
Processing
igital Image

4

D

F O U R T H
E D I T I O N

Rafael C. Gonzalez
University of Tennessee

Richard E. Woods
Interapptics

330 Hudson Street, New York, NY 10013

DIP4E_Print_Ready.indb 1 4/2/2017 8:31:42 PM

Senior Vice President Courseware Portfolio Management: Marcia J. Horton
Director, Portfolio Management: Engineering, Computer Science & Global Editions: Julian Partridge
Portfolio Manager: Julie Bai
Field Marketing Manager: Demetrius Hall
Product Marketing Manager: Yvonne Vannatta
Marketing Assistant: Jon Bryant
Content Managing Producer, ECS and Math: Scott Disanno
Content Producer: Michelle Bayman
Project Manager: Rose Kernan
Operations Specialist: Maura Zaldivar-Garcia
Manager, Rights and Permissions: Ben Ferrini
Cover Designer: Black Horse Designs
Cover Photo: MRI image—Author supplied; Rose—Author supplied; Satellite image of Washington, D.C.—Courtesy of NASA;
Bottles—Author supplied; Fingerprint—Courtesy of the National Institute of Standards and Technology; Moon IO of Jupiter—
Courtesy of NASA
Composition: Richard E. Woods

Copyright © 2018, 2008 by Pearson Education, Inc. Hoboken, NJ 07030. All rights reserved. Manufactured in the United States of
America. This publication is protected by copyright and permissions should be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise. For information regarding permissions, request forms and the appropriate contacts within the Pearson
Education Global Rights & Permissions department, please visit www.pearsoned.com/permissions/.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial
caps or all caps. The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of theories and programs to determine their effectiveness.

The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documenta-
tion contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages with,
or arising out of, the furnishing, performance, or use of these programs.

Pearson Education Ltd., London
Pearson Education Singapore, Pte. Ltd
Pearson Education Canada, Inc.
Pearson Education Japan
Pearson Education Australia PTY, Ltd
Pearson Education North Asia, Ltd., Hong Kong
Pearson Education de Mexico, S.A. de C.V.
Pearson Education Malaysia, Pte. Ltd.

Pearson Education, Inc., Hoboken

MATLAB is a registered trademark of The MathWorks, Inc., 1 Apple Hill Drive, Natick, MA 01760-2098.

Library of Congress Cataloging-in-Publication Data

Names: Gonzalez, Rafael C., author. | Woods, Richard E. (Richard Eugene), author.
Title: Digital Image Processing / Rafael C. Gonzalez, University of Tennessee, Richard E. Woods, Interapptics.
Description: New York, NY : Pearson, [2018] | Includes bibliographical references and index.
Identifiers: LCCN 2017001581 | ISBN 9780133356724
Subjects: LCSH: Image processing--Digital techniques.
Classification: LCC TA1632 .G66 2018 | DDC 621.36/7--dc23
LC record available at https://lccn.loc.gov/2017001581

								 ISBN-10: 0-13-335672-8
1 16 								 ISBN-13: 9780133356724

			 www.pearsonhighered.com

DIP4E_Print_Ready.indb 2 4/2/2017 8:31:43 PM

To Connie, Ralph, and Rob
and

To Janice, David, and Jonathan

DIP4E_Print_Ready.indb 3 4/2/2017 8:31:43 PM

DIP4E_Print_Ready.indb 4 4/2/2017 8:31:43 PM

Contents
Preface   ix

Acknowledgments   xiii

The Book Website   xiv

The DIP4E Support Packages   xiv

About the Authors   xv

1	 Introduction   1
What is Digital Image Processing?   2
The Origins of Digital Image Processing   3
Examples of Fields that Use Digital Image Processing   7
Fundamental Steps in Digital Image Processing   25
Components of an Image Processing System   28

2	 Digital Image Fundamentals   31
Elements of Visual Perception   32
Light and the Electromagnetic Spectrum   38
Image Sensing and Acquisition   41
Image Sampling and Quantization   47
Some Basic Relationships Between Pixels   63
Introduction to the Basic Mathematical Tools Used in Digital Image
Processing   67

3	 Intensity Transformations and Spatial
Filtering   133
Background   134
Some Basic Intensity Transformation Functions   136
Histogram Processing   147
Fundamentals of Spatial Filtering   177
Smoothing (Lowpass) Spatial Filters   188
Sharpening (Highpass) Spatial Filters   199
Highpass, Bandreject, and Bandpass Filters from Lowpass Filters   212
Combining Spatial Enhancement Methods   216
Using Fuzzy Techniques for Intensity Transformations and Spatial
Filtering   217

DIP4E_Print_Ready.indb 5 4/2/2017 8:31:43 PM

vi Contents

4	 Filtering in the Frequency Domain   249
Background   250
Preliminary Concepts   253
Sampling and the Fourier Transform of Sampled Functions   261
The Discrete Fourier Transform of One Variable   271
Extensions to Functions of Two Variables   276
Some Properties of the 2-D DFT and IDF   286
The Basics of Filtering in the Frequency Domain   306
Image Smoothing Using Lowpass Frequency Domain Filters   318
Image Sharpening Using Highpass Filters   330
Selective Filtering   342
The Fast Fourier Transform   349

5	 Image Restoration and Reconstruction   365
A Model of the Image Degradation/Restoration process   366
Noise Models   366
Restoration in the Presence of Noise Only—Spatial Filtering   375
Periodic Noise Reduction Using Frequency Domain Filtering   388
Linear, Position-Invariant Degradations   396
Estimating the Degradation Function   400
Inverse Filtering   404
Minimum Mean Square Error (Wiener) Filtering   406
Constrained Least Squares Filtering   411
Geometric Mean Filter   415
Image Reconstruction from Projections   416

6	 Wavelet and Other Image Transforms   451
Preliminaries   452
Matrix-based Transforms   454
Correlation   466
Basis Functions in the Time-Frequency Plane   467
Basis Images   471
Fourier-Related Transforms   472
Walsh-Hadamard Transforms   484
Slant Transform   488
Haar Transform   490
Wavelet Transforms   492

DIP4E_Print_Ready.indb 6 4/2/2017 8:31:43 PM

Contents vii

7	 Color Image Processing   529
Color Fundamentals   530
Color Models   535
Pseudocolor Image Processing   550
Basics of Full-Color Image Processing   559
Color Transformations   560
Color Image Smoothing and Sharpening   572
Using Color in Image Segmentation   575
Noise in Color Images   582
Color Image Compression   585

8	 Image Compression and
Watermarking   595
Fundamentals   596
Huffman Coding   609
Golomb Coding   612
Arithmetic Coding   617
LZW Coding   620
Run-length Coding   622
Symbol-based Coding   628
Bit-plane Coding   631
Block Transform Coding   632
Predictive Coding   650
Wavelet Coding   670
Digital Image Watermarking   680

9	 Morphological Image Processing   693
Preliminaries   694
Erosion and Dilation   696
Opening and Closing   702
The Hit-or-Miss Transform   706
Some Basic Morphological Algorithms   710
Morphological Reconstruction   725
Summary of Morphological Operations on Binary Images   731
Grayscale Morphology   732

DIP4E_Print_Ready.indb 7 4/2/2017 8:31:43 PM

viii Contents

10	Image Segmentation I   761
Fundamentals   762
Point, Line, and Edge Detection   763
Thresholding   804
Segmentation by Region Growing and by Region Splitting and
Merging   826
Region Segmentation Using Clustering and Superpixels   832
The Use of Motion in Segmentation   859

11	Image Segmentation II Active Contours:
Snakes and Level Sets   877
Background   878
Image Segmentation Using Snakes   878
Segmentation Using Level Sets   902

12	Feature Extraction    953
Background    954
Boundary Preprocessing   956
Boundary Feature Descriptors   973
Region Feature Descriptors   982
Principal Components as Feature Descriptors   1001
Whole-Image Features   1010
Scale-Invariant Feature Transform (SIFT)   1023

13	Image Pattern Classification   1049
Background   1050
Patterns and Pattern Classes   1052
Pattern Classification by Prototype Matching   1056
Optimum (Bayes) Statistical Classifiers   1069
Neural Networks and Deep Learning   1077
Deep Convolutional Neural Networks   1110
Some Additional Details of Implementation   1133

Bibiography   1143

Index   1157

DIP4E_Print_Ready.indb 8 4/2/2017 8:31:43 PM

Preface
When something can be read without effort, great effort has gone into its writing.

Enrique Jardiel Poncela

This edition of Digital Image Processing is a major revision of the book. As in
the 1977 and 1987 editions by Gonzalez and Wintz, and the 1992, 2002, and 2008
editions by Gonzalez and Woods, this sixth-generation edition was prepared
with students and instructors in mind. The principal objectives of the book
continue to be to provide an introduction to basic concepts and methodologies
applicable to digital image processing, and to develop a foundation that can
be used as the basis for further study and research in this field. To achieve
these objectives, we focused again on material that we believe is fundamental
and whose scope of application is not limited to the solution of specialized
problems. The mathematical complexity of the book remains at a level well
within the grasp of college seniors and first-year graduate students who have
introductory preparation in mathematical analysis, vectors, matrices, probability,
statistics, linear systems, and computer programming. The book website pro-
vides tutorials to support readers needing a review of this background material.

One of the principal reasons this book has been the world leader in its field for
40 years is the level of attention we pay to the changing educational needs of our
readers. The present edition is based on an extensive survey that involved faculty,
students, and independent readers of the book in 150 institutions from 30 countries.
The survey revealed a need for coverage of new material that has matured since the
last edition of the book. The principal findings of the survey indicated a need for:

•  New material related to histogram matching.
•  Expanded coverage of the fundamentals of spatial filtering.
•  A more comprehensive and cohesive coverage of image transforms.
•  A more complete presentation of finite differences, with a focus on edge detec-

tion.
•  A discussion of clustering, superpixels, and their use in region segmentation.
•  New material on active contours that includes snakes and level sets, and their

use in image segmentation.
•  Coverage of maximally stable extremal regions.
•  Expanded coverage of feature extraction to include the Scale Invariant Feature

Transform (SIFT).
•  Expanded coverage of neural networks to include deep neural networks, back-

propagation, deep learning, and, especially, deep convolutional neural networks.
•  More homework problems at the end of the chapters.
•  MATLAB computer projects.

The new and reorganized material that resulted in the present edition is our
attempt at providing a reasonable balance between rigor, clarity of presentation,

DIP4E_Print_Ready.indb 9 4/2/2017 8:31:43 PM

x Preface

and the findings of the survey. In addition to new material, earlier portions of the
text were updated and clarified. This edition contains 425 new images, 135 new draw-
ings, and 220 new exercises. For the first time, we have included MATLAB projects
at the end of every chapter. In total there are 120 new MATLAB projects that cover
a broad range of the material in the book. Although the solutions we provide are
in MATLAB, the projects themselves are written in such a way that they can be
implemented in other languages. Projects are an important addition because they
will allow students to experiment with material they learn in the classroom. A large
database of digital images is provided for this purpose.

New to This Edition
The highlights of this edition are as follows.

Chapter 1: Some figures were updated, and parts of the text were rewritten to cor-
respond to changes in later chapters.

Chapter 2: Many of the sections and examples were rewritten for clarity. We added
a new section dealing with random numbers and probability, with an emphasis on
their application to image processing. We included 12 new examples, 31 new images,
22 new drawings, 32 new exercises, and 10 new MATLAB projects.

Chapter 3: Major revisions of the topics in this chapter include a new section on
exact histogram matching. Fundamental concepts of spatial filtering were rewritten
to include a discussion on separable filter kernels, expanded coverage of the prop-
erties of lowpass Gaussian kernels, and expanded coverage of highpass, bandreject,
and bandpass filters, including numerous new examples that illustrate their use. In
addition to revisions in the text, including 6 new examples, the chapter has 67 new
images, 18 new line drawings, 31 new exercises, and 10 new MATLAB projects.

Chapter 4: Several of the sections of this chapter were revised to improve the clar-
ity of presentation. We replaced dated graphical material with 35 new images and 4
new line drawings. We added 25 new exercises and 10 new MATLAB projects.	

Chapter 5: Revisions to this chapter were limited to clarifications and a few cor-
rections in notation. We added 6 new images, 17 new exercises, and 10 new MAT-
LAB projects.

Chapter 6: This is a new chapter that brings together wavelets, several new trans-
forms, and many of the image transforms that were scattered throughout the book.
The emphasis of this new chapter is on the presentation of these transforms from a
unified point of view. We added 24 new images, 20 new drawings, 25 new exercises
and 10 new MATLAB projects.

Chapter 7: The material dealing with color image processing was moved to this
chapter. Several sections were clarified, and the explanation of the CMY and CMYK
color models was expanded. We added 2 new images and 10 new MATLAB projects.

Chapter 8: In addition to numerous clarifications and minor improvements to the
presentation, we added 10 new MATLAB projects to this chapter.

DIP4E_Print_Ready.indb 10 4/2/2017 8:31:43 PM

Preface xi

Chapter 9: Revisions of this chapter included a complete rewrite of several sec-
tions, including redrafting of several line drawings. We added 18 new exercises and
10 new MATLAB projects.

Chapter 10: Several of the sections were rewritten for clarity. We updated the
chapter by adding coverage of finite differences, K-means clustering, superpixels,
and graph cuts. The new topics are illustrated with 4 new examples. In total, we
added 31 new images, 3 new drawings, 8 new exercises, and 10 new MATLAB proj-
ects.

Chapter 11: This is a new chapter dealing with active contours for image segmen-
tation, including snakes and level sets. An important feature in this chapter is that
it presents a derivation of the fundamental snake equation. Similarly, we provide a
derivation of the level set equation. Both equations are derived starting from basic
principles, and the methods are illustrated with numerous examples. The strategy
when we prepared this chapter was to bring this material to a level that could be
understood by beginners in our field. To that end, we complemented the text mate-
rial with 17 new examples, 141 new images, 19 new drawings, 37 new problems, and
10 new MATLAB projects.

Chapter 12: This is the chapter on feature extraction, which was moved from its
11th position in the previous edition. The chapter was updated with numerous top-
ics, beginning with a more detailed classification of feature types and their uses. In
addition to improvements in the clarity of presentation, we added coverage of slope
change codes, expanded the explanation of skeletons, medial axes, and the distance
transform, and added several new basic descriptors of compactness, circularity, and
eccentricity. New material includes coverage of the Harris-Stephens corner detec-
tor, and a presentation of maximally stable extremal regions. A major addition to
the chapter is a comprehensive discussion dealing with the Scale-Invariant Feature
Transform (SIFT). The new material is complemented by 65 new images, 15 new
drawings, 4 new examples, and 15 new exercises. We also added 10 new MATLAB
projects.

Chapter 13: This is the image pattern classification chapter that was Chapter 12 in
the previous edition. This chapter underwent a major revision to include an exten-
sive rewrite of neural networks and deep learning, an area that has grown signifi-
cantly since the last edition of the book. We added a comprehensive discussion on
fully connected, deep neural networks that includes derivation of backpropagation
starting from basic principles. The equations of backpropagation were expressed in

“traditional” scalar terms, and then generalized into a compact set of matrix equa-
tions ideally suited for implementation of deep neural nets. The effectiveness of fully
connected networks was demonstrated with several examples that included a com-
parison with the Bayes classifier. One of the most-requested topics in the survey was
coverage of deep convolutional neural networks. We added an extensive section
on this, following the same blueprint we used for deep, fully connected nets. That is,
we derived the equations of backpropagation for convolutional nets, and showed
how they are different from “traditional” backpropagation. We then illustrated the
use of convolutional networks with simple images, and applied them to large image

DIP4E_Print_Ready.indb 11 4/2/2017 8:31:43 PM

xii Preface

databases of numerals and natural scenes. The written material is complemented
by 23 new images, 28 new drawings, and 12 new exercises. We also included 10 new
MATLAB projects.

Also for the first time, we have created student and faculty support packages that
can be downloaded from the book website. The Student Support Package contains
all the original images in the book, answers to selected exercises, detailed answers
(including MATLAB code) to selected MATLAB projects, and instructions for
using a set of utility functions that complement the projects. The Faculty Support
Package contains solutions to all exercises and projects, teaching suggestions, and all
the art in the book in the form of modifiable PowerPoint slides. One support pack-
age is made available with every new book, free of charge.

MATLAB projects are structured in a unique way that gives instructors significant
flexibility in how projects are assigned. The MATLAB functions required to solve
all the projects in the book are provided in executable, p-code format. These func-
tions run just like the original functions, but the source code is not visible, and the
files cannot be modified. The availability of these functions as a complete package
makes it possible for projects to be assigned solely for the purpose of experiment-
ing with image processing concepts, without having to write a single line of code. In
other words, the complete set of MATLAB functions is available as a stand-alone
p-code toolbox, ready to use without further development. When instructors elect
to assign projects that involve MATLAB code development, we provide students
enough answers to form a good base that they can expand, thus gaining experience
with developing software solutions to image processing problems. Instructors have
access to detailed answers to all projects.

The book website, established during the launch of the 2002 edition, continues to
be a success, attracting more than 25,000 visitors each month. The site was upgraded
for the launch of this edition. For more details on site features and content, see The
Book Website, following the Acknowledgments section.

This edition of Digital Image Processing is a reflection of how the educational
needs of our readers have changed since 2008. As is usual in an endeavor such as
this, progress in the field continues after work on the manuscript stops. One of the
reasons why this book has been so well accepted since it first appeared in 1977 is its
continued emphasis on fundamental concepts that retain their relevance over time.
This approach, among other things, attempts to provide a measure of stability in a
rapidly evolving body of knowledge. We have tried to follow the same principle in
preparing this edition of the book.

R.C.G.
R.E.W.

DIP4E_Print_Ready.indb 12 4/2/2017 8:31:43 PM

Acknowledgments
We are indebted to a number of individuals in academic circles, industry, and gov-
ernment who have contributed to this edition of the book. In particular, we wish
to extend our appreciation to Hairong Qi and her students, Zhifei Zhang and
Chengcheng Li, for their valuable review of the material on neural networks, and for
their help in generating examples for that material. We also want to thank Ernesto
Bribiesca Correa for providing and reviewing material on slope chain codes, and
Dirk Padfield for his many suggestions and review of several chapters in the book.
We appreciate Michel Kocher’s many thoughtful comments and suggestions over
the years on how to improve the book. Thanks also to Steve Eddins for his sugges-
tions on MATLAB and related software issues, and to Dino Colcuc for his review of
the material on exact histogram specification.

Numerous individuals have contributed to material carried over from the previ-
ous to the current edition of the book. Their contributions have been important in so
many different ways that we find it difficult to acknowledge them in any other way
but alphabetically. We thank Mongi A. Abidi, Yongmin Kim, Bryan Morse, Andrew
Oldroyd, Ali M. Reza, Edgardo Felipe Riveron, Jose Ruiz Shulcloper, and Cameron
H.G. Wright for their many suggestions on how to improve the presentation and/or
the scope of coverage in the book. We are also indebted to Naomi Fernandes at the
MathWorks for providing us with MATLAB software and support that were impor-
tant in our ability to create many of the examples and experimental results included
in this edition of the book.

A significant percentage of the new images used in this edition (and in some
cases their history and interpretation) were obtained through the efforts of indi-
viduals whose contributions are sincerely appreciated. In particular, we wish to
acknowledge the efforts of Serge Beucher, Uwe Boos, Michael E. Casey, Michael
W. Davidson, Susan L. Forsburg, Thomas R. Gest, Daniel A. Hammer, Zhong He,
Roger Heady, Juan A. Herrera, John M. Hudak, Michael Hurwitz, Chris J. Johannsen,
Rhonda Knighton, Don P. Mitchell, A. Morris, Curtis C. Ober, David. R. Pickens,
Michael Robinson, Michael Shaffer, Pete Sites, Sally Stowe, Craig Watson, David
K. Wehe, and Robert A. West. We also wish to acknowledge other individuals and
organizations cited in the captions of numerous figures throughout the book for
their permission to use that material.

We also thank Scott Disanno, Michelle Bayman, Rose Kernan, and Julie Bai for
their support and significant patience during the production of the book.

R.C.G.
R.E.W.

DIP4E_Print_Ready.indb 13 4/2/2017 8:31:43 PM

The Book Website
www.ImageProcessingPlace.com

Digital Image Processing is a completely self-contained book. However, the compan-
ion website offers additional support in a number of important areas.

For the Student or Independent Reader the site contains
•  Reviews in areas such as probability, statistics, vectors, and matrices.
•  A Tutorials section containing dozens of tutorials on topics relevant to the mate-

rial in the book.
•  An image database containing all the images in the book, as well as many other

image databases.

For the Instructor the site contains
•  An Instructor’s Manual with complete solutions to all the problems and MAT-

LAB projects in the book, as well as course and laboratory teaching guidelines.
The manual is available free of charge to instructors who have adopted the book
for classroom use.

•  Classroom presentation materials in PowerPoint format.
•  Material removed from previous editions, downloadable in convenient PDF

format.
•  Numerous links to other educational resources.

