboard keys, we use bold letters, such as Return and
Tab. We also use bold letters when referring to items on a computer screen or
menu, such as File and Edit.

 1.7	 The MATLAB Desktop

The MATLAB Desktop is the main working environment. It is a set of graph-
ics tools for tasks such as running MATLAB commands, viewing output,
editing and managing files and variables, and viewing session histories. Figure 1.1
shows the MATLAB Desktop in the default configuration. The Desktop com-

function name

function name

8 Chapter 1 ■ Introduction

ponents shown are the Command Window, the Workspace Browser, the Cur-
rent Directory Browser, and the Command History Window. Figure 1.1 also
shows a Figure Window, which is used to display images and graphics.

The Command Window is where the user types MATLAB commands at
the prompt (>>). For example, a user can call a MATLAB function, or assign
a value to a variable. The set of variables created in a session is called the
Workspace, and their values and properties can be viewed in the Workspace
Browser.

The top-most rectangular window shows the user’s Current Directory, which
typically contains the path to the files on which a user is working at a given
time. The current directory can be changed using the arrow or browse button
(“...”) to the right of the Current Directory Field. Files in the Current Direc-
tory can be viewed and manipulated using the Current Directory Browser.

Directories are called
folders in Windows.

Figure 1.1 The MATLAB Desktop with its typical components.

Command Window

Figure Window

MATLAB Desktop

Workspace Browser
Current Directory Browser

Current Directory Field

Command History

1.7 ■ The MATLAB Desktop 9

The Command History Window displays a log of MATLAB statements
executed in the Command Window. The log includes both current and previ-
ous sessions. From the Command History Window a user can right-click on
previous statements to copy them, re-execute them, or save them to a file.
These features are useful for experimenting with various commands in a work
session, or for reproducing work performed in previous sessions.

The MATLAB Desktop may be configured to show one, several, or all these
tools, and favorite Desktop layouts can be saved for future use. Table 1.1 sum-
marizes all the available Desktop tools.

MATLAB uses a search path to find M-files and other MATLAB-related
files, which are organized in directories in the computer file system. Any file
run in MATLAB must reside in the Current Directory or in a directory that
is on the search path. By default, the files supplied with MATLAB and Math
Works toolboxes are included in the search path. The easiest way to see which
directories are on the search path, or to add or modify a search path, is to select
Set Path from the File menu on the desktop, and then use the Set Path dialog
box. It is good practice to add commonly used directories to the search path to
avoid repeatedly having to browse to the location of these directories.

Typing clear at the prompt removes all variables from the workspace. This
frees up system memory. Similarly, typing clc clears the contents of the com-
mand window. See the help page for other uses and syntax forms.

clear
clc

Tool Description

Array Editor View and edit array contents.

Command History Window View a log of statements entered in the Command
Window; search for previously executed statements,
copy them, and re-execute them.

Command Window Run MATLAB statements.

Current Directory Browser View and manipulate files in the current directory.

Current Directory Field Shows the path leading to the current directory.

Editor/Debugger Create, edit, debug, and analyze M-files.

Figure Windows Display, modify, annotate, and print MATLAB
graphics.

File Comparisons View differences between two files.

Help Browser View and search product documentation.

Profiler Measure execution time of MATLAB functions and
lines; count how many times code lines are executed.

Start Button Run product tools and access product documentation
and demos.

Web Browser View HTML and related files produced by MATLAB
or other sources.

Workspace Browser View and modify contents of the workspace.

Table 1.1
MATLAB
desktop tools.

10 Chapter 1 ■ Introduction

1.7.1 Using the MATLAB Editor/Debugger
The MATLAB Editor/Debugger (or just the Editor) is one of the most impor-
tant and versatile of the Desktop tools. Its primary purpose is to create and
edit MATLAB function and script files. These files are called M-files because
their filenames use the extension .m, as in pixeldup.m. The Editor highlights
different MATLAB code elements in color; also, it analyzes code to offer
suggestions for improvements. The Editor is the tool of choice for working
with M-files. With the Editor, a user can set debugging breakpoints, inspect
variables during code execution, and step through code lines. Finally, the
Editor can publish MATLAB M-files and generate output to formats such as
HTML, LaTeX, Word, and PowerPoint.

To open the editor, type edit at the prompt in the Command Window. Simi-
larly, typing edit filename at the prompt opens the M-file filename.m in an
editor window, ready for editing. The file must be in the current directory, or in
a directory in the search path.