For the Practitioner the site contains additional specialized topics such as
•  Links to commercial sites.
•  Selected new references.
•  Links to commercial image databases.

The website is an ideal tool for keeping the book current between editions by includ-
ing new topics, digital images, and other relevant material that has appeared after
the book was published. Although considerable care was taken in the production
of the book, the website is also a convenient repository for any errors discovered
between printings.

The DIP4E Support Packages
In this edition, we created support packages for students and faculty to organize all
the classroom support materials available for the new edition of the book into one
easy download. The Student Support Package contains all the original images in the
book, answers to selected exercises, detailed answers (including MATLAB code)
to selected MATLAB projects, and instructions for using a set of utility functions
that complement the projects. The Faculty Support Package contains solutions to all
exercises and projects, teaching suggestions, and all the art in the book in modifiable
PowerPoint slides. One support package is made available with every new book, free
of charge. Applications for the support packages are submitted at the book website.

DIP4E_Print_Ready.indb 14 4/2/2017 8:31:43 PM

About the Authors
RAFAEL C. GONZALEZ

R. C. Gonzalez received the B.S.E.E. degree from the University of Miami in 1965
and the M.E. and Ph.D. degrees in electrical engineering from the University of
Florida, Gainesville, in 1967 and 1970, respectively. He joined the Electrical and
Computer Science Department at the University of Tennessee, Knoxville (UTK) in
1970, where he became Associate Professor in 1973, Professor in 1978, and Distin-
guished Service Professor in 1984. He served as Chairman of the department from
1994 through 1997. He is currently a Professor Emeritus at UTK.

Gonzalez is the founder of the Image & Pattern Analysis Laboratory and the
Robotics & Computer Vision Laboratory at the University of Tennessee. He also
founded Perceptics Corporation in 1982 and was its president until 1992. The last
three years of this period were spent under a full-time employment contract with
Westinghouse Corporation, who acquired the company in 1989.

Under his direction, Perceptics became highly successful in image processing,
computer vision, and laser disk storage technology. In its initial ten years, Perceptics
introduced a series of innovative products, including: The world’s first commercially
available computer vision system for automatically reading license plates on moving
vehicles; a series of large-scale image processing and archiving systems used by the
U.S. Navy at six different manufacturing sites throughout the country to inspect the
rocket motors of missiles in the Trident II Submarine Program; the market-leading
family of imaging boards for advanced Macintosh computers; and a line of trillion-
byte laser disk products.

He is a frequent consultant to industry and government in the areas of pattern
recognition, image processing, and machine learning. His academic honors for work
in these fields include the 1977 UTK College of Engineering Faculty Achievement
Award; the 1978 UTK Chancellor’s Research Scholar Award; the 1980 Magnavox
Engineering Professor Award; and the 1980 M.E. Brooks Distinguished Professor
Award. In 1981 he became an IBM Professor at the University of Tennessee and
in 1984 he was named a Distinguished Service Professor there. He was awarded a
Distinguished Alumnus Award by the University of Miami in 1985, the Phi Kappa
Phi Scholar Award in 1986, and the University of Tennessee’s Nathan W. Dougherty
Award for Excellence in Engineering in 1992.

Honors for industrial accomplishment include the 1987 IEEE Outstanding Engi-
neer Award for Commercial Development in Tennessee; the 1988 Albert Rose
National Award for Excellence in Commercial Image Processing; the 1989 B. Otto
Wheeley Award for Excellence in Technology Transfer; the 1989 Coopers and
Lybrand Entrepreneur of the Year Award; the 1992 IEEE Region 3 Outstanding
Engineer Award; and the 1993 Automated Imaging Association National Award for
Technology Development.

Gonzalez is author or co-author of over 100 technical articles, two edited books,
and four textbooks in the fields of pattern recognition, image processing, and robot-
ics. His books are used in over 1000 universities and research institutions throughout

DIP4E_Print_Ready.indb 15 4/2/2017 8:31:43 PM

xvi About the Authors

the world. He is listed in the prestigious Marquis Who’s Who in America, Marquis
Who’s Who in Engineering, Marquis Who’s Who in the World, and in 10 other national
and international biographical citations. He is the co-holder of two U.S. Patents, and
has been an associate editor of the IEEE Transactions on Systems, Man and Cyber-
netics, and the International Journal of Computer and Information Sciences. He is a
member of numerous professional and honorary societies, including Tau Beta Pi, Phi
Kappa Phi, Eta Kappa Nu, and Sigma Xi. He is a Fellow of the IEEE.

RICHARD E. WOODS

R. E. Woods earned his B.S., M.S., and Ph.D. degrees in Electrical Engineering from
the University of Tennessee, Knoxville in 1975, 1977, and 1980, respectively. He
became an Assistant Professor of Electrical Engineering and Computer Science in
1981 and was recognized as a Distinguished Engineering Alumnus in 1986.

A veteran hardware and software developer, Dr. Woods has been involved in
the founding of several high-technology startups, including Perceptics Corporation,
where he was responsible for the development of the company’s quantitative image
analysis and autonomous decision-making products; MedData Interactive, a high-
technology company specializing in the development of handheld computer systems
for medical applications; and Interapptics, an internet-based company that designs
desktop and handheld computer applications.

Dr. Woods currently serves on several nonprofit educational and media-related
boards, including Johnson University, and was recently a summer English instructor
at the Beijing Institute of Technology. He is the holder of a U.S. Patent in the area
of digital image processing and has published two textbooks, as well as numerous
articles related to digital signal processing. Dr. Woods is a member of several profes-
sional societies, including Tau Beta Pi, Phi Kappa Phi, and the IEEE.

DIP4E_Print_Ready.indb 16 4/2/2017 8:31:43 PM

1

1 Introduction

One picture is worth more than ten thousand words.
Anonymous

Preview
Interest in digital image processing methods stems from two principal application areas: improvement
of pictorial information for human interpretation, and processing of image data for tasks such as storage,
transmission, and extraction of pictorial information. This chapter has several objectives: (1) to define
the scope of the field that we call image processing; (2) to give a historical perspective of the origins of
this field; (3) to present an overview of the state of the art in image processing by examining some of
the principal areas in which it is applied; (4) to discuss briefly the principal approaches used in digital
image processing; (5) to give an overview of the components contained in a typical, general-purpose
image processing system; and (6) to provide direction to the literature where image processing work is
reported. The material in this chapter is extensively illustrated with a range of images that are represen-
tative of the images we will be using throughout the book.

Upon completion of this chapter, readers should:

	 Understand the concept of a digital image.

	 Have a broad overview of the historical under-
pinnings of the field of digital image process-
ing.

	 Understand the definition and scope of digi-
tal image processing.

	 Know the fundamentals of the electromag-
netic spectrum and its relationship to image
generation.

	 Be aware of the different fields in which digi-
tal image processing methods are applied.

	 Be familiar with the basic processes involved
in image processing.

	 Be familiar with the components that make
up a general-purpose digital image process-
ing system.

	 Be familiar with the scope of the literature
where image processing work is reported.

DIP4E_Print_Ready.indb 1 4/2/2017 8:31:43 PM

2 Chapter 1 Introduction

1.1	 WHAT IS DIGITAL IMAGE PROCESSING?

An image may be defined as a two-dimensional function, f x y(,), where x and y are
spatial (plane) coordinates, and the amplitude of f at any pair of coordinates (,)x y
is called the intensity or gray level of the image at that point. When x, y, and the
intensity values of f are all finite, discrete quantities, we call the image a digital image.
The field of digital image processing refers to processing digital images by means of
a digital computer. Note that a digital image is composed of a finite number of ele-
ments, each of which has a particular location and value. These elements are called
picture elements, image elements, pels, and pixels. Pixel is the term used most widely
to denote the elements of a digital image. We will consider these definitions in more
formal terms in Chapter 2.

Vision is the most advanced of our senses, so it is not surprising that images
play the single most important role in human perception. However, unlike humans,
who are limited to the visual band of the electromagnetic (EM) spectrum, imaging
machines cover almost the entire EM spectrum, ranging from gamma to radio waves.
They can operate on images generated by sources that humans are not accustomed
to associating with images. These include ultrasound, electron microscopy, and com-
puter-generated images. Thus, digital image processing encompasses a wide and var-
ied field of applications.

There is no general agreement among authors regarding where image process-
ing stops and other related areas, such as image analysis and computer vision, start.
Sometimes, a distinction is made by defining image processing as a discipline in
which both the input and output of a process are images. We believe this to be a
limiting and somewhat artificial boundary. For example, under this definition, even
the trivial task of computing the average intensity of an image (which yields a sin-
gle number) would not be considered an image processing operation. On the other
hand, there are fields such as computer vision whose ultimate goal is to use comput-
ers to emulate human vision, including learning and being able to make inferences
and take actions based on visual inputs. This area itself is a branch of artificial intel-
ligence (AI) whose objective is to emulate human intelligence. The field of AI is in its
earliest stages of infancy in terms of development, with progress having been much
slower than originally anticipated. The area of image analysis (also called image
understanding) is in between image processing and computer vision.

There are no clear-cut boundaries in the continuum from image processing at
one end to computer vision at the other. However, one useful paradigm is to con-
sider three types of computerized processes in this continuum: low-, mid-, and high-
level processes. Low-level processes involve primitive operations such as image
preprocessing to reduce noise, contrast enhancement, and image sharpening. A low-
level process is characterized by the fact that both its inputs and outputs are images.
Mid-level processing of images involves tasks such as segmentation (partitioning
an image into regions or objects), description of those objects to reduce them to a
form suitable for computer processing, and classification (recognition) of individual
objects. A mid-level process is characterized by the fact that its inputs generally
are images, but its outputs are attributes extracted from those images (e.g., edges,
contours, and the identity of individual objects). Finally, higher-level processing

1.1

DIP4E_Print_Ready.indb 2 4/2/2017 8:31:43 PM

1.2 The Origins of Digital Image Processing 3

involves “making sense” of an ensemble of recognized objects, as in image analysis,
and, at the far end of the continuum, performing the cognitive functions normally
associated with human vision.

Based on the preceding comments, we see that a logical place of overlap between
image processing and image analysis is the area of recognition of individual regions
or objects in an image. Thus, what we call in this book digital image processing encom-
passes processes whose inputs and outputs are images and, in addition, includes pro-
cesses that extract attributes from images up to, and including, the recognition of
individual objects. As an illustration to clarify these concepts, consider the area of
automated analysis of text. The processes of acquiring an image of the area con-
taining the text, preprocessing that image, extracting (segmenting) the individual
characters, describing the characters in a form suitable for computer processing, and
recognizing those individual characters are in the scope of what we call digital image
processing in this book. Making sense of the content of the page may be viewed as
being in the domain of image analysis and even computer vision, depending on the
level of complexity implied by the statement “making sense of.” As will become
evident shortly, digital image processing, as we have defined it, is used routinely in a
broad range of areas of exceptional social and economic value. The concepts devel-
oped in the following chapters are the foundation for the methods used in those
application areas.

1.2	THE ORIGINS OF DIGITAL IMAGE PROCESSING

One of the earliest applications of digital images was in the newspaper industry,
when pictures were first sent by submarine cable between London and New York.
Introduction of the Bartlane cable picture transmission system in the early 1920s
reduced the time required to transport a picture across the Atlantic from more than
a week to less than three hours. Specialized printing equipment coded pictures for
cable transmission, then reconstructed them at the receiving end. Figure 1.1 was
transmitted in this way and reproduced on a telegraph printer fitted with typefaces
simulating a halftone pattern.

Some of the initial problems in improving the visual quality of these early digital
pictures were related to the selection of printing procedures and the distribution of

1.2

FIGURE 1.1 A digital picture produced in 1921 from a coded tape by a telegraph printer with
special typefaces. (McFarlane.) [References in the bibliography at the end of the book are
listed in alphabetical order by authors’ last names.]

DIP4E_Print_Ready.indb 3 4/2/2017 8:31:43 PM

4 Chapter 1 Introduction

intensity levels. The printing method used to obtain Fig. 1.1 was abandoned toward
the end of 1921 in favor of a technique based on photographic reproduction made
from tapes perforated at the telegraph receiving terminal. Figure 1.2 shows an image
obtained using this method. The improvements over Fig. 1.1 are evident, both in
tonal quality and in resolution.

The early Bartlane systems were capable of coding images in five distinct levels
of gray. This capability was increased to 15 levels in 1929. Figure 1.3 is typical of the
type of images that could be obtained using the 15-tone equipment. During this
period, introduction of a system for developing a film plate via light beams that were
modulated by the coded picture tape improved the reproduction process consider-
ably.

Although the examples just cited involve digital images, they are not considered
digital image processing results in the context of our definition, because digital com-
puters were not used in their creation. Thus, the history of digital image processing
is intimately tied to the development of the digital computer. In fact, digital images
require so much storage and computational power that progress in the field of digi-
tal image processing has been dependent on the development of digital computers
and of supporting technologies that include data storage, display, and transmission.

FIGURE 1.2
A digital picture
made in 1922
from a tape
punched after
the signals had
crossed the
Atlantic twice.
(McFarlane.)

FIGURE 1.3
Unretouched
cable picture of
Generals Pershing
(right) and Foch,
transmitted in
1929 from
London to New
York by 15-tone
equipment.
(McFarlane.)

DIP4E_Print_Ready.indb 4 4/2/2017 8:31:44 PM

1.2 The Origins of Digital Image Processing 5

The concept of a computer dates back to the invention of the abacus in Asia
Minor, more than 5000 years ago. More recently, there have been developments
in the past two centuries that are the foundation of what we call a computer today.
However, the basis for what we call a modern digital computer dates back to only
the 1940s, with the introduction by John von Neumann of two key concepts: (1) a
memory to hold a stored program and data, and (2) conditional branching. These
two ideas are the foundation of a central processing unit (CPU), which is at the heart
of computers today. Starting with von Neumann, there were a series of key advanc-
es that led to computers powerful enough to be used for digital image processing.
Briefly, these advances may be summarized as follows: (1) the invention of the tran-
sistor at Bell Laboratories in 1948; (2) the development in the 1950s and 1960s of
the high-level programming languages COBOL (Common Business-Oriented Lan-
guage) and FORTRAN (Formula Translator); (3) the invention of the integrated
circuit (IC) at Texas Instruments in 1958; (4) the development of operating systems
in the early 1960s; (5) the development of the microprocessor (a single chip consist-
ing of a CPU, memory, and input and output controls) by Intel in the early 1970s;
(6) the introduction by IBM of the personal computer in 1981; and (7) progressive
miniaturization of components, starting with large-scale integration (LI) in the late
1970s, then very-large-scale integration (VLSI) in the 1980s, to the present use of
ultra-large-scale integration (ULSI) and experimental nonotechnologies. Concur-
rent with these advances were developments in the areas of mass storage and display
systems, both of which are fundamental requirements for digital image processing.

The first computers powerful enough to carry out meaningful image processing
tasks appeared in the early 1960s. The birth of what we call digital image processing
today can be traced to the availability of those machines, and to the onset of the
space program during that period. It took the combination of those two develop-
ments to bring into focus the potential of digital image processing for solving prob-
lems of practical significance. Work on using computer techniques for improving
images from a space probe began at the Jet Propulsion Laboratory (Pasadena, Cali-
fornia) in 1964, when pictures of the moon transmitted by Ranger 7 were processed
by a computer to correct various types of image distortion inherent in the on-board
television camera. Figure 1.4 shows the first image of the moon taken by Ranger
7 on July 31, 1964 at 9:09 A.M. Eastern Daylight Time (EDT), about 17 minutes
before impacting the lunar surface (the markers, called reseau marks, are used for
geometric corrections, as discussed in Chapter 2).This also is the first image of the
moon taken by a U.S. spacecraft. The imaging lessons learned with Ranger 7 served
as the basis for improved methods used to enhance and restore images from the Sur-
veyor missions to the moon, the Mariner series of flyby missions to Mars, the Apollo
manned flights to the moon, and others.

In parallel with space applications, digital image processing techniques began in
the late 1960s and early 1970s to be used in medical imaging, remote Earth resourc-
es observations, and astronomy. The invention in the early 1970s of computerized
axial tomography (CAT), also called computerized tomography (CT) for short, is
one of the most important events in the application of image processing in medical
diagnosis. Computerized axial tomography is a process in which a ring of detectors

DIP4E_Print_Ready.indb 5 4/2/2017 8:31:44 PM

6 Chapter 1 Introduction

encircles an object (or patient) and an X-ray source, concentric with the detector
ring, rotates about the object. The X-rays pass through the object and are collected
at the opposite end by the corresponding detectors in the ring. This procedure is
repeated the source rotates. Tomography consists of algorithms that use the sensed
data to construct an image that represents a “slice” through the object. Motion of
the object in a direction perpendicular to the ring of detectors produces a set of
such slices, which constitute a three-dimensional (3-D) rendition of the inside of the
object. Tomography was invented independently by Sir Godfrey N. Hounsfield and
Professor Allan M. Cormack, who shared the 1979 Nobel Prize in Medicine for their
invention. It is interesting to note that X-rays were discovered in 1895 by Wilhelm
Conrad Roentgen, for which he received the 1901 Nobel Prize for Physics. These two
inventions, nearly 100 years apart, led to some of the most important applications of
image processing today.

From the 1960s until the present, the field of image processing has grown vigor-
ously. In addition to applications in medicine and the space program, digital image
processing techniques are now used in a broad range of applications. Computer pro-
cedures are used to enhance the contrast or code the intensity levels into color for
easier interpretation of X-rays and other images used in industry, medicine, and the
biological sciences. Geographers use the same or similar techniques to study pollu-
tion patterns from aerial and satellite imagery. Image enhancement and restoration
procedures are used to process degraded images of unrecoverable objects, or experi-
mental results too expensive to duplicate. In archeology, image processing meth-
ods have successfully restored blurred pictures that were the only available records
of rare artifacts lost or damaged after being photographed. In physics and related
fields, computer techniques routinely enhance images of experiments in areas such
as high-energy plasmas and electron microscopy. Similarly successful applications
of image processing concepts can be found in astronomy, biology, nuclear medicine,
law enforcement, defense, and industry.

FIGURE 1.4
The first picture
of the moon by
a U.S. spacecraft.
Ranger 7 took
this image on
July 31, 1964 at
9:09 A.M. EDT,
about 17 minutes
before impacting
the lunar surface.
(Courtesy of
NASA.)

DIP4E_Print_Ready.indb 6 4/2/2017 8:31:44 PM

1.3 Examples of Fields that Use Digital Image Processing 7

These examples illustrate processing results intended for human interpretation.
The second major area of application of digital image processing techniques men-
tioned at the beginning of this chapter is in solving problems dealing with machine
perception. In this case, interest is on procedures for extracting information from
an image, in a form suitable for computer processing. Often, this information bears
little resemblance to visual features that humans use in interpreting the content
of an image. Examples of the type of information used in machine perception are
statistical moments, Fourier transform coefficients, and multidimensional distance
measures. Typical problems in machine perception that routinely utilize image pro-
cessing techniques are automatic character recognition, industrial machine vision
for product assembly and inspection, military recognizance, automatic processing of
fingerprints, screening of X-rays and blood samples, and machine processing of aer-
ial and satellite imagery for weather prediction and environmental assessment. The
continuing decline in the ratio of computer price to performance, and the expansion
of networking and communication bandwidth via the internet, have created unprec-
edented opportunities for continued growth of digital image processing. Some of
these application areas will be illustrated in the following section.

1.3	EXAMPLES OF FIELDS THAT USE DIGITAL IMAGE PROCESSING

Today, there is almost no area of technical endeavor that is not impacted in some
way by digital image processing. We can cover only a few of these applications in the
context and space of the current discussion. However, limited as it is, the material
presented in this section will leave no doubt in your mind regarding the breadth and
importance of digital image processing. We show in this section numerous areas of
application, each of which routinely utilizes the digital image processing techniques
developed in the following chapters. Many of the images shown in this section are
used later in one or more of the examples given in the book. Most images shown are
digital images.

The areas of application of digital image processing are so varied that some form
of organization is desirable in attempting to capture the breadth of this field. One
of the simplest ways to develop a basic understanding of the extent of image pro-
cessing applications is to categorize images according to their source (e.g., X-ray,
visual, infrared, and so on).The principal energy source for images in use today is
the electromagnetic energy spectrum. Other important sources of energy include
acoustic, ultrasonic, and electronic (in the form of electron beams used in electron
microscopy). Synthetic images, used for modeling and visualization, are generated
by computer. In this section we will discuss briefly how images are generated in
these various categories, and the areas in which they are applied. Methods for con-
verting images into digital form will be discussed in the next chapter.

Images based on radiation from the EM spectrum are the most familiar, espe-
cially images in the X-ray and visual bands of the spectrum. Electromagnetic waves
can be conceptualized as propagating sinusoidal waves of varying wavelengths, or
they can be thought of as a stream of massless particles, each traveling in a wavelike
pattern and moving at the speed of light. Each massless particle contains a certain
amount (or bundle) of energy. Each bundle of energy is called a photon. If spectral

1.3

DIP4E_Print_Ready.indb 7 4/2/2017 8:31:44 PM

8 Chapter 1 Introduction

bands are grouped according to energy per photon, we obtain the spectrum shown
in Fig. 1.5, ranging from gamma rays (highest energy) at one end to radio waves
(lowest energy) at the other. The bands are shown shaded to convey the fact that
bands of the EM spectrum are not distinct, but rather transition smoothly from one
to the other.

GAMMA-RAY IMAGING

Major uses of imaging based on gamma rays include nuclear medicine and astro-
nomical observations. In nuclear medicine, the approach is to inject a patient with a
radioactive isotope that emits gamma rays as it decays. Images are produced from
the emissions collected by gamma-ray detectors. Figure 1.6(a) shows an image of a
complete bone scan obtained by using gamma-ray imaging. Images of this sort are
used to locate sites of bone pathology, such as infections or tumors. Figure 1.6(b)
shows another major modality of nuclear imaging called positron emission tomogra-
phy (PET). The principle is the same as with X-ray tomography, mentioned briefly
in Section 1.2. However, instead of using an external source of X-ray energy, the
patient is given a radioactive isotope that emits positrons as it decays. When a pos-
itron meets an electron, both are annihilated and two gamma rays are given off.
These are detected and a tomographic image is created using the basic principles of
tomography. The image shown in Fig. 1.6(b) is one sample of a sequence that con-
stitutes a 3-D rendition of the patient. This image shows a tumor in the brain and
another in the lung, easily visible as small white masses.

A star in the constellation of Cygnus exploded about 15,000 years ago, generat-
ing a superheated, stationary gas cloud (known as the Cygnus Loop) that glows in
a spectacular array of colors. Figure 1.6(c) shows an image of the Cygnus Loop in
the gamma-ray band. Unlike the two examples in Figs. 1.6(a) and (b), this image was
obtained using the natural radiation of the object being imaged. Finally, Fig. 1.6(d)
shows an image of gamma radiation from a valve in a nuclear reactor. An area of
strong radiation is seen in the lower left side of the image.

X-RAY IMAGING

X-rays are among the oldest sources of EM radiation used for imaging. The best
known use of X-rays is medical diagnostics, but they are also used extensively in
industry and other areas, such as astronomy. X-rays for medical and industrial imag-
ing are generated using an X-ray tube, which is a vacuum tube with a cathode and
anode. The cathode is heated, causing free electrons to be released. These electrons
flow at high speed to the positively charged anode. When the electrons strike a

10�910�810�710�610�510�410�310�2100 10�1101102103104105106

Energy of one photon (electron volts)

Gamma rays X-rays Ultraviolet Visible Infrared Microwaves Radio waves

FIGURE 1.5 The electromagnetic spectrum arranged according to energy per photon.

DIP4E_Print_Ready.indb 8 4/2/2017 8:31:44 PM

1.3 Examples of Fields that Use Digital Image Processing 9

nucleus, energy is released in the form of X-ray radiation. The energy (penetrat-
ing power) of X-rays is controlled by a voltage applied across the anode, and by a
current applied to the filament in the cathode. Figure 1.7(a) shows a familiar chest
X-ray generated simply by placing the patient between an X-ray source and a film
sensitive to X-ray energy. The intensity of the X-rays is modified by absorption as
they pass through the patient, and the resulting energy falling on the film develops it,
much in the same way that light develops photographic film. In digital radiography,

ba
dc

FIGURE 1.6
Examples of
gamma-ray
imaging.
(a) Bone scan.
(b) PET image.
(c) Cygnus Loop.
(d) Gamma radia-
tion (bright spot)
from a reactor
valve.
(Images
courtesy of
(a) G.E. Medical
Systems; (b) Dr.
Michael E. Casey,
CTI PET Systems;
(c) NASA;
(d) Professors
Zhong He and
David K. Wehe,
University of
Michigan.)

DIP4E_Print_Ready.indb 9 4/2/2017 8:31:44 PM

10 Chapter 1 Introduction

digital images are obtained by one of two methods: (1) by digitizing X-ray films; or;
(2) by having the X-rays that pass through the patient fall directly onto devices (such
as a phosphor screen) that convert X-rays to light. The light signal in turn is captured
by a light-sensitive digitizing system. We will discuss digitization in more detail in
Chapters 2 and 4.

b

a d
c

e

FIGURE 1.7
Examples of
X-ray imaging.
(a) Chest X-ray.
(b) Aortic
angiogram.
(c) Head CT.
(d) Circuit boards.
(e) Cygnus Loop.
(Images courtesy
of (a) and (c) Dr.
David R. Pickens,
Dept. of
Radiology &
Radiological
Sciences,
Vanderbilt
University
Medical Center;
(b) Dr. Thomas
R. Gest, Division
of Anatomical
Sciences, Univ. of
Michigan Medical
School;
(d) Mr. Joseph
E. Pascente, Lixi,
Inc.; and
(e) NASA.)

DIP4E_Print_Ready.indb 10 4/2/2017 8:31:44 PM

1.3 Examples of Fields that Use Digital Image Processing 11

Angiography is another major application in an area called contrast enhancement
radiography. This procedure is used to obtain images of blood vessels, called angio-
grams. A catheter (a small, flexible, hollow tube) is inserted, for example, into an
artery or vein in the groin. The catheter is threaded into the blood vessel and guided
to the area to be studied. When the catheter reaches the site under investigation,
an X-ray contrast medium is injected through the tube. This enhances the contrast
of the blood vessels and enables a radiologist to see any irregularities or blockages.
Figure 1.7(b) shows an example of an aortic angiogram. The catheter can be seen
being inserted into the large blood vessel on the lower left of the picture. Note the
high contrast of the large vessel as the contrast medium flows up in the direction of
the kidneys, which are also visible in the image. As we will discuss further in Chapter 2,
angiography is a major area of digital image processing, where image subtraction is
used to further enhance the blood vessels being studied.

Another important use of X-rays in medical imaging is computerized axial tomog-
raphy (CAT). Due to their resolution and 3-D capabilities, CAT scans revolution-
ized medicine from the moment they first became available in the early 1970s. As
noted in Section 1.2, each CAT image is a “slice” taken perpendicularly through
the patient. Numerous slices are generated as the patient is moved in a longitudinal
direction. The ensemble of such images constitutes a 3-D rendition of the inside of
the body, with the longitudinal resolution being proportional to the number of slice
images taken. Figure 1.7(c) shows a typical CAT slice image of a human head.

Techniques similar to the ones just discussed, but generally involving higher
energy X-rays, are applicable in industrial processes. Figure 1.7(d) shows an X-ray
image of an electronic circuit board. Such images, representative of literally hundreds
of industrial applications of X-rays, are used to examine circuit boards for flaws in
manufacturing, such as missing components or broken traces. Industrial CAT scans
are useful when the parts can be penetrated by X-rays, such as in plastic assemblies,
and even large bodies, such as solid-propellant rocket motors. Figure 1.7(e) shows an
example of X-ray imaging in astronomy. This image is the Cygnus Loop of Fig. 1.6(c),
but imaged in the X-ray band.

IMAGING IN THE ULTRAVIOLET BAND

Applications of ultraviolet “light” are varied. They include lithography, industrial
inspection, microscopy, lasers, biological imaging, and astronomical observations.
We illustrate imaging in this band with examples from microscopy and astronomy.

Ultraviolet light is used in fluorescence microscopy, one of the fastest growing
areas of microscopy. Fluorescence is a phenomenon discovered in the middle of the
nineteenth century, when it was first observed that the mineral fluorspar fluoresces
when ultraviolet light is directed upon it. The ultraviolet light itself is not visible, but
when a photon of ultraviolet radiation collides with an electron in an atom of a fluo-
rescent material, it elevates the electron to a higher energy level. Subsequently, the
excited electron relaxes to a lower level and emits light in the form of a lower-energy
photon in the visible (red) light region. Important tasks performed with a fluores-
cence microscope are to use an excitation light to irradiate a prepared specimen,
and then to separate the much weaker radiating fluorescent light from the brighter

DIP4E_Print_Ready.indb 11 4/2/2017 8:31:44 PM

12 Chapter 1 Introduction

excitation light. Thus, only the emission light reaches the eye or other detector. The
resulting fluorescing areas shine against a dark background with sufficient contrast
to permit detection. The darker the background of the nonfluorescing material, the
more efficient the instrument.

Fluorescence microscopy is an excellent method for studying materials that can be
made to fluoresce, either in their natural form (primary fluorescence) or when treat-
ed with chemicals capable of fluorescing (secondary fluorescence). Figures 1.8(a)
and (b) show results typical of the capability of fluorescence microscopy. Figure
1.8(a) shows a fluorescence microscope image of normal corn, and Fig. 1.8(b) shows
corn infected by “smut,” a disease of cereals, corn, grasses, onions, and sorghum that
can be caused by any one of more than 700 species of parasitic fungi. Corn smut is
particularly harmful because corn is one of the principal food sources in the world.
As another illustration, Fig. 1.8(c) shows the Cygnus Loop imaged in the high-energy
region of the ultraviolet band.

IMAGING IN THE VISIBLE AND INFRARED BANDS
Considering that the visual band of the electromagnetic spectrum is the most famil-
iar in all our activities, it is not surprising that imaging in this band outweighs by far
all the others in terms of breadth of application. The infrared band often is used in
conjunction with visual imaging, so we have grouped the visible and infrared bands
in this section for the purpose of illustration. We consider in the following discus-
sion applications in light microscopy, astronomy, remote sensing, industry, and law
enforcement.

Figure 1.9 shows several examples of images obtained with a light microscope.
The examples range from pharmaceuticals and microinspection to materials char-
acterization. Even in microscopy alone, the application areas are too numerous to
detail here. It is not difficult to conceptualize the types of processes one might apply
to these images, ranging from enhancement to measurements.

ba c

FIGURE 1.8 Examples of ultraviolet imaging. (a) Normal corn. (b) Corn infected by smut. (c) Cygnus Loop. (Images
(a) and (b) courtesy of Dr. Michael W. Davidson, Florida State University, (c) NASA.)

DIP4E_Print_Ready.indb 12 4/2/2017 8:31:44 PM

1.3 Examples of Fields that Use Digital Image Processing 13

Another major area of visual processing is remote sensing, which usually includes
several bands in the visual and infrared regions of the spectrum. Table 1.1 shows the
so-called thematic bands in NASA’s LANDSAT satellites. The primary function of
LANDSAT is to obtain and transmit images of the Earth from space, for purposes
of monitoring environmental conditions on the planet. The bands are expressed in
terms of wavelength, with 1mm being equal to 10 6− m (we will discuss the wave-
length regions of the electromagnetic spectrum in more detail in Chapter 2). Note
the characteristics and uses of each band in Table 1.1.

In order to develop a basic appreciation for the power of this type of multispec-
tral imaging, consider Fig. 1.10, which shows one image for each of the spectral bands
in Table 1.1. The area imaged is Washington D.C., which includes features such as
buildings, roads, vegetation, and a major river (the Potomac) going though the city.

ba c
ed f

FIGURE 1.9
Examples of light
microscopy images.
(a) Taxol (antican-
cer agent), magni-
fied 250 ×.
(b) Cholesterol—
40 ×.
(c) Microproces-
sor—60 ×.
(d) Nickel oxide
thin film—600 ×.
(e) Surface of audio
CD—1750 ×.
(f) Organic super-
conductor— 450 ×.
(Images courtesy of
Dr. Michael W.
Davidson, Florida
State University.)

DIP4E_Print_Ready.indb 13 4/2/2017 8:31:45 PM

14 Chapter 1 Introduction

Images of population centers are used over time to assess population growth and
shift patterns, pollution, and other factors affecting the environment. The differenc-
es between visual and infrared image features are quite noticeable in these images.
Observe, for example, how well defined the river is from its surroundings in Bands
4 and 5.

Weather observation and prediction also are major applications of multispectral
imaging from satellites. For example, Fig. 1.11 is an image of Hurricane Katrina, one
of the most devastating storms in recent memory in the Western Hemisphere. This
image was taken by a National Oceanographic and Atmospheric Administration
(NOAA) satellite using sensors in the visible and infrared bands. The eye of the hur-
ricane is clearly visible in this image.

Band No. Name
Wavelength

(Mm)
Characteristics and Uses

1 Visible blue 0.45– 0.52 Maximum water penetration

2 Visible green 0.53– 0.61 Measures plant vigor

3 Visible red 0.63– 0.69 Vegetation discrimination

4 Near infrared 0.78– 0.90 Biomass and shoreline mapping

5 Middle infrared 1.55–1.75 Moisture content: soil/vegetation

6 Thermal infrared 10.4–12.5 Soil moisture; thermal mapping

7 Short-wave infrared 2.09–2.35 Mineral mapping

TABLE 1.1
Thematic bands
of NASA’s
LANDSAT
satellite.

1 2 3

4 5 6 7

FIGURE 1.10 LANDSAT satellite images of the Washington, D.C. area. The numbers refer to the thematic bands in
Table 1.1. (Images courtesy of NASA.)

DIP4E_Print_Ready.indb 14 4/2/2017 8:31:45 PM

20 Chapter 1 Introduction

in this section acoustic imaging, electron microscopy, and synthetic (computer-gen-
erated) imaging.

Imaging using “sound” finds application in geological exploration, industry, and
medicine. Geological applications use sound in the low end of the sound spectrum
(hundreds of Hz) while imaging in other areas use ultrasound (millions of Hz). The
most important commercial applications of image processing in geology are in min-
eral and oil exploration. For image acquisition over land, one of the main approaches
is to use a large truck and a large flat steel plate. The plate is pressed on the ground by

FIGURE 1.16
Spaceborne radar
image of
mountainous
region in
southeast Tibet.
(Courtesy of
NASA.)

ba

FIGURE 1.17 MRI images of a human (a) knee, and (b) spine. (Figure (a) courtesy of Dr. Thom-
as R. Gest, Division of Anatomical Sciences, University of Michigan Medical School, and
(b) courtesy of Dr. David R. Pickens, Department of Radiology and Radiological Sciences,
Vanderbilt University Medical Center.)

DIP4E_Print_Ready.indb 20 4/2/2017 8:31:46 PM

1.3 Examples of Fields that Use Digital Image Processing 21

the truck, and the truck is vibrated through a frequency spectrum up to 100 Hz. The
strength and speed of the returning sound waves are determined by the composi-
tion of the Earth below the surface. These are analyzed by computer, and images are
generated from the resulting analysis.

For marine image acquisition, the energy source consists usually of two air guns
towed behind a ship. Returning sound waves are detected by hydrophones placed
in cables that are either towed behind the ship, laid on the bottom of the ocean,
or hung from buoys (vertical cables). The two air guns are alternately pressurized
to ~2000 psi and then set off. The constant motion of the ship provides a transversal
direction of motion that, together with the returning sound waves, is used to gener-
ate a 3-D map of the composition of the Earth below the bottom of the ocean.

Figure 1.19 shows a cross-sectional image of a well-known 3-D model against
which the performance of seismic imaging algorithms is tested. The arrow points to a
hydrocarbon (oil and/or gas) trap. This target is brighter than the surrounding layers
because the change in density in the target region is larger. Seismic interpreters look
for these “bright spots” to find oil and gas. The layers above also are bright, but their
brightness does not vary as strongly across the layers. Many seismic reconstruction
algorithms have difficulty imaging this target because of the faults above it.

Although ultrasound imaging is used routinely in manufacturing, the best known
applications of this technique are in medicine, especially in obstetrics, where fetuses
are imaged to determine the health of their development. A byproduct of this

Gamma X-ray Optical Infrared Radio

FIGURE 1.18 Images of the Crab Pulsar (in the center of each image) covering the electromagnetic spectrum. (Cour-
tesy of NASA.)

FIGURE 1.19
Cross-sectional
image of a
seismic model.
The arrow points
to a hydrocarbon
(oil and/or gas)
trap. (Courtesy of
Dr. Curtis Ober,
Sandia National
Laboratories.)

DIP4E_Print_Ready.indb 21 4/2/2017 8:31:46 PM

1.4 Fundamental Steps in Digital Image Processing 25

1.4	FUNDAMENTAL STEPS IN DIGITAL IMAGE PROCESSING

It is helpful to divide the material covered in the following chapters into the two
broad categories defined in Section 1.1: methods whose input and output are images,
and methods whose inputs may be images, but whose outputs are attributes extract-
ed from those images. This organization is summarized in Fig. 1.23. The diagram
does not imply that every process is applied to an image. Rather, the intention is to
convey an idea of all the methodologies that can be applied to images for different
purposes, and possibly with different objectives. The discussion in this section may
be viewed as a brief overview of the material in the remainder of the book.

Image acquisition is the first process in Fig. 1.23. The discussion in Section 1.3
gave some hints regarding the origin of digital images. This topic will be considered
in much more detail in Chapter 2, where we also introduce a number of basic digital
image concepts that are used throughout the book. Acquisition could be as simple as
being given an image that is already in digital form. Generally, the image acquisition
stage involves preprocessing, such as scaling.

Image enhancement is the process of manipulating an image so the result is more
suitable than the original for a specific application. The word specific is important
here, because it establishes at the outset that enhancement techniques are problem
oriented. Thus, for example, a method that is quite useful for enhancing X-ray images
may not be the best approach for enhancing satellite images taken in the infrared
band of the electromagnetic spectrum.

There is no general “theory” of image enhancement. When an image is processed
for visual interpretation, the viewer is the ultimate judge of how well a particular

1.4

Knowledge base

CHAPTER 7

Color image
processing

Outputs of these processes generally are images

CHAPTER 5

Image
restoration

CHAPTERS 3 & 4

Image
filtering and
enhancement

Problem
domain

O
ut

pu
ts

 o
f t

he
se

 p
ro

ce
ss

es
 g

en
er

al
ly

 a
re

 im
ag

e
at

tr
ib

ut
es

CHAPTER 8

Compression and
watermarking

CHAPTER 2

Image
acquisition

CHAPTER 9

Morphological
processing

CHAPTERS 10 & 11

Segmentation

CHAPTER 12

Feature
extraction

CHAPTER 12

Image
pattern
classification

Wavelets and
multiresolution
processing

Wavelets and
other image
transforms

CHAPTER 6

FIGURE 1.23
Fundamental
steps in digital
image processing.
The chapter(s)
indicated in the
boxes is where
the material
described in the
box is discussed.

DIP4E_Print_Ready.indb 25 4/2/2017 8:31:47 PM

26 Chapter 1 Introduction

method works. Enhancement techniques are so varied, and use so many different
image processing approaches, that it is difficult to assemble a meaningful body of
techniques suitable for enhancement in one chapter without extensive background
development. For this reason, and also because beginners in the field of image pro-
cessing generally find enhancement applications visually appealing, interesting, and
relatively simple to understand, we will use image enhancement as examples when
introducing new concepts in parts of Chapter 2 and in Chapters 3 and 4. The mate-
rial in the latter two chapters span many of the methods used traditionally for image
enhancement. Therefore, using examples from image enhancement to introduce new
image processing methods developed in these early chapters not only saves having
an extra chapter in the book dealing with image enhancement but, more importantly,
is an effective approach for introducing newcomers to the details of processing tech-
niques early in the book. However, as you will see in progressing through the rest
of the book, the material developed in Chapters 3 and 4 is applicable to a much
broader class of problems than just image enhancement.

Image restoration is an area that also deals with improving the appearance of
an image. However, unlike enhancement, which is subjective, image restoration
is objective, in the sense that restoration techniques tend to be based on mathe-
matical or probabilistic models of image degradation. Enhancement, on the other
hand, is based on human subjective preferences regarding what constitutes a “good”
enhancement result.

Wavelets are the foundation for representing images in various degrees of reso-
lution. In particular, this material is used in the book for image data compression
and for pyramidal representation, in which images are subdivided successively into
smaller regions. The material in Chapters 4 and 5 is based mostly on the Fourier
transform. In addition to wavelets, we will also discuss in Chapter 6 a number of
other transforms that are used routinely in image processing.

Color image processing is an area that has been gaining in importance because of
the significant increase in the use of digital images over the internet. Chapter 7 cov-
ers a number of fundamental concepts in color models and basic color processing
in a digital domain. Color is used also as the basis for extracting features of interest
in an image.

Compression, as the name implies, deals with techniques for reducing the storage
required to save an image, or the bandwidth required to transmit it. Although stor-
age technology has improved significantly over the past decade, the same cannot be
said for transmission capacity. This is true particularly in uses of the internet, which
are characterized by significant pictorial content. Image compression is familiar
(perhaps inadvertently) to most users of computers in the form of image file exten-
sions, such as the jpg file extension used in the JPEG (Joint Photographic Experts
Group) image compression standard.