1.7.2 Getting Help

The principal way to get help is to use the MATLAB Help Browser, opened
as a separate window either by clicking on the question mark symbol (?) on
the desktop toolbar, or by typing doc (one word) at the prompt in the Com-
mand Window. The Help Browser consists of two panes, the help navigator
pane, used to find information, and the display pane, used to view the informa-
tion. Self-explanatory tabs on the navigator pane are used to perform a search.
For example, help on a specific function is obtained by selecting the Search tab
and then typing the function name in the Search for field. It is good practice to
open the Help Browser at the beginning of a MATLAB session to have help
readily available during code development and other MATLAB tasks.

Another way to obtain help for a specific function is by typing doc fol-
lowed by the function name at the command prompt. For example, typing
doc file_name displays the reference page for the function called file_name
in the display pane of the Help Browser. This command opens the browser if
it is not open already. The doc function works also for user-written M-files that
contain help text. See Section 2.10.1 for an explanation of M-file help text.

When we introduce MATLAB and Image Processing Toolbox functions in
the following chapters, we often give only representative syntax forms and
descriptions. This is necessary either because of space limitations or to avoid
deviating from a particular discussion more than is absolutely necessary. In
these cases we simply introduce the syntax required to execute the function in
the form required at that point in the discussion. By being comfortable with
MATLAB documentation tools, you can then explore a function of interest in
more detail with little effort.

Finally, the MathWorks’ web site mentioned in Section 1.3 contains a large
database of help material, contributed functions, and other resources that

doc

1.8 ■ How References Are Organized in the Book 11

should be utilized when the local documentation contains insufficient infor
mation about a desired topic. Consult the book web site (see Section 1.5) for
additional MATLAB and M-function resources.

1.7.3 Saving and Retrieving Work Session Data
There are several ways to save or load an entire work session (the contents of
the Workspace Browser) or selected workspace variables in MATLAB. The
simplest is as follows: To save the entire workspace, right-click on any blank
space in the Workspace Browser window and select Save Workspace As from
the menu that appears. This opens a directory window that allows naming the
file and selecting any folder in the system in which to save it. Then click Save.
To save a selected variable from the Workspace, select the variable with a left
click and right-click on the highlighted area. Then select Save Selection As
from the menu that appears. This opens a window from which a folder can be
selected to save the variable. To select multiple variables, use shift-click or con-
trol-click in the familiar manner, and then use the procedure just described for
a single variable. All files are saved in a binary format with the extension .mat.
These saved files commonly are referred to as MAT-files, as indicated earlier.
For example, a session named, say, mywork_2009_02_10, would appear as the
MAT-file mywork_2009_02_10.mat when saved. Similarly, a saved image called
final_image (which is a single variable in the workspace) will appear when
saved as final_image.mat.

To load saved workspaces and/or variables, left-click on the folder icon on
the toolbar of the Workspace Browser window. This causes a window to open
from which a folder containing the MAT-files of interest can be selected. Dou-
ble-clicking on a selected MAT-file or selecting Open causes the contents of
the file to be restored in the Workspace Browser window.

It is possible to achieve the same results described in the preceding para
graphs by typing save and load at the prompt, with the appropriate names
and path information. This approach is not as convenient, but it is used when
formats other than those available in the menu method are required. Func-
tions save and load are useful also for writing M-files that save and load work-
space variables. As an exercise, you are encouraged to use the Help Browser to
learn more about these two functions.

 1.8	 How References Are Organized in the Book

All references in the book are listed in the Bibliography by author and date,
as in Soille [2003]. Most of the background references for the theoretical con-
tent of the book are from Gonzalez and Woods [2008]. In cases where this
is not true, the appropriate new references are identified at the point in the
discussion where they are needed. References that are applicable to all chap-
ters, such as MATLAB manuals and other general MATLAB references, are
so identified in the Bibliography.

save
load

12 Chapter 1 ■ Introduction

Summary
In addition to a brief introduction to notation and basic MATLAB tools, the material in
this chapter emphasizes the importance of a comprehensive prototyping environment
in the solution of digital image processing problems. In the following chapter we begin
to lay the foundation needed to understand Image Processing Toolbox functions and
introduce a set of fundamental programming concepts that are used throughout the
book. The material in Chapters 3 through 13 spans a wide cross section of topics that
are in the mainstream of digital image processing applications. However, although the
topics covered are varied, the discussion in those chapters follows the same basic theme
of demonstrating how combining MATLAB and toolbox functions with new code can
be used to solve a broad spectrum of image-processing problems.