Morphological processing deals with tools for extracting image components that
are useful in the representation and description of shape. The material in this chap-
ter begins a transition from processes that output images to processes that output
image attributes, as indicated in Section 1.1.

Segmentation partitions an image into its constituent parts or objects. In gen-
eral, autonomous segmentation is one of the most difficult tasks in digital image

DIP4E_Print_Ready.indb 26 4/2/2017 8:31:47 PM

1.4 Fundamental Steps in Digital Image Processing 27

processing. A rugged segmentation procedure brings the process a long way toward
successful solution of imaging problems that require objects to be identified indi-
vidually. On the other hand, weak or erratic segmentation algorithms almost always
guarantee eventual failure. In general, the more accurate the segmentation, the
more likely automated object classification is to succeed.

Feature extraction almost always follows the output of a segmentation stage, which
usually is raw pixel data, constituting either the boundary of a region (i.e., the set
of pixels separating one image region from another) or all the points in the region
itself. Feature extraction consists of feature detection and feature description. Fea-
ture detection refers to finding the features in an image, region, or boundary. Feature
description assigns quantitative attributes to the detected features. For example, we
might detect corners in a region, and describe those corners by their orientation
and location; both of these descriptors are quantitative attributes. Feature process-
ing methods discussed in this chapter are subdivided into three principal categories,
depending on whether they are applicable to boundaries, regions, or whole images.
Some features are applicable to more than one category. Feature descriptors should
be as insensitive as possible to variations in parameters such as scale, translation,
rotation, illumination, and viewpoint.

Image pattern classification is the process that assigns a label (e.g., “vehicle”) to an
object based on its feature descriptors. In the last chapter of the book, we will discuss
methods of image pattern classification ranging from “classical” approaches such as
minimum-distance, correlation, and Bayes classifiers, to more modern approaches
implemented using deep neural networks. In particular, we will discuss in detail deep
convolutional neural networks, which are ideally suited for image processing work.

So far, we have said nothing about the need for prior knowledge or about the
interaction between the knowledge base and the processing modules in Fig. 1.23.
Knowledge about a problem domain is coded into an image processing system in the
form of a knowledge database. This knowledge may be as simple as detailing regions
of an image where the information of interest is known to be located, thus limiting
the search that has to be conducted in seeking that information. The knowledge base
can also be quite complex, such as an interrelated list of all major possible defects
in a materials inspection problem, or an image database containing high-resolution
satellite images of a region in connection with change-detection applications. In
addition to guiding the operation of each processing module, the knowledge base
also controls the interaction between modules. This distinction is made in Fig. 1.23
by the use of double-headed arrows between the processing modules and the knowl-
edge base, as opposed to single-headed arrows linking the processing modules.

Although we do not discuss image display explicitly at this point, it is important to
keep in mind that viewing the results of image processing can take place at the out-
put of any stage in Fig. 1.23. We also note that not all image processing applications
require the complexity of interactions implied by Fig. 1.23. In fact, not even all those
modules are needed in many cases. For example, image enhancement for human
visual interpretation seldom requires use of any of the other stages in Fig. 1.23. In
general, however, as the complexity of an image processing task increases, so does
the number of processes required to solve the problem.

DIP4E_Print_Ready.indb 27 4/2/2017 8:31:47 PM

28 Chapter 1 Introduction

1.5	COMPONENTS OF AN IMAGE PROCESSING SYSTEM

As recently as the mid-1980s, numerous models of image processing systems being
sold throughout the world were rather substantial peripheral devices that attached
to equally substantial host computers. Late in the 1980s and early in the 1990s, the
market shifted to image processing hardware in the form of single boards designed
to be compatible with industry standard buses and to fit into engineering work-
station cabinets and personal computers. In the late 1990s and early 2000s, a new
class of add-on boards, called graphics processing units (GPUs) were introduced for
work on 3-D applications, such as games and other 3-D graphics applications. It was
not long before GPUs found their way into image processing applications involving
large-scale matrix implementations, such as training deep convolutional networks.
In addition to lowering costs, the market shift from substantial peripheral devices to
add-on processing boards also served as a catalyst for a significant number of new
companies specializing in the development of software written specifically for image
processing.

The trend continues toward miniaturizing and blending of general-purpose small
computers with specialized image processing hardware and software. Figure 1.24
shows the basic components comprising a typical general-purpose system used for
digital image processing. The function of each component will be discussed in the
following paragraphs, starting with image sensing.

Two subsystems are required to acquire digital images. The first is a physical sen-
sor that responds to the energy radiated by the object we wish to image. The second,
called a digitizer, is a device for converting the output of the physical sensing device
into digital form. For instance, in a digital video camera, the sensors (CCD chips)
produce an electrical output proportional to light intensity. The digitizer converts
these outputs to digital data. These topics will be covered in Chapter 2.

Specialized image processing hardware usually consists of the digitizer just men-
tioned, plus hardware that performs other primitive operations, such as an arithme-
tic logic unit (ALU), that performs arithmetic and logical operations in parallel on
entire images. One example of how an ALU is used is in averaging images as quickly
as they are digitized, for the purpose of noise reduction. This type of hardware some-
times is called a front-end subsystem, and its most distinguishing characteristic is
speed. In other words, this unit performs functions that require fast data through-
puts (e.g., digitizing and averaging video images at 30 frames/s) that the typical main
computer cannot handle. One or more GPUs (see above) also are common in image
processing systems that perform intensive matrix operations.

The computer in an image processing system is a general-purpose computer and
can range from a PC to a supercomputer. In dedicated applications, sometimes cus-
tom computers are used to achieve a required level of performance, but our interest
here is on general-purpose image processing systems. In these systems, almost any
well-equipped PC-type machine is suitable for off-line image processing tasks.

Software for image processing consists of specialized modules that perform
specific tasks. A well-designed package also includes the capability for the user to
write code that, as a minimum, utilizes the specialized modules. More sophisticated

1.5

DIP4E_Print_Ready.indb 28 4/2/2017 8:31:47 PM

1.5 Components of an Image Processing System 29

software packages allow the integration of those modules and general-purpose
software commands from at least one computer language. Commercially available
image processing software, such as the well-known MATLAB® Image Processing
Toolbox, is also common in a well-equipped image processing system.

Mass storage is a must in image processing applications. An image of size 1024 1024×
pixels, in which the intensity of each pixel is an 8-bit quantity,  requires one megabyte
of storage space if the image is not compressed. When dealing with image databases
that contain thousands, or even millions, of images, providing adequate storage in
an image processing system can be a challenge. Digital storage for image processing
applications falls into three principal categories: (1) short-term storage for use dur-
ing processing; (2) on-line storage for relatively fast recall; and (3) archival storage,
characterized by infrequent access. Storage is measured in bytes (eight bits), Kbytes
(103 bytes), Mbytes (106 bytes), Gbytes (109 bytes), and Tbytes (1012 bytes).

Cloud

Image displays Computer Mass storage

Hardcopy
Specialized
image processing
hardware

Image sensors

Problem
domain

Image processing
software

Network

Cloud

FIGURE 1.24
Components of a
general-purpose
image processing
system.

DIP4E_Print_Ready.indb 29 4/2/2017 8:31:47 PM

30 Chapter 1 Introduction

One method of providing short-term storage is computer memory. Another is by
specialized boards, called frame buffers, that store one or more images and can be
accessed rapidly, usually at video rates (e.g., at 30 complete images per second). The
latter method allows virtually instantaneous image zoom, as well as scroll (vertical
shifts) and pan (horizontal shifts). Frame buffers usually are housed in the special-
ized image processing hardware unit in Fig. 1.24. On-line storage generally takes
the form of magnetic disks or optical-media storage. The key factor characterizing
on-line storage is frequent access to the stored data. Finally, archival storage is char-
acterized by massive storage requirements but infrequent need for access. Magnetic
tapes and optical disks housed in “jukeboxes” are the usual media for archival appli-
cations.

Image displays in use today are mainly color, flat screen monitors. Monitors are
driven by the outputs of image and graphics display cards that are an integral part of
the computer system. Seldom are there requirements for image display applications
that cannot be met by display cards and GPUs available commercially as part of the
computer system. In some cases, it is necessary to have stereo displays, and these are
implemented in the form of headgear containing two small displays embedded in
goggles worn by the user.

Hardcopy devices for recording images include laser printers, film cameras, heat-
sensitive devices, ink-jet units, and digital units, such as optical and CD-ROM disks.
Film provides the highest possible resolution, but paper is the obvious medium of
choice for written material. For presentations, images are displayed on film trans-
parencies or in a digital medium if image projection equipment is used. The latter
approach is gaining acceptance as the standard for image presentations.

Networking and cloud communication are almost default functions in any com-
puter system in use today. Because of the large amount of data inherent in image
processing applications, the key consideration in image transmission is bandwidth. In
dedicated networks, this typically is not a problem, but communications with remote
sites via the internet are not always as efficient. Fortunately, transmission bandwidth
is improving quickly as a result of optical fiber and other broadband technologies.
Image data compression continues to play a major role in the transmission of large
amounts of image data.

Summary, References, and Further Reading
The main purpose of the material presented in this chapter is to provide a sense of perspective about the origins
of digital image processing and, more important, about current and future areas of application of this technology.
Although the coverage of these topics in this chapter was necessarily incomplete due to space limitations, it should
have left you with a clear impression of the breadth and practical scope of digital image processing. As we proceed
in the following chapters with the development of image processing theory and applications, numerous examples
are provided to keep a clear focus on the utility and promise of these techniques. Upon concluding the study of the
final chapter, a reader of this book will have arrived at a level of understanding that is the foundation for most of
the work currently underway in this field.

In past editions, we have provided a long list of journals and books to give readers an idea of the breadth of the
image processing literature, and where this literature is reported. The list has been updated, and it has become so
extensive that it is more practical to include it in the book website: www.ImageProcessingPlace.com, in the section
entitled Publications.

DIP4E_Print_Ready.indb 30 4/2/2017 8:31:47 PM

31

2 Digital Image Fundamentals

Preview
This chapter is an introduction to a number of basic concepts in digital image processing that are used
throughout the book. Section 2.1 summarizes some important aspects of the human visual system, includ-
ing image formation in the eye and its capabilities for brightness adaptation and discrimination. Section
2.2 discusses light, other components of the electromagnetic spectrum, and their imaging characteristics.
Section 2.3 discusses imaging sensors and how they are used to generate digital images. Section 2.4 intro-
duces the concepts of uniform image sampling and intensity quantization. Additional topics discussed
in that section include digital image representation, the effects of varying the number of samples and
intensity levels in an image, the concepts of spatial and intensity resolution, and the principles of image
interpolation. Section 2.5 deals with a variety of basic relationships between pixels. Finally, Section 2.6
is an introduction to the principal mathematical tools we use throughout the book. A second objective
of that section is to help you begin developing a “feel” for how these tools are used in a variety of basic
image processing tasks.

Upon completion of this chapter, readers should:
	 Have an understanding of some important

functions and limitations of human vision.

	 Be familiar with the electromagnetic energy
spectrum, including basic properties of light.

	 Know how digital images are generated and
represented.

	 Understand the basics of image sampling and
quantization.

	 Be familiar with spatial and intensity resolu-
tion and their effects on image appearance.

	 Have an understanding of basic geometric
relationships between image pixels.

	 Be familiar with the principal mathematical
tools used in digital image processing.

	 Be able to apply a variety of introductory dig-
ital image processing techniques.

Those who wish to succeed must ask the right preliminary
questions.

	 Aristotle

DIP4E_Print_Ready.indb 31 4/2/2017 8:31:48 PM

32 Chapter 2 Digital Image Fundamentals

2.1	ELEMENTS OF VISUAL PERCEPTION

Although the field of digital image processing is built on a foundation of mathemat-
ics, human intuition and analysis often play a role in the choice of one technique
versus another, and this choice often is made based on subjective, visual judgments.
Thus, developing an understanding of basic characteristics of human visual percep-
tion as a first step in our journey through this book is appropriate. In particular, our
interest is in the elementary mechanics of how images are formed and perceived
by humans. We are interested in learning the physical limitations of human vision
in terms of factors that also are used in our work with digital images. Factors such
as how human and electronic imaging devices compare in terms of resolution and
ability to adapt to changes in illumination are not only interesting, they are also
important from a practical point of view.

STRUCTURE OF THE HUMAN EYE

Figure 2.1 shows a simplified cross section of the human eye. The eye is nearly a
sphere (with a diameter of about 20 mm) enclosed by three membranes: the cornea
and sclera outer cover; the choroid; and the retina. The cornea is a tough, transparent
tissue that covers the anterior surface of the eye. Continuous with the cornea, the
sclera is an opaque membrane that encloses the remainder of the optic globe.

The choroid lies directly below the sclera. This membrane contains a network of
blood vessels that serve as the major source of nutrition to the eye. Even superficial

2.1

Retina

Blind spot
Sclera

Choroid

Nerve & sheath

Fovea

Vitreous humor

Visual axis

Ciliary fibers

Ciliary muscle

Iris

Cornea

Lens

Anterior chamber

Cili
ar

y b
ody

FIGURE 2.1
Simplified
diagram of a
cross section of
the human eye.

DIP4E_Print_Ready.indb 32 4/2/2017 8:31:48 PM

2.4 Image Sampling and Quantization 55

Conversely, the coordinate indices for a given linear index value a are given by the
equations†

	 x M= a mod 	 (2-15)

and

	 y x M= ()a - 	 (2-16)

Recall that a mod M means “the remainder of the division of a by M.” This is a
formal way of stating that row numbers repeat themselves at the start of every col-
umn. Thus, when a = 0, the remainder of the division of 0 by M is 0, so x = 0. When
a = 1, the remainder is 1, and so x = 1. You can see that x will continue to be equal
to a until a = −M 1. When a = M (which is at the beginning of the second column),
the remainder is 0, and thus x = 0 again, and it increases by 1 until the next column
is reached, when the pattern repeats itself. Similar comments apply to Eq. (2-16). See
Problem 2.13 for a derivation of the preceding two equations.

SPATIAL AND INTENSITY RESOLUTION

Intuitively, spatial resolution is a measure of the smallest discernible detail in an
image. Quantitatively, spatial resolution can be stated in several ways, with line
pairs per unit distance, and dots (pixels) per unit distance being common measures.
Suppose that we construct a chart with alternating black and white vertical lines,
each of width W units (W can be less than 1). The width of a line pair is thus 2W, and
there are W 2 line pairs per unit distance. For example, if the width of a line is 0.1 mm,
there are 5 line pairs per unit distance (i.e., per mm). A widely used definition of
image resolution is the largest number of discernible line pairs per unit distance (e.g.,
100 line pairs per mm). Dots per unit distance is a measure of image resolution used
in the printing and publishing industry. In the U.S., this measure usually is expressed
as dots per inch (dpi). To give you an idea of quality, newspapers are printed with a

† When working with modular number systems, it is more accurate to write x M≡ a mod , where the symbol ≡
means congruence. However, our interest here is just on converting from linear to coordinate indexing, so we
use the more familiar equal sign.

x

y

Image f(x, y)

(0, 0) α = 0

(M - 1, 0) α = M - 1 (M - 1, N - 1) α = MN - 1

(0, 1) α = M
(0, 2) α = 2M

(M - 1, 1) α = 2M - 1

FIGURE 2.22
Illustration of
column scanning
for generating
linear indices.
Shown are several
2-D coordinates (in
parentheses) and
their corresponding
linear indices.

DIP4E_Print_Ready.indb 55 4/2/2017 8:32:05 PM

56 Chapter 2 Digital Image Fundamentals

resolution of 75 dpi, magazines at 133 dpi, glossy brochures at 175 dpi, and the book
page at which you are presently looking was printed at 2400 dpi.

To be meaningful, measures of spatial resolution must be stated with respect to
spatial units. Image size by itself does not tell the complete story. For example, to say
that an image has a resolution of 1024 1024* pixels is not a meaningful statement
without stating the spatial dimensions encompassed by the image. Size by itself is
helpful only in making comparisons between imaging capabilities. For instance, a
digital camera with a 20-megapixel CCD imaging chip can be expected to have a
higher capability to resolve detail than an 8-megapixel camera, assuming that both
cameras are equipped with comparable lenses and the comparison images are taken
at the same distance.

Intensity resolution similarly refers to the smallest discernible change in inten-
sity level. We have considerable discretion regarding the number of spatial samples
(pixels) used to generate a digital image, but this is not true regarding the number
of intensity levels. Based on hardware considerations, the number of intensity levels
usually is an integer power of two, as we mentioned when discussing Eq. (2-11). The
most common number is 8 bits, with 16 bits being used in some applications in which
enhancement of specific intensity ranges is necessary. Intensity quantization using
32 bits is rare. Sometimes one finds systems that can digitize the intensity levels of
an image using 10 or 12 bits, but these are not as common.

Unlike spatial resolution, which must be based on a per-unit-of-distance basis to
be meaningful, it is common practice to refer to the number of bits used to quan-
tize intensity as the “intensity resolution.” For example, it is common to say that an
image whose intensity is quantized into 256 levels has 8 bits of intensity resolution.
However, keep in mind that discernible changes in intensity are influenced also by
noise and saturation values, and by the capabilities of human perception to analyze
and interpret details in the context of an entire scene (see Section 2.1). The following
two examples illustrate the effects of spatial and intensity resolution on discernible
detail. Later in this section, we will discuss how these two parameters interact in
determining perceived image quality.

EXAMPLE 2.2 : Effects of reducing the spatial resolution of a digital image.

Figure 2.23 shows the effects of reducing the spatial resolution of an image. The images in Figs. 2.23(a)
through (d) have resolutions of 930, 300, 150, and 72 dpi, respectively. Naturally, the lower resolution
images are smaller than the original image in (a). For example, the original image is of size 2136 2140*
pixels, but the 72 dpi image is an array of only 165 166* pixels. In order to facilitate comparisons, all the
smaller images were zoomed back to the original size (the method used for zooming will be discussed
later in this section). This is somewhat equivalent to “getting closer” to the smaller images so that we can
make comparable statements about visible details.

There are some small visual differences between Figs. 2.23(a) and (b), the most notable being a slight
distortion in the seconds marker pointing to 60 on the right side of the chronometer. For the most part,
however, Fig. 2.23(b) is quite acceptable. In fact, 300 dpi is the typical minimum image spatial resolution
used for book publishing, so one would not expect to see much difference between these two images.
Figure 2.23(c) begins to show visible degradation (see, for example, the outer edges of the chronometer

DIP4E_Print_Ready.indb 56 4/2/2017 8:32:05 PM

2.4 Image Sampling and Quantization 57

case and compare the seconds marker with the previous two images). The numbers also show visible
degradation. Figure 2.23(d) shows degradation that is visible in most features of the image. As we will
discuss in Section 4.5, when printing at such low resolutions, the printing and publishing industry uses a
number of techniques (such as locally varying the pixel size) to produce much better results than those
in Fig. 2.23(d). Also, as we will show later in this section, it is possible to improve on the results of Fig.
2.23 by the choice of interpolation method used.

EXAMPLE 2.3 : Effects of varying the number of intensity levels in a digital image.

Figure 2.24(a) is a 256-level grayscale image of a chemotherapy vial (bottom) and a drip bottle. The
objective of this example is to reduce the number of intensities of this image from 256 to 2 in integer
powers of 2, while leaving the image resolution at a fixed 783 dpi (the images are of size 2022 1800*
pixels). Figures 2.24(b) through (d) were obtained by reducing the number of intensity levels to 128, 64,
and 32, respectively (we will discuss how to reduce the number of levels in Chapter 3). The 128- and

ba
dc

FIGURE 2.23
Effects of
reducing spatial
resolution. The
images shown
are at:
(a) 930 dpi,
(b) 300 dpi,
(c) 150 dpi, and
(d) 72 dpi.

DIP4E_Print_Ready.indb 57 4/2/2017 8:32:06 PM

58 Chapter 2 Digital Image Fundamentals

64-level images are visually identical for all practical purposes. However, the 32-level image in Fig. 2.24(d)
has a set of almost imperceptible, very fine ridge-like structures in areas of constant intensity. These
structures are clearly visible in the 16-level image in Fig. 2.24(e). This effect, caused by using an insuf-
ficient number of intensity levels in smooth areas of a digital image, is called false contouring, so named
because the ridges resemble topographic contours in a map. False contouring generally is quite objec-
tionable in images displayed using 16 or fewer uniformly spaced intensity levels, as the images in Figs.
2.24(e)-(h) show.

As a very rough guideline, and assuming integer powers of 2 for convenience, images of size 256 256*
pixels with 64 intensity levels, and printed on a size format on the order of 5 5* cm, are about the lowest
spatial and intensity resolution images that can be expected to be reasonably free of objectionable sam-
pling distortions and false contouring.

ba
dc

FIGURE 2.24
(a) 2022 × 1800,
256-level image.
(b)-(d) Image
displayed in 128,
64, and 32 inten-
sity levels, while
keeping the image
size constant.
(Original image
courtesy of the
National
Cancer Institute.)

DIP4E_Print_Ready.indb 58 4/2/2017 8:32:07 PM

2.5 Introduction to the Basic Mathematical Tools Used in Digital Image Processing 95

manifests itself as bright bursts of intensity, whose location is determined by the frequency of the sinu-
soidal interference (we will discuss these concepts in much more detail in Chapters 4 and 5). Typi-
cally, the bursts are easily observable in an image of the magnitude of the Fourier transform, T(,) .u v
With reference to the diagram in Fig. 2.44, the corrupted image is f x y(,), the transform in the leftmost
box is the Fourier transform, and Fig. 2.45(b) is T(,)u v displayed as an image. The bright dots shown
are the bursts of intensity mentioned above. Figure 2.45(c) shows a mask image (called a filter) with
white and black representing 1 and 0, respectively. For this example, the operation in the second box of
Fig. 2.44 is to multiply the filter by the transform to remove the bursts associated with the interference.
Figure 2.45(d) shows the final result, obtained by computing the inverse of the modified transform. The
interference is no longer visible, and previously unseen image detail is now made quite clear. Observe,
for example, the fiducial marks (faint crosses) that are used for image registration, as discussed earlier.

When the forward and inverse kernels of a transform are separable and sym-
metric, and f x y(,) is a square image of size M M× , Eqs. (2-55) and (2-56) can be
expressed in matrix form:

	 T AFA= 	 (2-63)

where F is an M M× matrix containing the elements of f x y(,) [see Eq. (2-9)], A is
an M M× matrix with elements a r i jij = 1(,), and T is an M M× transform matrix
with elements T(,),u v for u,v = −0 1 2 1, , , , .… M

ba
dc

FIGURE 2.45
(a) Image
corrupted by
sinusoidal
interference.
(b) Magnitude of
the Fourier
transform
showing the
bursts of energy
caused by the
interference
(the bursts were
enlarged for
display purposes).
(c) Mask used
to eliminate the
energy bursts.
(d) Result of
computing the
inverse of the
modified Fourier
transform.
(Original
image courtesy of
NASA.)

DIP4E_Print_Ready.indb 95 4/2/2017 8:32:43 PM

96 Chapter 2 Digital Image Fundamentals

To obtain the inverse transform, we pre- and post-multiply Eq. (2-63) by an
inverse transformation matrix B:

	 BTB BAFAB= 	 (2-64)

If B A= −1,

	 F BTB= 	 (2-65)

indicating that F or, equivalently, f x y(,), can be recovered completely from its
forward transform. If B is not equal to A−1, Eq. (2-65) yields an approximation:

	 F̂ BAFAB= 	 (2-66)

In addition to the Fourier transform, a number of important transforms, including
the Walsh, Hadamard, discrete cosine, Haar, and slant transforms, can be expressed
in the form of Eqs. (2-55) and (2-56), or, equivalently, in the form of Eqs. (2-63) and
(2-65). We will discuss these and other types of image transforms in later chapters.

PROBABILITY AND RANDOM VARIABLES

Probability is a branch of mathematics that deals with uncertainty. The following
material is a brief introduction to probability and random variables. Many of these
concepts are developed further as needed later in the book.

Sample Spaces, Events, and Probability

A random experiment is a process whose outcome cannot be predicted with certainty,
but whose set of all possible outcomes can be specified. As noted earlier when dis-
cussing sets, the set of all possible outcomes of an experiment is called the sample
space of the experiment, and is denoted by Æ. A familiar random experiment con-
sists of tossing a single die and observing the numerical value of the face that lands
facing up. The sample space of this experiment is the set Æ = { , , , , , .1 2 3 4 5 6}

An event is a subset of the sample space. In the single-die experiment, the event
A = { , , }1 3 5 is the subset of Æ that correspond to the odd faces of the die. We say
that an event occurs if the outcome of an experiment is any of the elements of the
event set.

To make the notion of a random experiment useful, we need a measure (a prob-
ability) that quantifies how likely it is than an event will occur. A probability, P, is a
function that satisfies the following properties:

1

3

2

. ()

. , , ,

.

. () .

0 1

1

1 2

≤ ≤P A

A A A

A

P

n

for every event

If are d

Æ =
… iisjoint events, then

 P A A A P A P A P An n() () () ().1 2 1 2´ ´ ´ = + + +

	 (2-67)

These three properties are called the axioms of probability. Axiom 1 says that the
probability must be a number in the range [0, 1], with 0 indicating that A never

Recall from our earlier
discussion on sets that
two or more sets are
disjoint if they have no
elements in common.

DIP4E_Print_Ready.indb 96 4/2/2017 8:32:44 PM

2.5 Introduction to the Basic Mathematical Tools Used in Digital Image Processing 97

occurs, and 1 indicating that A always occurs. Because Æ is the set containing all
possible outcomes, the second axiom indicates that some event from Æ always
occurs when the experiment is performed. Axiom 3 states that the probability of the
union of a sequence of disjoint events is equal to the sum of the probabilities of the
individual events.

EXAMPLE 2.12 : Events and probabilities.

Consider the experiment of tossing a pair of dice, one after the other, and observing the faces that turn
up, in the order in which the dice were tossed. The elements of Æ are of the form (,),i j where i and j are
the values of the up face in the first and second toss, respectively. Thus, set Æ has 36 elements:

	 Æ = (,), (,), , (,), (,), (,), , (,), , (,), (,), ,1 1 1 2 1 6 2 1 2 2 2 6 6 1 6 2… … … … ((,)6 6{ }

If the dice are unbiased, each combination is equally likely to turn up. The probability of each is 1 36
because there are 36 equally likely outcomes to this experiment.

Let A denote the event that the first die turns up 1, and B the event that the second die turns up 2:

	 A = { }(,), (,), (,), (,), (,), (,)1 1 1 2 1 3 1 4 1 5 1 6

and

	 B = { }(,), (,), (,), (,), (,), (,)1 2 2 2 3 2 4 2 5 2 6 2

Then, P A P B() ()= = =6 36 1 6 because 6 of the 36 possible outcomes are favorable to A and the prob-
ability of each is 1 36 ; and similarly for B.

Events are sets, so we can use the results of our earlier discussion on sets to form more complex
events involving A and B, and answer questions about their probability of occurrence. For example,

	
A B¨ ¨= { }(,), (,), (,), (,), (,), (,) (,), (,), (,1 1 1 2 1 3 1 4 1 5 1 6 1 2 2 2 3 2)), (,), (,), (,)

(,)

4 2 5 2 6 2

1 2

{ }
= { }

is the event that the first die comes up 1 and the second comes up 2. This event has one element so its
probability, P A B(),¨ is 1 36 . Similarly, the event that a 1 comes up in the first die or a 2 comes up in
the second is given by A B´ . This event set has 12 elements, so its probability, P A B(),´ is 12 36 1 3= .

The Sum (Addition) Rule of Probability

Axiom 3 is a special case of the sum (or addition) rule of probability, which states
that the probability of the union of n events is equal to the sum of the probabilities
of these events taken one at time, minus the sum of the probabilities of the events
taken two at a time, plus the sum of the probabilities of the events taken three at a
time, and so on, up to the sum of the probabilities of all the n events (Ross [2014]).

For two events, the sum rule is

	 P A B P A P B P A B() () () ()´ ¨= + − 	 (2-68)

DIP4E_Print_Ready.indb 97 4/2/2017 8:32:45 PM

98 Chapter 2 Digital Image Fundamentals

For three events, this expression becomes

P A B C P A P B P C

P A B P A C P B C P A B C

() () () ()

() () () ()

´ ´

¨ ¨ ¨ ¨ ¨

= + +
− − − +

	 (2-69)

When the events are disjoint, all terms except the individual probabilities become
zero, thus reducing the expression to the one given in Axiom 3. The rightmost term
in Eq. (2-69) is a result of applying Eq. (2-68) to combined events (see Problem 2.44).

A probability of the form P A B()¨ is called a joint probability and is read “the
probability of A and B.” When the events are disjoint, the probability of both hap-
pening simultaneously is zero. A probability of the form P A B()´ is read “the prob-
ability of A or B.” Because this probability involves the union of A and B, which
pools the elements of both, P A B()´ is actually the probability of A or B or both.

EXAMPLE 2.13 : Working with the addition rule of probability.

Two dice are rolled. What is the probability that their sum will be 6 or 8? As before, the sample space
has 36 elements. The events summing to 6 are A = { }(,),(,),(,),(,),(,)1 5 5 1 2 4 4 2 3 3 and the events sum-
ming to 8 are B = { }(,),(,),(,),(,),(,) .2 6 6 2 3 5 5 3 4 4 Then, P A P B() () ,= = 5 36 and P A B()¨ = 0 because
both events cannot happen simultaneously in one roll of the dice. Thus, P A B() .´ = + =5 36 5 36 5 18

What is the probability that the sum is even or a multiple of 3? Let A be the first event and B the
second. Of the 36 possible outcomes, 18 sums are even, so P A() .= 18 36 Twelve sums are multiples of
3, so P B() .= 12 36 It is possible for a sum to be even and a multiple of 3, so the events are no longer
disjoint. If you list all possible events, you will find that A and B have 6 elements in common; therefore,
P A B() .¨ = 6 36 Putting it all together,

	
P P P P() () () ()even OR multiple of 3 even multiple of 3 both= + −

= PP A P B P A B() () () .+ − = =¨ 24 36 2 3

When the events are not disjoint, summing the two individual probabilities counts their shared events
twice (this is the overlap between the two sets in a Venn diagram, as in Fig. 2.35). Subtracting P A B()¨
eliminates the double from the total. Another way of arriving at the same conclusion is to recall that the
union of two sets “pools” the elements of both. The intersection is the total number of elements com-
mon to both sets, thus resulting in duplicates. Because of this overlap when the events are not disjoint,
P A B()´ is the probability of A or B or both occurring.

Conditional Probability
The probability of event A, given that event B has occurred, is defined as

	 P A B
P A B

P B
()

()
()

= ¨
	 (2-70)

where P A B() is called the conditional probability; it reads “the probability of A
given B.” As noted above, P A B()¨ is the joint probability of A and B.

Recall that the intersec-
tion, ¨, of two or more
disjoint sets is null.

DIP4E_Print_Ready.indb 98 4/2/2017 8:32:46 PM

133

3 Intensity Transformations and
Spatial Filtering

Preview
The term spatial domain refers to the image plane itself, and image processing methods in this category
are based on direct manipulation of pixels in an image. This is in contrast to image processing in a trans-
form domain which, as we will discuss in Chapters 4 and 6, involves first transforming an image into the
transform domain, doing the processing there, and obtaining the inverse transform to bring the results
back into the spatial domain. Two principal categories of spatial processing are intensity transforma-
tions and spatial filtering. Intensity transformations operate on single pixels of an image for tasks such
as contrast manipulation and image thresholding. Spatial filtering performs operations on the neighbor-
hood of every pixel in an image. Examples of spatial filtering include image smoothing and sharpening.
In the sections that follow, we discuss a number of “classical” techniques for intensity transformations
and spatial filtering. We also discuss fuzzy techniques that allow us to incorporate imprecise, knowledge-
based information in the formulation of image processing algorithms.

Upon completion of this chapter, readers should:
	 Understand the meaning of spatial domain

processing, and how it differs from transform
domain processing.

	 Be familiar with the principal techniques used
for intensity transformations.

	 Understand the physical meaning of image
histograms and how they can be manipulated
for image enhancement.

	 Understand the mechanics of spatial filtering,
and how spatial filters are formed.

	 Understand the principles of spatial convolu-
tion and correlation.

	 Be familiar with the principal types of spatial
filters, and how they are applied.

	 Be aware of the relationships between spatial
filters, and the fundamental role of lowpass
filters.

	 Understand the principles of fuzzy logic and
how these principles apply to digital image
processing.

It makes all the difference whether one sees darkness through
the light or brightness through the shadows.

David Lindsay

DIP4E_Print_Ready.indb 133 4/2/2017 8:33:28 PM

134 Chapter 3 Intensity Transformations and Spatial Filtering

3.1	BACKGROUND

All the image processing techniques discussed in this chapter are implemented in
the spatial domain, which we know from the discussion in Section 2.4 is the plane
containing the pixels of an image. Spatial domain techniques operate directly on the
pixels of an image, as opposed, for example, to the frequency domain (the topic of
Chapter 4) in which operations are performed on the Fourier transform of an image,
rather than on the image itself. As you will learn in progressing through the book,
some image processing tasks are easier or more meaningful to implement in the
spatial domain, while others are best suited for other approaches.

THE BASICS OF INTENSITY TRANSFORMATIONS AND SPATIAL
FILTERING

The spatial domain processes we discuss in this chapter are based on the expression

	 g x y T f x y(,) (,)= [] 	 (3-1)

where f x y(,) is an input image, g x y(,) is the output image, and T is an operator on f
defined over a neighborhood of point (,)x y . The operator can be applied to the pix-
els of a single image (our principal focus in this chapter) or to the pixels of a set of
images, such as performing the elementwise sum of a sequence of images for noise
reduction, as discussed in Section 2.6. Figure 3.1 shows the basic implementation of
Eq. (3-1) on a single image. The point (,)x y0 0 shown is an arbitrary location in the
image, and the small region shown is a neighborhood of (,),x y0 0 as explained in Sec-
tion 2.6. Typically, the neighborhood is rectangular, centered on (,)x y0 0 , and much
smaller in size than the image.

The process that Fig. 3.1 illustrates consists of moving the center of the neighbor-
hood from pixel to pixel, and applying the operator T to the pixels in the neighbor-
hood to yield an output value at that location. Thus, for any specific location (,),x y0 0

3.1

FIGURE 3.1
A 3 3×
neighborhood
about a point
(,)x y0 0 in an image.
The neighborhood
is moved from
pixel to pixel in the
image to generate
an output image.
Recall from
Chapter 2 that the
value of a pixel at
location (,)x y0 0 is
f x y(,),0 0 the value
of the image at that
location.

Origin

0 0

3 3 neighborhood

of point (,)x y

×

Image f

y

x

x0

y0

0 0Pixel [its value is (,)]f x y

DIP4E_Print_Ready.indb 134 4/2/2017 8:33:29 PM

3.2 Some Basic Intensity Transformation Functions 139

interval [,]0 255 and showing the spectrum in the same 8-bit display. The level of
detail visible in this image as compared to an unmodified display of the spectrum
is evident from these two images. Most of the Fourier spectra in image processing
publications, including this book, have been scaled in this manner.

POWER-LAW (GAMMA) TRANSFORMATIONS

Power-law transformations have the form

	 s cr= g 	 (3-5)

where c and g are positive constants. Sometimes Eq. (3-5) is written as s c r= +()e g
to account for offsets (that is, a measurable output when the input is zero). However,
offsets typically are an issue of display calibration, and as a result they are normally
ignored in Eq. (3-5). Figure 3.6 shows plots of s as a function of r for various values
of g. As with log transformations, power-law curves with fractional values of g map
a narrow range of dark input values into a wider range of output values, with the
opposite being true for higher values of input levels. Note also in Fig. 3.6 that a fam-
ily of transformations can be obtained simply by varying g. Curves generated with
values of g > 1 have exactly the opposite effect as those generated with values of
g < 1. When c = =g 1 Eq. (3-5) reduces to the identity transformation.

The response of many devices used for image capture, printing, and display obey
a power law. By convention, the exponent in a power-law equation is referred to as
gamma [hence our use of this symbol in Eq. (3-5)]. The process used to correct these
power-law response phenomena is called gamma correction or gamma encoding.
For example, cathode ray tube (CRT) devices have an intensity-to-voltage response
that is a power function, with exponents varying from approximately 1.8 to 2.5. As
the curve for g = 2 5. in Fig. 3.6 shows, such display systems would tend to produce

g � 0.04

g � 0.10

g � 0.20

g � 0.40

g � 0.67

g � 1

g � 1.5

g � 2.5

g � 5.0

g � 10.0

g � 25.0

0 L/4 L/2 3L/4 L � 1

Input intensity levels, r

0

L/4

L/2

3L/4

L � 1

O
ut

pu
t i

nt
en

si
ty

 le
ve

ls
, s

FIGURE 3.6
Plots of the
gamma equation
s cr= g for various
values of g (c = 1
in all cases). Each
curve was scaled
independently so
that all curves
would fit in the
same graph. Our
interest here is
on the shapes of
the curves, not
on their relative
values.

DIP4E_Print_Ready.indb 139 4/2/2017 8:33:33 PM

140 Chapter 3 Intensity Transformations and Spatial Filtering

images that are darker than intended. Figure 3.7 illustrates this effect. Figure 3.7(a) is
an image of a human retina displayed in a monitor with a gamma of 2.5. As expected,
the output of the monitor appears darker than the input, as Fig. 3.7(b) shows.

In this case, gamma correction consists of using the transformation s r r= =1 2 5 0 4. .
to preprocess the image before inputting it into the monitor. Figure 3.7(c) is the result.
When input into the same monitor, the gamma-corrected image produces an output
that is close in appearance to the original image, as Fig. 3.7(d) shows. A similar analysis
as above would apply to other imaging devices, such as scanners and printers, the dif-
ference being the device-dependent value of gamma (Poynton [1996]).

EXAMPLE 3.1 : Contrast enhancement using power-law intensity transformations.

In addition to gamma correction, power-law transformations are useful for general-purpose contrast
manipulation. Figure 3.8(a) shows a magnetic resonance image (MRI) of a human upper thoracic spine
with a fracture dislocation. The fracture is visible in the region highlighted by the circle. Because the
image is predominantly dark, an expansion of intensity levels is desirable. This can be accomplished
using a power-law transformation with a fractional exponent. The other images shown in the figure were
obtained by processing Fig. 3.8(a) with the power-law transformation function of Eq. (3-5). The values
of gamma corresponding to images (b) through (d) are 0.6, 0.4, and 0.3, respectively (c = 1 in all cases).

Sometimes, a higher
gamma makes the
displayed image look
better to viewers than
the original because of
an increase in contrast.
However, the objective
of gamma correction is to
produce a faithful display
of an input image.

ba
dc

FIGURE 3.7
(a) Image of a
human retina.
(b) Image as as
it appears on a
monitor with a
gamma setting
of 2.5 (note the
darkness).
(c) Gamma-cor-
rected image.
(d) Corrected
image, as it
appears on the
same monitor
(compare with the
original image).
(Image (a)
courtesy of the
National Eye
Institute, NIH)

Original image as viewed on a monitor with
a gamma of 2.5

Original image Gamma Correction

Gamma-corrected image Gamma-corrected image as viewed on the
same monitor

DIP4E_Print_Ready.indb 140 4/2/2017 8:33:33 PM

3.3 Histogram Processing 157

where v is a dummy variable of integration. It follows from the preceding two equa-
tions that G z s T r() ()= = and, therefore, that z must satisfy the condition

	 z G s G T r= = []− −1 1() () 	 (3-19)

The transformation function T r() can be obtained using Eq. (3-17) after p rr () has
been estimated using the input image. Similarly, function G z() can be obtained from
Eq. (3-18) because p zz() is given.

Equations (3-17) through (3-19) imply that an image whose intensity levels have
a specified PDF can be obtained using the following procedure:

1.	 Obtain p rr () from the input image to use in Eq. (3-17).
2.	 Use the specified PDF, p zz(), in Eq. (3-18) to obtain the function G z().
3.	 Compute the inverse transformation z G s= −1(); this is a mapping from s to z,

the latter being the values that have the specified PDF.
4.	 Obtain the output image by first equalizing the input image using Eq. (3-17); the

ks

0 63 127 191 255
0

0.01

0.02

0.03

0.04

0.05

0.06

0 63 127 191 255
0

0.01

0.02

0.03

0.04

0.05

0.06
()r kp r

kr

()s kp s

kr

ba
dc

FIGURE 3.22
(a) Image from
Phoenix Lander.
(b) Result of
histogram
equalization.
(c) Histogram of
image (a).
(d) Histogram of
image (b).
(Original image
courtesy of
NASA.)

DIP4E_Print_Ready.indb 157 4/2/2017 8:33:47 PM

3.3 Histogram Processing 163

is important to note that a rather modest change in the original histogram was all that was required to
obtain a significant improvement in appearance.

Figure 3.26(d) shows the histogram of Fig. 3.26(c). The most distinguishing feature of this histogram
is how its low end has shifted right toward the lighter region of the gray scale (but not excessively so), as
desired. As you will see in the following section, we can do an even better job of enhancing Fig. 3.24(a)
by using exact histogram specification.

EXACT HISTOGRAM MATCHING (SPECIFICATION)
The discrete histogram equalization and specification methods discussed in the pre-
ceding two sections generate images with histograms whose shapes generally do not
resemble the shape of the specified histograms. You have seen already that these
methods can produce effective results. However, there are applications that can
benefit from a histogram processing technique capable of generating images whose
histograms truly match specified shapes. Examples include normalizing large image
data sets used for testing and validation in the pharmaceutical industry, establishing

0 63 127 191 255
0

63

127

191

255

0 63 127 191 255
0

0.02

0.04

0.06

0.08

0.12

0.10

()kT r

kr

ks

ks

()s kp s

ba
c

FIGURE 3.25
(a) Histogram
equalization
transformation
obtained using
the histogram
in Fig. 3.24(b).
(b) Histogram
equalized image.
(c) Histogram of
equalized image.

DIP4E_Print_Ready.indb 163 4/2/2017 8:33:55 PM

164 Chapter 3 Intensity Transformations and Spatial Filtering

a set of “golden images” for calibrating imaging systems, and establishing a norm for
consistent medical image analysis and interpretation by humans. Also, as you will
see later, being able to generate images with specified histograms simplifies experi-
mentation when seeking histogram shapes that will produce a desired result.

The reason why discrete histogram equalization and specification do not produce
exact specified histogram shapes is simple: they have no provisions for redistribut-
ing the intensities of an image to match a specified shape. In histogram equalization,
changes in the number of pixels having a specific intensity occur as a result of round-
ing (see Example 3.5). Histogram specification also introduces changes as a result of
matching values in the look-up table (see Example 3.7). However, the real impact
on intensity values by these two methods results from shifting the histogram bins
along the intensity scale. For example, the key difference between the histograms in
Figs. 3.24 through 3.26 is the location of the histogram bins. For the histogram of the
output image to have an exact specified shape, we have to find a way to change and
redistribute the intensities of the pixels of the input image to create that shape. The
following discussion shows how to do this.

0 63 127 191 255
0

0.02

0.04

0.06

0.08

0.12

0.10

0 63 127 191 255
0

0.004

0.008

0.012

0.016

0.020

0

63

127

191

255

0 63 127 191 255

(1)

(2)

ks

qz

qz

z

()zp z

()z qp z

ba
dc

FIGURE 3.26
Histogram
specification.
(a) Specified histo-
gram.
(b) Transformation
G zq(), labeled (1),
and G sk

−1(),
labeled (2).
(c) Result of
histogram
specification.
(d) Histogram of
image (c).

DIP4E_Print_Ready.indb 164 4/2/2017 8:33:55 PM

3.3 Histogram Processing 165

Foundation

The following discussion is based on an approach developed by Coltuc, Bolon, and
Chassery [2006] for implementing exact histogram specification. Consider a speci-
fied histogram that we wish an image to have:

	 H h h h h L= −{ }(), (), (), , ()0 1 2 1… 	 (3-24)

where L is the number of discrete intensity levels, and h j() is the number of pixels
with intensity level j. This histogram is assumed to be both unnormalized and valid,
in the sense that the sum of its components equals the total number of pixels in the
image (which is always an integer):

	 h j MN
j

L

() =
=

−

∑
0

1

	 (3-25)

As usual, M and N are the number of rows and columns in the image, respectively.
Given a digital image and a histogram satisfying the preceding conditions, the

procedure used for exact histogram specification consists of three basic steps:

(a)	 Order the image pixels according to a predefined criterion.
(b)	 Split the ordered pixels into L groups, such that group j has h j() pixels.
(c)	 Assign intensity value j to all pixels in group j.

Observe that we are both redistributing and changing the intensity of pixels of the
output image to populate the bins in the specified histogram. Therefore, the output
image is guaranteed to have that histogram, provided that Eq. (3-25) is satisfied.†
The usefulness of the result depends on the ordering scheme used in Step (a).

Ordering: Consider a strict ordering relation on all MN pixels of an image so that

	 f x y f x y f x yM N M N(,) (,) (,), ,0 0 1 1 1 1 1 1  ⋅ ⋅ ⋅ − − −-
	 (3-26)

This equation represents a string of MN pixels ordered by a strict relation , with
the pair (,)x yi i denoting the coordinates of the ith pixel in the sequence. Keep in
mind that  may yield an ordering of pixels whose coordinates are not in any par-
ticular spatial sequence.

Recall from Section 2.6 that an ordering is based on the concept of preceding, and
recall also that “preceding” is more general than just a numerical order. In a strict
ordering, an element of a set (in this case the set of pixels in a digital image) cannot
precede itself. In addition, if element a precedes element b, and element b precedes
c in the ordered sequence, then this implies that a precedes c. In the present context,

† Because MN and L are fixed, and histogram bins must contain an integer number of pixels, a specified histo-
gram may have to be adjusted sometimes in order to satisfy Eq. (3-25) (see Problem 3.16). In other words, there
are instances in which the histogram matched by the method will have to be an altered version of an original
specification (see Problem 3.18). Generally, the differences have negligible influence on the final result.

Note that we are not
using subscripts on the
histogram elements,
because we are working
with a single type of
histogram. This simplifies
the notation
considerably.

We will give a more
detailed set of steps later
in this section.

See Section 2.6 regarding
ordering.

DIP4E_Print_Ready.indb 165 4/2/2017 8:33:56 PM

196 Chapter 3 Intensity Transformations and Spatial Filtering

EXAMPLE 3.16 : Smoothing performance as a function of kernel and image size.

The amount of relative blurring produced by a smoothing kernel of a given size depends directly on
image size. To illustrate, Fig. 3.46(a) shows the same test pattern used earlier, but of size 4096 4096×
pixels, four times larger in each dimension than before. Figure 3.46(b) shows the result of filtering this
image with the same Gaussian kernel and padding used in Fig. 3.45(b). By comparison, the former
image shows considerably less blurring for the same size filter. In fact, Fig. 3.46(b) looks more like the
image in Fig. 3.42(d), which was filtered using a 43 43× Gaussian kernel. In order to obtain results that
are comparable to Fig. 3.45(b) we have to increase the size and standard deviation of the Gaussian
kernel by four, the same factor as the increase in image dimensions. This gives a kernel of (odd) size

ba c

FIGURE 3.46 (a) Test pattern of size 4096 4096× pixels. (b) Result of filtering the test pattern with the same Gaussian
kernel used in Fig. 3.45. (c) Result of filtering the pattern using a Gaussian kernel of size 745 745× elements, with
K = 1 and s = 124. Mirror padding was used throughout.

ba c

FIGURE 3.45 Result of filtering the test pattern in Fig. 3.42(a) using (a) zero padding, (b) mirror padding, and (c) rep-
licate padding. A Gaussian kernel of size 187 187× , with K = 1 and s = 31 was used in all three cases.

DIP4E_Print_Ready.indb 196 4/2/2017 8:34:29 PM

214 Chapter 3 Intensity Transformations and Spatial Filtering

increases as a function of distance from the center, as you can see by noting that the rings get narrower
the further they are from the center. This property makes a zone plate an ideal image for illustrating the
behavior of the four filter types just discussed.

Figure 3.60(a) shows a 1-D, 128-element spatial lowpass filter function designed using MATLAB
[compare with Fig. 3.38(b)]. As discussed earlier, we can use this 1-D function to construct a 2-D, separa-
ble lowpass filter kernel based on Eq. (3-51), or we can rotate it about its center to generate a 2-D, isotro-
pic kernel. The kernel in Fig. 3.60(b) was obtained using the latter approach. Figures 3.61(a) and (b) are
the results of filtering the image in Fig. 3.59 with the separable and isotropic kernels, respectively. Both
filters passed the low frequencies of the zone plate while attenuating the high frequencies significantly.
Observe, however, that the separable filter kernel produced a “squarish” (non-radially symmetric) result
in the passed frequencies. This is a consequence of filtering the image in perpendicular directions with
a separable kernel that is not isotropic. Using the isotropic kernel yielded a result that is uniform in all
radial directions. This is as expected, because both the filter and the image are isotropic.

Figure 3.62 shows the results of filtering the zone plate with the four filters described in Table 3.7. We
used the 2-D lowpass kernel in Fig. 3.60(b) as the basis for the highpass filter, and similar lowpass ker-
nels for the bandreject filter. Figure 3.62(a) is the same as Fig. 3.61(b), which we repeat for convenience.
Figure 3.62(b) is the highpass-filtered result. Note how effectively the low frequencies were filtered out.
As is true of highpass-filtered images, the black areas were caused by negative values being clipped at 0
by the display. Figure 3.62(c) shows the same image scaled using Eqs. (2-31) and (2-32). Here we see
clearly that only high frequencies were passed by the filter. Because the highpass kernel was constructed
using the same lowpass kernel that we used to generate Fig. 3.62(a), it is evident by comparing the two
results that the highpass filter passed the frequencies that were attenuated by the lowpass filter.

FIGURE 3.59
A zone plate
image of size
597 597× pixels.

0

0.04

0.06

0.12

-0.02
0 32 64 96 128

ba

FIGURE 3.60
(a) A 1-D spatial
lowpass filter
function. (b) 2-D
kernel obtained
by rotating the
1-D profile about
its center.

DIP4E_Print_Ready.indb 214 4/2/2017 8:34:44 PM

3.7 Highpass, Bandreject, and Bandpass Filters from Lowpass Filters 215

ba

FIGURE 3.61
(a) Zone plate
image filtered
with a separable
lowpass kernel.
(b) Image filtered
with the isotropic
lowpass kernel in
Fig. 3.60(b).

ba c
ed f

FIGURE 3.62
Spatial filtering of the zone plate image. (a) Lowpass result; this is the same as Fig. 3.61(b). (b) Highpass result.
(c) Image (b) with intensities scaled. (d) Bandreject result. (e) Bandpass result. (f) Image (e) with intensities scaled.

DIP4E_Print_Ready.indb 215 4/2/2017 8:34:44 PM

3.9 Fuzzy Techniques for Intensity Transformations and Spatial Filtering 233

for j R= 1 2, , , ,… where mA kj k
z() is the membership function of fuzzy set Aj k evalu-

ated at the value of the kth input, and l j is called the strength (or firing) level of the
jth rule. With reference to our discussion earlier, l j is simply the value used to clip
the output function of the jth rule (see Step 3 in the summary related to Fig. 3.72).

The strength level of the ELSE rule is defined so that it increases as the strength
of the THEN rules weaken, and vice versa. An ELSE rule may be viewed as per-
forming a NOT operation on the results of the other rules. We know from Eq. (3-77)
that m m mNOT()() () ().A A Az z z= = −1 Using this idea in combining (ANDing) the
strengths of the THEN rules gives the following strength level for the ELSE rule:

	 l lE j j R= − ={ }min ; , , ,1 1 2 … 	 (3-96)

We see that if any of the THEN rules fires at “full strength” (its responses is 1), then
the strength level of the ELSE rule will be 0. As the responses of the THEN rules
weaken, the strength of the ELSE rule increases. The value of lE is used to clip
fuzzy set BE , in exactly the same manner that the other output fuzzy sets are clipped.
The only difference is that the clipping value for the ELSE rule is determined by
the strength levels of the other rules, rather than by the results of implication (see
Fig. 3.72). The resulting, clipped fuzzy set BE is used in the aggregation step, together
with the other clipped output fuzzy sets.

When dealing with ORs in the antecedents, we replace the ANDs in Eq. (3-94)
by ORs and the min in Eq. (3-95) by a max; Eq. (3-96) does not change. Although
more complex antecedents and consequents than the ones discussed here could be
developed, formulations using only ANDs or ORs are quite general and are used
in a broad spectrum of image processing applications. The references at the end of
this chapter contain additional (but used less frequently) definitions of fuzzy logical
operators, and discuss other methods for implication (including multiple outputs)
and defuzzification. In the next two sections, we will show how to apply fuzzy con-
cepts to image processing.

USING FUZZY SETS FOR INTENSITY TRANSFORMATIONS

One of the principal applications of intensity transformations is contrast enhance-
ment. We can state the process of enhancing the contrast of a grayscale image using
the following rules:

IF a pixel is dark, THEN make it darker.

IF a pixel is gray, THEN make it gray.

IF a pixel is bright, THEN make it brighter.

Keeping in mind that these are fuzzy terms, we can express the concepts of dark,
gray, and bright by the membership functions in Fig. 3.73(a).

In terms of the output, we consider darker as being degrees of a dark intensity
value (100% black being the limiting shade of dark), brighter, as being degrees of

We will illustrate how
ELSE rules are used
when we discuss fuzzy
filtering later in this
section.

DIP4E_Print_Ready.indb 233 4/2/2017 8:34:56 PM

234 Chapter 3 Intensity Transformations and Spatial Filtering

a bright shade (100% white being the limiting value), and gray as being degrees
of an intensity in the middle of the gray scale. By “degrees” we mean the amount
of a specific intensity. For example, 80% black is a dark gray. When interpreted as
constant intensities whose strength is modified, the output membership functions
are singletons (membership functions that are constant), as Fig. 3.73(b) shows. The
degrees of an intensity in the range [0, 1] occur when the singletons are clipped by
the strength of the response from their corresponding rules, as in the fourth column
of Fig. 3.72 (we are working here with only one input, not two, as in the figure).
Because we are dealing with constants in the output membership functions, it fol-
lows from Eq. (3-93) that the output, v0 , due to any input, z0 , is given by

	 v
v v v

0
0 0 0

0

=
+ +

+
m m m

m m

dark d gray g bright b

dark gray

z z z

z

() () ()

()

× × ×
(() ()z zbright0 0+ m

	 (3-97)

where “×” indicates scalar multiplication. The summations in the numerator and
denominator in this expression are simpler than in Eq. (3-93) because the output
membership functions are constants modified (clipped) by the fuzzified values.

Fuzzy image processing is computationally intensive because the entire process
of fuzzification, processing the antecedents of all rules, implication, aggregation, and
defuzzification must be applied to every pixel in the input image. Thus, using single-
tons as in Eq. (3-97) reduces computational requirements significantly by simplify-
ing implication, aggregation, and defuzzification. These savings can be important in
applications that require high processing speeds.

EXAMPLE 3.25 : Fuzzy, rule-based contrast modification.

Figure 3.74(a) shows an image whose predominant intensities span a narrow range of the gray scale [see
the image histogram in Fig. 3.75(a)], and thus has the appearance of low contrast. As a basis for com-
parison, Fig. 3.74(b) is the result of histogram equalization. As the histogram of this image shows [see
Fig. 3.75(b)], expanding the entire gray scale does increase contrast, but also spreads intensities on the
high and low end that give the image an “overexposed” appearance. For example, the details in Profes-
sor Einstein’s forehead and hair are mostly lost. Figure 3.74(c) shows the result of using the rule-based
contrast modification approach discussed above. Figure 3.75(c) shows the input membership functions

ba

FIGURE 3.73
(a) Input and
(b) output
membership
functions for
fuzzy, rule-based
contrast
enhancement.

1

.5

0 z

mdark(z) mbright(z)
1

.5

0 v
vd vg vb

mdarker(v) mgray(v) mbrighter(v)

mgray(z)

DIP4E_Print_Ready.indb 234 4/2/2017 8:34:56 PM

3.9 Fuzzy Techniques for Intensity Transformations and Spatial Filtering 235

used, superimposed on the histogram of the original image. The output singletons were selected at
vd = 0 (black), vg = 127 (mid gray), and vb = 255 (white).

Comparing Figs. 3.74(b) and (c), we see in the latter a considerable improvement in tonality. Note, for
example, the level of detail in the forehead and hair, as compared to the same regions in Fig. 3.74(b). The
reason for the improvement can be explained easily by studying the histogram of Fig. 3.74(c), shown in
Fig. 3.75(d). Unlike the histogram of the equalized image, this histogram has kept the same basic char-
acteristics of the histogram of the original image. However, the dark levels (tall peaks in the low end of
the histogram) were moved left, thus darkening the levels. The opposite was true for bright levels. The
mid grays were spread slightly, but much less than in histogram equalization.

ba c

FIGURE 3.74
(a) Low-contrast
image. (b) Result
of histogram
equalization.
(c) Result of using
fuzzy, rule-based
contrast
enhancement.

ba
dc

FIGURE 3.75
(a) Histogram of
Fig. 3.74(a).
(b) Histogram of
Fig. 3.74(b).
(c) Input
membership
functions
superimposed
on (a).
(d) Histogram of
Fig. 3.74(c).

0 63 127 191 255

0 63 127 191 255

0 63 127 191 255

0 63 127 191 255

mdark(z) mbright(z)

mgray(z)

DIP4E_Print_Ready.indb 235 4/2/2017 8:34:57 PM

246 Chapter 3 Intensity Transformations and Spatial Filtering

1

.5

0
a � c a � b a a � b a � c 1

z

(a)*

1

.5

0 z
a � c b � c dba 1

(b)
1

.5

0 z
a � b a � 0.5 a � b 1

(c)

3.61	 Because the term z0 is a constant in both mred
and m3, show that Eq. (3-88) can be written as
Q zred mat3 0() min (), () .v v= { }m m

3.62 *	What would be the effect of increasing the neigh-
borhood size in the fuzzy filtering approach dis-
cussed at the end of Section 3.9? Explain. (You
may use an example to support your answer).

3.63	 You are employed to design a fuzzy, rule-based filter-
ing system for reducing the effects of impulse noise
on a noisy image with intensity values in the interval
[,].0 1L − As in the filtering approach discussed at

the end of Section 3.9, use only the differences d2 ,
d4 , d6 , and d8 in a 3 3× neighborhood in order to
simplify the problem. Let z5 denote the intensity at
the center of the neighborhood. The corresponding
output intensity values should be z z5 5

 = + v, where
v is the output of your fuzzy system. That is, the
output of your fuzzy system is a correction factor
used to reduce the effect of a noise spike that may
be present at the center of the 3 3× neighborhood.
Assume that the noise spikes occur sufficiently apart
so that you need not be concerned with multiple
noise spikes being present in the same neighbor-
hood. The spikes can be dark or light. Use triangular
membership functions throughout.

(a) *	Give a fuzzy system for this problem.

(b) *	Specify the IF-THEN and ELSE rules.

(c)	 Specify the membership functions graphically,
as in Fig. 3.77.

(d)	 Show a graphical representation of the rule set,
as in Fig. 3.78.

(e)	 Give a summary diagram of your fuzzy system
similar to the one in Fig. 3.72.

Projects
MATLAB solutions to the projects marked with an asterisk (*) are in the DIP4E Student Support Package (consult
the book website: www.ImageProcessingPlace.com).

3.1 *	 Write a function g = imPad4e(f,r,c,padtype,loc)
for padding image f with r rows above and below
the image, and c columns to the left and right. If
padtype = 'zeros', or is omitted from the argument,
the function should implement zero padding. If
padtype = 'replicate', replicate padding, as defined
in Section 3.5, should be used. If loc is specified
as loc = 'post', the function should behave as above,
except that r rows are placed only below the image
and c columns are placed only to the right of it.

3.2	 Intensity transformation of grayscale images.

(a)	 Write a function [g,map] = intXform4e(f,mode,-
param) for transforming the intensities of an
input 8-bit grayscale image f. The intensities
of f (and output image g) are assumed to be in
the range [0, 1] (use function intScaling4e from
Chapter 2 in the body of intXform4e to make
the conversion to [0, 1] automatic). The type

of transformation performed is specified in
parameter mode, a character string with val-
ues: 'negative', 'log', 'gamma', or 'external'. The
first two specifications implement Eqs. (3-3)
and (3-4), (with c = 1 0.). The third specifi-
cation implements Eq. (3-5), in which case
param is a scalar equal to the value of g (use
c = 1 0.). Specifying mode as 'external' means
that the user is specifying the transformation
function (e.g., for histogram equalization),
whose values must be in the range [0, 1] and
be provided as a 1-D array in param. On the
output, map is the transformation function
computed by intXform4e (or provided by the
user if 'external' was specified for mode).

(b)	 Read and display the image spillway-dark.tif.
Apply a log transformation function to it.
Display the result.

DIP4E_Print_Ready.indb 246 4/2/2017 8:35:09 PM

249

4 Filtering in the Frequency
Domain

Preview
After a brief historical introduction to the Fourier transform and its importance in image processing, we
start from basic principles of function sampling, and proceed step-by-step to derive the one- and two-
dimensional discrete Fourier transforms. Together with convolution, the Fourier transform is a staple of
frequency-domain processing. During this development, we also touch upon several important aspects
of sampling, such as aliasing, whose treatment requires an understanding of the frequency domain and
thus are best covered in this chapter. This material is followed by a formulation of filtering in the fre-
quency domain, paralleling the spatial filtering techniques discussed in Chapter 3. We conclude the
chapter with a derivation of the equations underlying the fast Fourier transform (FFT), and discuss its
computational advantages. These advantages make frequency-domain filtering practical and, in many
instances, superior to filtering in the spatial domain.

Upon completion of this chapter, readers should:
	 Understand the meaning of frequency domain

filtering, and how it differs from filtering in the
spatial domain.

	 Be familiar with the concepts of sampling, func-
tion reconstruction, and aliasing.

	 Understand convolution in the frequency
domain, and how it is related to filtering.

	 Know how to obtain frequency domain filter
functions from spatial kernels, and vice versa.

	 Be able to construct filter transfer functions
directly in the frequency domain.

	 Understand why image padding is important.

	 Know the steps required to perform filtering
in the frequency domain.

	 Understand when frequency domain filtering
is superior to filtering in the spatial domain.

	 Be familiar with other filtering techniques in
the frequency domain, such as unsharp mask-
ing and homomorphic filtering.

	 Understand the origin and mechanics of the
fast Fourier transform, and how to use it effec-
tively in image processing.

Filter: A device or material for suppressing or minimizing waves or
oscillations of certain frequencies.

Frequency: The number of times that a periodic function repeats
the same sequence of values during a unit variation of the
independent variable.

Webster’s New Collegiate Dictionary

DIP4E_Print_Ready.indb 249 4/2/2017 8:35:10 PM

250 Chapter 4 Filtering in the Frequency Domain

4.1	BACKGROUND

We begin the discussion with a brief outline of the origins of the Fourier transform
and its impact on countless branches of mathematics, science, and engineering.

A BRIEF HISTORY OF THE FOURIER SERIES AND TRANSFORM

The French mathematician Jean Baptiste Joseph Fourier was born in 1768 in the
town of Auxerre, about midway between Paris and Dijon. The contribution for
which he is most remembered was outlined in a memoir in 1807, and later pub-
lished in 1822 in his book, La Théorie Analitique de la Chaleur (The Analytic Theory
of Heat). This book was translated into English 55 years later by Freeman (see
Freeman [1878]). Basically, Fourier’s contribution in this field states that any peri-
odic function can be expressed as the sum of sines and/or cosines of different fre-
quencies, each multiplied by a different coefficient (we now call this sum a Fourier
series). It does not matter how complicated the function is; if it is periodic and satis-
fies some mild mathematical conditions, it can be represented by such a sum. This
is taken for granted now but, at the time it first appeared, the concept that compli-
cated functions could be represented as a sum of simple sines and cosines was not
at all intuitive (see Fig. 4.1). Thus, it is not surprising that Fourier’s ideas were met
initially with skepticism.

Functions that are not periodic (but whose area under the curve is finite) can be
expressed as the integral of sines and/or cosines multiplied by a weighting function.
The formulation in this case is the Fourier transform, and its utility is even greater
than the Fourier series in many theoretical and applied disciplines. Both representa-
tions share the important characteristic that a function, expressed in either a Fourier
series or transform, can be reconstructed (recovered) completely via an inverse pro-
cess, with no loss of information. This is one of the most important characteristics of
these representations because it allows us to work in the Fourier domain (generally
called the frequency domain) and then return to the original domain of the function
without losing any information. Ultimately, it is the utility of the Fourier series and
transform in solving practical problems that makes them widely studied and used as
fundamental tools.

The initial application of Fourier’s ideas was in the field of heat diffusion, where
they allowed formulation of differential equations representing heat flow in such
a way that solutions could be obtained for the first time. During the past century,
and especially in the past 60 years, entire industries and academic disciplines have
flourished as a result of Fourier’s initial ideas. The advent of digital computers and
the “discovery” of a fast Fourier transform (FFT) algorithm in the early 1960s revo-
lutionized the field of signal processing. These two core technologies allowed for the
first time practical processing of a host of signals of exceptional importance, ranging
from medical monitors and scanners to modern electronic communications.

As you learned in Section 3.4, it takes on the order of MNmn operations (multi-
plications and additions) to filter an M N× image with a kernel of size m n× ele-
ments. If the kernel is separable, the number of operations is reduced to MN m n().+
In Section 4.11, you will learn that it takes on the order of 2 2MN MNlog operations
to perform the equivalent filtering process in the frequency domain, where the 2 in
front arises from the fact that we have to compute a forward and an inverse FFT.

4.1

DIP4E_Print_Ready.indb 250 4/2/2017 8:35:10 PM

4.1 Background 251

To get an idea of the relative computational advantages of filtering in the frequency
versus the spatial domain, consider square images and kernels, of sizes M M× and
m m× , respectively. The computational advantage (as a function of kernel size) of
filtering one such image with the FFT as opposed to using a nonseparable kernel is
defined as

	

C m
M m

M M

m
M

n()
log

log

=

=

2 2

2
2

2

2

2

2

4

	 (4-1)

If the kernel is separable, the advantage becomes

	
C m

M m

M M

m
M

s()
log

log

=

=

2
2

2

2

2
2

2

2

	 (4-2)

In either case, when C m() > 1 the advantage (in terms of fewer computations)
belongs to the FFT approach; otherwise the advantage favors spatial filtering.

FIGURE 4.1
The function at
the bottom is the
sum of the four
functions above it.
Fourier’s idea in
1807 that periodic
functions could be
represented as a
weighted sum of
sines and cosines
was met with
skepticism.

DIP4E_Print_Ready.indb 251 4/2/2017 8:35:11 PM

252 Chapter 4 Filtering in the Frequency Domain

Figure 4.2(a) shows a plot of C mn() as a function of m for an image of intermedi-
ate size ().M = 2048 The inset table shows a more detailed look for smaller kernel
sizes. As you can see, the FFT has the advantage for kernels of sizes 7 7× and larger.
The advantage grows rapidly as a function of m, being over 200 for m = 101, and
close to 1000 for m = 201. To give you a feel for the meaning of this advantage, if
filtering a bank of images of size 2048 2048× takes 1 minute with the FFT, it would
take on the order of 17 hours to filter the same set of images with a nonseparable
kernel of size 201 201× elements. This is a significant difference, and is a clear indica-
tor of the importance of frequency-domain processing using the FFT.

In the case of separable kernels, the computational advantage is not as dramatic,
but it is still meaningful. The “cross over” point now is around m = 27, and when
m = 101 the difference between frequency- and spatial-domain filtering is still man-
ageable. However, you can see that with m = 201 the advantage of using the FFT
approaches a factor of 10, which begins to be significant. Note in both graphs that
the FFT is an overwhelming favorite for large spatial kernels.

Our focus in the sections that follow is on the Fourier transform and its properties.
As we progress through this chapter, it will become evident that Fourier techniques
are useful in a broad range of image processing applications. We conclude the chap-
ter with a discussion of the FFT.

ABOUT THE EXAMPLES IN THIS CHAPTER

As in Chapter 3, most of the image filtering examples in this chapter deal with image
enhancement. For example, smoothing and sharpening are traditionally associated
with image enhancement, as are techniques for contrast manipulation. By its very
nature, beginners in digital image processing find enhancement to be interesting
and relatively simple to understand. Therefore, using examples from image enhance-
ment in this chapter not only saves having an extra chapter in the book but, more
importantly, is an effective tool for introducing newcomers to filtering techniques in
the frequency domain. We will use frequency domain processing methods for other
applications in Chapters 5, 7, 8, 10, and 12.

The computational
advantages given by Eqs.
(4-1) and (4-2) do not
take into account the fact
that the FFT performs
operations between
complex numbers, and
other secondary (but
small in comparison)
computations discussed
later in the chapter. Thus,
comparisons should be
interpreted only as
guidelines,

C
s(

m
)

�
 1

0

C
n(

m
)

�
 1

03

5

10

15

20

25

3 511 1023767255

m Cn(m)

m

1

2

3

4

5

3

7

11

15

21

27

m Cs(m)

3 511 1023767255
m

M = 2048M = 2048

3

7

11

15

21

27

101

201

0.2

1.1

2.8

5.1

10.0

16.6

232

918

101

201

0.1

0.3

0.5

0.7

0.9

1.2

4.6

9.1

ba

FIGURE 4.2
(a) Computational
advantage of the
FFT over non-
separable spatial
kernels.
(b) Advantage over
separable kernels.
The numbers for
C m() in the inset
tables are not to be
multiplied by the
factors of 10 shown
for the curves.

DIP4E_Print_Ready.indb 252 4/2/2017 8:35:12 PM

4.5 Extensions to Functions of Two Variables 279

	
1

2
T

> mmax 	 (4-65)

and

	
1

2
Z

> nmax 	 (4-66)

Stated another way, we say that no information is lost if a 2-D, band-limited, con-
tinuous function is represented by samples acquired at rates greater than twice the
highest frequency content of the function in both the m- and n-directions.

Figure 4.16 shows the 2-D equivalents of Figs. 4.6(b) and (d). A 2-D ideal fil-
ter transfer function has the form illustrated in Fig. 4.14(a) (but in the frequency
domain). The dashed portion of Fig. 4.16(a) shows the location of the filter function
to achieve the necessary isolation of a single period of the transform for recon-
struction of a band-limited function from its samples, as in Fig. 4.8. From Fig 4.10,
we know that if the function is under-sampled, the periods overlap, and it becomes
impossible to isolate a single period, as Fig. 4.16(b) shows. Aliasing would result
under such conditions.

ALIASING IN IMAGES

In this section, we extend the concept of aliasing to images, and discuss in detail sev-
eral aspects of aliasing related to image sampling and resampling.

Extensions from 1-D Aliasing

As in the 1-D case, a continuous function f t z(,) of two continuous variables, t and z,
can be band-limited in general only if it extends infinitely in both coordinate direc-
tions. The very act of limiting the spatial duration of the function (e.g., by multiply-
ing it by a box function) introduces corrupting frequency components extending to
infinity in the frequency domain, as explained in Section 4.3 (see also Problem 4.15).
Because we cannot sample a function infinitely, aliasing is always present in digital
images, just as it is present in sampled 1-D functions. There are two principal mani-
festations of aliasing in images: spatial aliasing and temporal aliasing. Spatial aliasing
is caused by under-sampling, as discussed in Section 4.3, and tends to be more visible

m m

v

vmax

v

mmax

Footprint of a
2-D ideal lowpass
(box) filter

ba

FIGURE 4.16
Two-dimensional
Fourier
transforms of (a) an
over-sampled, and
(b) an under-sam-
pled, band-limited
function.

DIP4E_Print_Ready.indb 279 4/2/2017 8:35:49 PM

280 Chapter 4 Filtering in the Frequency Domain

(and objectionable) in images with repetitive patterns. Temporal aliasing is related
to time intervals between images of a sequence of dynamic images. One of the most
common examples of temporal aliasing is the “wagon wheel” effect, in which wheels
with spokes in a sequence of images (for example, in a movie) appear to be rotating
backwards. This is caused by the frame rate being too low with respect to the speed
of wheel rotation in the sequence, and is similar to the phenomenon described in
Fig. 4.11, in which under sampling produced a signal that appeared to be of much
lower frequency than the original.

Our focus in this chapter is on spatial aliasing. The key concerns with spatial alias-
ing in images are the introduction of artifacts such as jaggedness in line features, spu-
rious highlights, and the appearance of frequency patterns not present in the original
image. Just as we used Fig. 4.9 to explain aliasing in 1-D functions, we can develop
an intuitive grasp of the nature of aliasing in images using some simple graphics. The
sampling grid in the center section of Fig. 4.17 is a 2-D representation of the impulse
train in Fig. 4.15. In the grid, the little white squares correspond to the location of the
impulses (where the image is sampled) and black represents the separation between
samples. Superimposing the sampling grid on an image is analogous to multiplying
the image by an impulse train, so the same sampling concepts we discussed in con-
nection with the impulse train in Fig. 4.15 are applicable here. The focus now is to
analyze graphically the interaction between sampling rate (the separation of the
sampling points in the grid) and the frequency of the 2-D signals being sampled.

Figure 4.17 shows a sampling grid partially overlapping three 2-D signals (regions
of an image) of low, mid, and high spatial frequencies (relative to the separation
between sampling cells in the grid). Note that the level of spatial “detail” in the
regions is proportional to frequency (i.e., higher-frequency signals contain more
bars). The sections of the regions inside the sampling grip are rough manifestations
of how they would appear after sampling. As expected, all three digitized regions

Sampling grid

Low frequency

Mid frequency

High frequency

FIGURE 4.17
Various aliasing
effects resulting
from the
interaction
between the
frequency of 2-D
signals and the
sampling rate
used to digitize
them. The regions
outside the
sampling grid are
continuous and
free of aliasing.

DIP4E_Print_Ready.indb 280 4/2/2017 8:35:50 PM

4.7 The Basics of Filtering in the Frequency Domain 307

between frequency content and rate of change of intensity levels in an image, can
lead to some very useful results. We will show in Section 4.8 the effects of modifying
various frequency ranges in the transform of Fig. 4.28(a).

FREQUENCY DOMAIN FILTERING FUNDAMENTALS

Filtering in the frequency domain consists of modifying the Fourier transform of an
image, then computing the inverse transform to obtain the spatial domain represen-
tation of the processed result. Thus, given (a padded) digital image, f x y(,), of size
P Q× pixels, the basic filtering equation in which we are interested has the form:

	 g x y H F(,) (,) (,)= []{ }−Real � 1 u v u v 	 (4-104)

where �−1 is the IDFT, F(,)u v is the DFT of the input image, f x y(,), H(,)u v is a
filter transfer function (which we often call just a filter or filter function), and g x y(,)
is the filtered (output) image. Functions F, H, and g are arrays of size P Q× , the same
as the padded input image. The product H F(,) (,)u v u v is formed using elementwise
multiplication, as defined in Section 2.6. The filter transfer function modifies the
transform of the input image to yield the processed output, g x y(,). The task of speci-
fying H(,)u v is simplified considerably by using functions that are symmetric about
their center, which requires that F(,)u v be centered also. As explained in Section 4.6,
this is accomplished by multiplying the input image by ()− +1 x y prior to computing
its transform.†

† Some software implementations of the 2-D DFT (e.g., MATLAB) do not center the transform. This implies
that filter functions must be arranged to correspond to the same data format as the uncentered transform (i.e.,
with the origin at the top left). The net result is that filter transfer functions are more difficult to generate and
display. We use centering in our discussions to aid in visualization, which is crucial in developing a clear under-
standing of filtering concepts. Either method can be used in practice, provided that consistency is maintained. 

If H is real and
symmetric and f is real
(as is typically the case),
then the IDFT in Eq.
(4-104) should yield
real quantities in theory.
In practice, the inverse
often contains para-
sitic complex terms from
roundoff error and other
computational inaccura-
cies. Thus, it is customary
to take the real part of
the IDFT to form g.

ba

FIGURE 4.28 (a) SEM image of a damaged integrated circuit. (b) Fourier spectrum of (a).
(Original image courtesy of Dr. J. M. Hudak, Brockhouse Institute for Materials Research,
McMaster University, Hamilton, Ontario, Canada.)

DIP4E_Print_Ready.indb 307 4/2/2017 8:36:24 PM

4.7 The Basics of Filtering in the Frequency Domain 309

v vu u
a

H(u, v)
H(u, v)

M/2 M/2N/2 N/2

H(u, v)

v
u

M/2 N/2

ba c
ed f

FIGURE 4.30 Top row: Frequency domain filter transfer functions of (a) a lowpass filter, (b) a highpass filter, and (c)
an offset highpass filter. Bottom row: Corresponding filtered images obtained using Eq. (4-104). The offset in (c) is
a = 0 85. , and the height of H(,)u v is 1. Compare (f) with Fig. 4.28(a).

ba c

FIGURE 4.31 (a) A simple image. (b) Result of blurring with a Gaussian lowpass filter without padding. (c) Result of
lowpass filtering with zero padding. Compare the vertical edges in (b) and (c).

DIP4E_Print_Ready.indb 309 4/2/2017 8:36:32 PM

4.9 Image Sharpening Using Highpass Filters 337

encompasses a very small neighborhood, while the formulation in Eqs. (4-125) and (4-126) encompasses
the entire image.

UNSHARP MASKING, HIGH-BOOST FILTERING, AND HIGH-
FREQUENCY-EMPHASIS FILTERING

In this section, we discuss frequency domain formulations of the unsharp masking
and high-boost filtering image sharpening techniques introduced in Section 3.6.3.
Using frequency domain methods, the mask defined in Eq. (3.6-8) is given by

	 g x y f x y f x ymask LP(,) (,) (,)= − 	 (4-128)

with

	 f x y H FLP LP(,) (,) (,)= []−� 1 u v u v 	 (4-129)

where HLP(,)u v is a lowpass filter transfer function, and F(,)u v is the DFT of f x y(,).
Here, f x yLP(,) is a smoothed image analogous to f x y(,) in Eq. (3-78). Then, as in
Eq. (3-79),

	 g x y f x y kg x y(,) (,) (,)= + mask 	 (4-130)

This expression defines unsharp masking when k = 1 and high-boost filtering when
k > 1. Using the preceding results, we can express Eq. (4-130) entirely in terms of
frequency domain computations involving a lowpass filter:

	 g x y k H F(,) (,) (,)= + −[]{ }−� 1 1 1Q RLP u v u v 	 (4-131)

ba

FIGURE 4.56
(a) Original,
blurry image.
(b) Image
enhanced using
the Laplacian in
the frequency
domain.
Compare with
Fig. 3.52(d).
(Original image
courtesy of
NASA.)

DIP4E_Print_Ready.indb 337 4/2/2017 8:37:08 PM

338 Chapter 4 Filtering in the Frequency Domain

We can express this result in terms of a highpass filter using Eq. (4-118):

	 g x y kH FP(,) (,) (,)= +[]{ }−� 1 1 H u v u v 	 (4-132)

The expression contained within the square brackets is called a high-frequency-
emphasis filter transfer function. As noted earlier, highpass filters set the dc term
to zero, thus reducing the average intensity in the filtered image to 0. The high-fre-
quency-emphasis filter does not have this problem because of the 1 that is added to
the highpass filter transfer function. Constant k gives control over the proportion of
high frequencies that influences the final result. A slightly more general formulation
of high-frequency-emphasis filtering is the expression

	 g x y k k H F(,) (,) (,)= +[]{ }−� 1
1 2 HP u v u v 	 (4-133)

where k1 0≥ offsets the value the transfer function so as not to zero-out the dc term
[see Fig. 4.30(c)], and k2 0> controls the contribution of high frequencies.

EXAMPLE 4.22 : Image enhancement using high-frequency-emphasis filtering.

Figure 4.57(a) shows a 503 720× -pixel chest X-ray image with a narrow range of intensity levels. The
objective of this example is to enhance the image using high-frequency-emphasis filtering. X-rays can-
not be focused in the same manner that optical lenses can, and the resulting images generally tend to be
slightly blurred. Because the intensities in this particular image are biased toward the dark end of the

ba
dc

FIGURE 4.57
(a) A chest X-ray.
(b) Result of
filtering with a
GHPF function.
(c) Result of
high-frequency-
emphasis filtering
using the same
GHPF. (d) Result
of performing
histogram
equalization on (c).
(Original image
courtesy of Dr.
Thomas R. Gest,
Division of
Anatomical
Sciences,
University of
Michigan Medical
School.)

DIP4E_Print_Ready.indb 338 4/2/2017 8:37:08 PM

348 Chapter 4 Filtering in the Frequency Domain

EXAMPLE 4.25 : Using notch filtering to remove periodic interference.

Figure 4.65(a) shows an image of part of the rings surrounding the planet Saturn. This image was cap-
tured by Cassini, the first spacecraft to enter the planet’s orbit. The nearly sinusoidal pattern visible in
the image was caused by an AC signal superimposed on the camera video signal just prior to digitizing
the image. This was an unexpected problem that corrupted some images from the mission. Fortunately,
this type of interference is fairly easy to correct by postprocessing. One approach is to use notch filtering.

Figure 4.65(b) shows the DFT spectrum. Careful analysis of the vertical axis reveals a series of
small bursts of energy near the origin which correspond to the nearly sinusoidal interference. A simple
approach is to use a narrow notch rectangle filter starting with the lowest frequency burst, and extending
for the remainder of the vertical axis. Figure 4.65(c) shows the transfer function of such a filter (white
represents 1 and black 0). Figure 4.65(d) shows the result of processing the corrupted image with this
filter. This result is a significant improvement over the original image.

To obtain and image of just the interference pattern, we isolated the frequencies in the vertical axis
using a notch pass transfer function, obtained by subtracting the notch reject function from 1 [see
Fig. 4.66(a)]. Then, as Fig. 4.66(b) shows, the IDFT of the filtered image is the spatial interference pattern.

ba
dc

FIGURE 4.65
(a) Image of
Saturn rings
showing nearly
periodic
interference.
(b) Spectrum.
(The bursts of
energy in the
vertical axis
near the origin
correspond to
the interference
pattern).
(c) A vertical
notch reject filter
transfer function.
(d) Result of
filtering.
(The thin black
border in (c) is
not part of the
data.) (Original
image courtesy
of Dr. Robert A.
West, NASA/
JPL.)

DIP4E_Print_Ready.indb 348 4/2/2017 8:37:21 PM

 Problems 361

(b)	 Do you think the result would have been dif-
ferent if the order of the filtering process had
been reversed?

4.62	 Consider the sequence of images shown below.
The image on the top left is a segment of an X-ray
image of a commercial printed circuit board. The
images following it are, respectively, the results of
subjecting the image to 1, 10, and 100 passes of a
Gaussian highpass filter with D0 30= . The images
are of size 330 334× pixels, with each pixel being
represented by 8 bits of gray. The images were
scaled for display, but this has no effect on the
problem statement.

(Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

(a)	 It appears from the images that changes will
cease to take place after a finite number of
passes. Show whether or not this is the case.
You may ignore computational round-off
errors. Let cmin denote the smallest positive
number representable in the machine in
which the computations are conducted.

(b)	 If you determined in (a) that changes would
cease after a finite number of iterations,
determine the minimum value of that num-
ber.

(Hint: Study the solution to Problem 4.53.)

4.63	 As illustrated in Fig. 4.57, combining high-fre-
quency emphasis and histogram equalization is

an effective method for achieving edge sharpen-
ing and contrast enhancement.

(a) *	Show whether or not it matters which pro-
cess is applied first.

(b)	 If the order does matter, give a rationale for
using one or the other method first.

4.64	 Use a Butterworth highpass filter to construct a
homomorphic filter transfer function that has the
same general shape as the function in Fig. 4.59.

4.65	 Suppose that you are given a set of images gener-
ated by an experiment dealing with the analysis of
stellar events. Each image contains a set of bright,
widely scattered dots corresponding to stars in
a sparsely occupied region of the universe. The
problem is that the stars are barely visible as a
result of superimposed illumination from atmo-
spheric dispersion. If these images are modeled as
the product of a constant illumination component
with a set of impulses, give an enhancement pro-
cedure based on homomorphic filtering designed
to bring out the image components due to the
stars themselves.

4.66	 How would you generate an image of only the
interference pattern visible in Fig. 4.64(a)?

4.67 *	 Show the validity of Eqs. (4-171) and (4-172).
(Hint: Use proof by induction.)

4.68	 A skilled medical technician is assigned the job of
inspecting a set of images generated by an elec-
tron microscope experiment. In order to simplify
the inspection task, the technician decides to use
digital image enhancement and, to this end, exam-
ines a set of representative images and finds the
following problems: (1) bright, isolated dots that
are of no interest; (2) lack of sharpness; (3) not
enough contrast in some images; and (4) shifts
in the average intensity to values other than A0 ,
which is the average value required to perform
correctly certain intensity measurements. The
technician wants to correct these problems and
then display in white all intensities in a band
between intensities I1 and I2 , while keeping nor-
mal tonality in the remaining intensities. Propose
a sequence of processing steps that the technician
can follow to achieve the desired goal. You may
use techniques from both Chapters 3 and 4.

DIP4E_Print_Ready.indb 361 4/2/2017 8:37:41 PM

362 Chapter 4 Filtering in the Frequency Domain

Projects
MATLAB solutions to the projects marked with an asterisk (*) are in the DIP4E Student Support Package (consult
the book website: www.ImageProcessingPlace.com).

4.1	 Write a function g = minusOne4e(f) that multiplies f
by ()− +1 x y to produce g. Array f can be 1-D (row
or column) or 2-D. The input image must be float-
ing point, so your function should perform a vali-
dation check for this.

4.2	 Implementation and testing of the 2-D FFT and
its inverse using a 1-D FFT algorithm.

(a) *	Obtain a routine that computes the 1-D FFT
in the language you are using for projects. For
example, excellent FFT implementations in C
are available from www.fftw.org. If you are
working in MATLAB, use function fft. Use
the 1-D FFT routine to implement a function
F = dft2D4e(f) that computes the 2-D forward
FFT of image f, as explained in Section 4.11.

(b)	 Write a function f = idft2D4e(F) that computes
the inverse FFT of an input transform F.
(Hint: Work with the conjugate of F so that
you can use the forward FFT function from
(a) to compute the inverse, as explained in
Section 4.11.)

(c)	 Read the image rose512.tif and scale it to the
range [,]0 1 using the default settings of func-
tion intScaling4e. Denote the result by f. Test
your functions by (1) computing F, the for-
ward FFT of f, and (2) obtaining g, the real
part of the inverse FFT of F. Display f, g, and
the difference, d = f – g, of the two. Display-
the maximum and minimum values of d. The
displays of f and g should look identical, and
d should appear as a black image.

(d) *	Compute the centered transform and display
the spectrum of F as S = log(1 + abs(F)). Scale
S using the 'full' option in function intScaling4e
before displaying it.

4.3	 Lowpass filter transfer functions.

(a) *	Write a function H = lpFilterTF4e(type,P,Q,param)
to generate a P  Q lowpass filter transfer
function, H, with the following properties. If
type = 'ideal', param should be a scalar equal
to the cut-off frequency D0 in Eq. (4-111). If
type = 'gaussian', param should be a scalar equal
to the standard deviation D0 in Eq. (4-116).

If type = 'butterworth', param should be a 1 2×
array (vector) containing the cutoff frequen-
cy and filter order, [,],D n0 in Eq. (4-117).

(b) *	Generate a lowpass ideal filter transfer func-
tion of size 512 512× with D0 96= . Display
your result as an image.

(c)	 Generate a lowpass Gaussian filter transfer
function of size 512 512× with D0 96= . Dis-
play your result as an image.

(d)	 Generate a lowpass Butterworth filter
transfer function of size 512 512× . Choose
D0 96= and n = 2. Display your result as an
image.

4.4	 Highpass filter transfer functions.

(a) *	Write a function H = hpFilterTF4e(type,P,Q,param)
to generate a P  Q highpass filter transfer
function, H, with the following properties. If
type = 'ideal', param should be a scalar equal
to the cut-off frequency D0 in Eq. (4-119).
If type = 'gaussian', param should be a scalar
equal to the standard deviation D0 in Eq.
(4-120). If type = 'butterworth', param should be
a 1 2× array (vector) the cutoff frequency
and filter order, [,],D n0 in Eq. (4-121).

(b) *	Generate an ideal highpass filter transfer
function of size 512 512× with D0 96= . Dis-
play your result as an image.

(c)	 Generate a highpass Gaussian filter transfer
function of size 512 512× with D0 96= . Dis-
play your result as an image.

(d)	 Generate a highpass Butterworth filter
transfer function of size 512 512× . Choose
D0 96= and n = 2.

4.5	 Frequency domain filtering package.

(a) *	Write a function, g = dftFiltering4e(f,H,padmode
scaling) to filter image f with a given filter
transfer function H. Your function should
implement the seven steps in the filtering
algorithm discussed in Section 4.7. If padmode
= 'replicate' or is not included in the argument,
then replicate padding should be used. If pad-
mode = 'zeros', zero padding should be used.

DIP4E_Print_Ready.indb 362 4/2/2017 8:37:43 PM

365

5 Image Restoration
and Reconstruction

Preview
As in image enhancement, the principal goal of restoration techniques is to improve an image in some
predefined sense. Although there are areas of overlap, image enhancement is largely a subjective pro-
cess, while image restoration is for the most part an objective process. Restoration attempts to recover
an image that has been degraded by using a priori knowledge of the degradation phenomenon. Thus,
restoration techniques are oriented toward modeling the degradation and applying the inverse process
in order to recover the original image. In this chapter, we consider linear, space invariant restoration
models that are applicable in a variety of restoration situations. We also discuss fundamental tech-
niques of image reconstruction from projections, and their application to computed tomography (CT),
one of the most important commercial applications of image processing, especially in health care.

Upon completion of this chapter, readers should:
	 Be familiar with the characteristics of various

noise models used in image processing, and
how to estimate from image data the param-
eters that define those models.

	 Be familiar with linear, nonlinear, and adap-
tive spatial filters used to restore (denoise)
images that have been degraded only by noise.

	 Know how to apply notch filtering in the fre-
quency domain for removing periodic noise
in an image.

	 Understand the foundation of linear, space
invariant system concepts, and how they can

be applied in formulating image restoration
solutions in the frequency domain.

	 Be familiar with direct inverse filtering and its
limitations.

	 Understand minimum mean-square-error (Wie-
ner) filtering and its advantages over direct
inverse filtering.

	 Understand constrained, least-squares filter-
ing.

	 Be familiar with the fundamentals of image
reconstruction from projections, and their
application to computed tomography.

Things which we see are not themselves what we see . . .
It remains completely unknown to us what the objects may be
by themselves and apart from the receptivity of our senses.
We know only but our manner of perceiving them.

Immanuel Kant

DIP4E_Print_Ready.indb 365 4/2/2017 8:37:44 PM

366 Chapter 5 Image Restoration and Reconstruction

5.1	A MODEL OF THE IMAGE DEGRADATION/RESTORATION
PROCESS

In this chapter, we model image degradation as an operator � that, together with an
additive noise term, operates on an input image f x y(,) to produce a degraded image
g x y(,) (see Fig. 5.1). Given g x y(,), some knowledge about �, and some knowledge
about the additive noise term h(,),x y the objective of restoration is to obtain an
estimate ˆ(,)f x y of the original image. We want the estimate to be as close as possible
to the original image and, in general, the more we know about � and h, the closer
ˆ(,)f x y will be to f x y(,).

We will show in Section 5.5 that, if � is a linear, position-invariant operator, then
the degraded image is given in the spatial domain by

	 g x y h f x y x y(,) ()(,) (,)= + h 	 (5-1)

where h x y(,) is the spatial representation of the degradation function. As in Chapters
3 and 4, the symbol “” indicates convolution. It follows from the convolution theorem
that the equivalent of Eq. (5-1) in the frequency domain is

	 G H F N(,) (,) (,) (,)u v u v u v u v= + 	 (5-2)

where the terms in capital letters are the Fourier transforms of the corresponding
terms in Eq. (5-1). These two equations are the foundation for most of the restora-
tion material in this chapter.

In the following three sections, we work only with degradations caused by noise.
Beginning in Section 5.5 we look at several methods for image restoration in the
presence of both � and h.

5.2	NOISE MODELS

The principal sources of noise in digital images arise during image acquisition and/or
transmission. The performance of imaging sensors is affected by a variety of environ-
mental factors during image acquisition, and by the quality of the sensing elements
themselves. For instance, in acquiring images with a CCD camera, light levels and
sensor temperature are major factors affecting the amount of noise in the resulting
image. Images are corrupted during transmission principally by interference in the
transmission channel. For example, an image transmitted using a wireless network
might be corrupted by lightning or other atmospheric disturbance.

5.1

5.2

Degradation

DEGRADATION RESTORATION

Restoration
filter(s)

f(x, y)

g(x, y)

f(x, y)ˆ

Noise
h(x, y)

��

FIGURE 5.1
A model of the
image
degradation/
restoration
process.

DIP4E_Print_Ready.indb 366 4/2/2017 8:37:46 PM

374 Chapter 5 Image Restoration and Reconstruction

ba

FIGURE 5.5
(a) Image
corrupted by
additive
sinusoidal noise.
(b) Spectrum
showing two
conjugate
impulses caused
by the sine wave.
(Original
image courtesy of
NASA.)

of noise components directly from the image, but this is possible only in simplis-
tic cases. Automated analysis is possible in situations in which the noise spikes are
either exceptionally pronounced, or when knowledge is available about the general
location of the frequency components of the interference (see Section 5.4).

The parameters of noise PDFs may be known partially from sensor specifications,
but it is often necessary to estimate them for a particular imaging arrangement. If
the imaging system is available, one simple way to study the characteristics of system
noise is to capture a set of “flat” images. For example, in the case of an optical sen-
sor, this is as simple as imaging a solid gray board that is illuminated uniformly. The
resulting images typically are good indicators of system noise.

When only images already generated by a sensor are available, it is often possible
to estimate the parameters of the PDF from small patches of reasonably constant
background intensity. For example, the vertical strips shown in Fig. 5.6 were cropped
from the Gaussian, Rayleigh, and uniform images in Fig. 5.4. The histograms shown
were calculated using image data from these small strips. The histograms in Fig. 5.4
that correspond to the histograms in Fig. 5.6 are the ones in the middle of the group
of three in Figs. 5.4(d), (e), and (k).We see that the shapes of these histograms cor-
respond quite closely to the shapes of the corresponding histograms in Fig. 5.6. Their
heights are different due to scaling, but the shapes are unmistakably similar.

The simplest use of the data from the image strips is for calculating the mean and
variance of intensity levels. Consider a strip (subimage) denoted by S, and let p zS i(),
i L= −0 1 2 1, , , , ,… denote the probability estimates (normalized histogram values)
of the intensities of the pixels in S, where L is the number of possible intensities in
the entire image (e.g., 256 for an 8-bit image). As in Sections 2.6 and 3.3, we estimate
the mean and variance of the pixel values in S as follows:

	 z z p zi S i
i

L

=
=

−

∑ ()
0

1

	 (5-19)

and

DIP4E_Print_Ready.indb 374 4/2/2017 8:37:51 PM

5.4 Periodic Noise Reduction Using Frequency Domain Filtering 391

ba
dc

FIGURE 5.16
(a) Image cor-
rupted by sinusoi-
dal interference.
(b) Spectrum
showing the
bursts of energy
caused by the
interference. (The
bursts were
enlarged for
display purposes.)
(c) Notch filter
(the radius of the
circles is 2 pixels)
used to eliminate
the energy bursts.
(The thin borders
are not part of the
data.)
(d) Result of
notch reject
filtering.
(Original
image courtesy of
NASA.)

FIGURE 5.17
Sinusoidal
pattern extracted
from the DFT
of Fig. 5.16(a)
using a notch pass
filter.

which, as you know from Chapter 4, are responsible for the intensity differences between smooth areas.
Figure 5.18(c) shows the filter transfer function we used, and Fig. 5.18(d) shows the filtered result. Most
of the fine scan lines were eliminated or significantly attenuated. In order to get an image of the noise
pattern, we proceed as before by converting the reject filter into a pass filter, and then filtering the input
image with it. Figure 5.19 shows the result.

DIP4E_Print_Ready.indb 391 4/2/2017 8:38:10 PM

392 Chapter 5 Image Restoration and Reconstruction

FIGURE 5.19
Noise pattern
extracted from
Fig. 5.18(a) by
notch pass
filtering.

ba
dc

FIGURE 5.18
(a) Satellite image
of Florida and the
Gulf of Mexico.
(Note horizontal
sensor scan lines.)
(b) Spectrum of
(a). (c) Notch
reject filter
transfer
function. (The
thin black border
is not part of the
data.) (d) Filtered
image. (Original
image courtesy of
NOAA.)

DIP4E_Print_Ready.indb 392 4/2/2017 8:38:10 PM

392 Chapter 5 Image Restoration and Reconstruction

FIGURE 5.19
Noise pattern
extracted from
Fig. 5.18(a) by
notch pass
filtering.

ba
dc

FIGURE 5.18
(a) Satellite image
of Florida and the
Gulf of Mexico.
(Note horizontal
sensor scan lines.)
(b) Spectrum of
(a). (c) Notch
reject filter
transfer
function. (The
thin black border
is not part of the
data.) (d) Filtered
image. (Original
image courtesy of
NOAA.)

DIP4E_Print_Ready.indb 392 4/2/2017 8:38:10 PM

410 Chapter 5 Image Restoration and Reconstruction

ba c
ed f
hg i

FIGURE 5.29 (a) 8-bit image corrupted by motion blur and additive noise. (b) Result of inverse filtering. (c) Result of
Wiener filtering. (d)–(f) Same sequence, but with noise variance one order of magnitude less. (g)–(i) Same sequence,
but noise variance reduced by five orders of magnitude from (a). Note in (h) how the deblurred image is quite vis-
ible through a “curtain” of noise.

DIP4E_Print_Ready.indb 410 4/2/2017 8:38:29 PM

5.11 Image Reconstruction from Projections 417

terms of digital images, this means duplicating the same 1-D signal across the image,
perpendicularly to the direction of the beam. For example, Fig. 5.32(c) was created
by duplicating the 1-D signal in all columns of the reconstructed image. For obvious
reasons, the approach just described is called backprojection.

Next, suppose that we rotate the position of the source-detector pair by 90°, as
in Fig. 5.32(d). Repeating the procedure explained in the previous paragraph yields
a backprojection image in the vertical direction, as Fig. 5.32(e) shows. We continue
the reconstruction by adding this result to the previous backprojection, resulting in
Fig. 5.32(f). Now, we begin to suspect that the object of interest is contained in the
square shown, whose amplitude is twice the amplitude of the individual backprojec-
tions because the signals were added. We should be able to learn more about the
shape of the object in question by taking more views in the manner just described,
as Fig. 5.33 shows. As the number of projections increases, the amplitude strength
of non-intersecting backprojections decreases relative to the strength of regions in
which multiple backprojections intersect. The net effect is that brighter regions will
dominate the result, and backprojections with few or no intersections will fade into
the background as the image is scaled for display.

Figure 5.33(f), which was formed from 32 backprojections, illustrates this concept.
Note, however, that while this reconstructed image is a reasonably good approxi-
mation to the shape of the original object, the image is blurred by a “halo” effect,
the formation of which can be seen in progressive stages in Fig. 5.33. For example,
the halo in Fig. 5.33(e) appears as a “star” whose intensity is lower than that of the

ba c
ed f

FIGURE 5.32
(a) Flat region
with a single
object. (b) Parallel
beam, detector
strip, and profile of
sensed 1-D
absorption signal.
(c) Result of back-
projecting the
absorption profile.
(d) Beam and
detectors rotated
by 90°.
(e) Backprojection.
(f) The sum of (c)
and (e), inten-
sity-scaled. The
intensity where the
backprojections
intersect is twice
the intensity of the
individual back-
projections.

Absorption profile (signal)

Ray Detector strip

B
ea

m

DIP4E_Print_Ready.indb 417 4/2/2017 8:38:36 PM

418 Chapter 5 Image Restoration and Reconstruction

object, but higher than the background. As the number of views increases, the shape
of the halo becomes circular, as in Fig. 5.33(f). Blurring in CT reconstruction is an
important issue, whose solution is addressed later in this section. Finally, we con-
clude from the discussion of Figs. 5.32 and 5.33 that backprojections 180° apart are
mirror images of each other, so we have to consider only angle increments halfway
around a circle in order to generate all the backprojections required for reconstruc-
tion.

EXAMPLE 5.14 : Backprojections of a planar region containing two objects.

Figure 5.34 illustrates reconstruction using backprojections on a region that contains two objects with
different absorption properties (the larger object has higher absorption). Figure 5.34(b) shows the result
of using one backprojection. We note three principal features in this figure, from bottom to top: a thin
horizontal gray band corresponding to the unoccluded portion of the small object, a brighter (more
absorption) band above it corresponding to the area shared by both objects, and an upper band corre-
sponding to the rest of the elliptical object. Figures 5.34(c) and (d) show reconstruction using two pro-
jections 90° apart and four projections 45° apart, respectively. The explanation of these figures is similar
to the discussion of Figs. 5.33(c) through (e). Figures 5.34(e) and (f) show more accurate reconstructions
using 32 and 64 backprojections, respectively. The last two results are quite close visually, and they both
show the blurring problem mentioned earlier.

PRINCIPLES OF X-RAY COMPUTED TOMOGRAPHY (CT)

As with the Fourier transform discussed in the last chapter, the basic mathematical
concepts required for CT were in place many years before the availability of digital

ba c
ed f

FIGURE 5.33
(a) Same as
Fig. 5.32(a).
(b)-(e) Recon-
struction using 1,
2, 3, and 4 back-
projections 45°
apart.
(f) Reconstruction
with 32 backpro-
jections 5.625°
apart (note the
blurring).

DIP4E_Print_Ready.indb 418 4/2/2017 8:38:36 PM

446 Chapter 5 Image Restoration and Reconstruction

Projects
MATLAB solutions to the projects marked with an asterisk (*) are in the DIP4E Student Support Package (consult
the book website: www.ImageProcessingPlace.com).

5.1	 Read the image book-cover-gaussian.tif. You are
told that this image has been corrupted by addi-
tive Gaussian noise. Find estimates of the mean
and standard deviation of the noise. (Hint: Take
a look at Fig. 5.6 and review project function
centralMoments4e.)

5.2	 Obtain functions for generating 2-D arrays of uni-
form and Gaussian random numbers in the lan-
guage you are using for your projects. If you are
using MATLAB, functions rand and randn are the
noise generators of choice for this purpose. Read
the image testpattern512.tif, scale it to the range
[0, 1] using the default mode of project function
intScaling4e, and do the following.

(a) *	Fix the mean at 0.25 and add three levels of
Gaussian noise to the image by varying the
standard deviation. The three levels should
be such that the noise appears (1) mild (you
can tell the noise is there, but it is barely per-
ceivable; (2) intermediate (the noise is defi-
nitely present, but all the image features are
still clearly visible); and (3) heavy (the noise
is objectionable, causing some of the image
features to be obscured by the noise); (4)
extra heavy (the noise dominates the image;
most of the smaller and light features in the

image are obscured by noise). For compari-
sons of your results to be meaningful, you
should scale the image to the full range [0, 1],
using the 'full' and 'floating' options in func-
tion intScaling4e. Show all four results and list
the values of standard deviation you used.
Explain why image details begin to disap-
pear as the noise level increases significantly.

(b)	 Repeat the four levels of noise outlined in
(a) using uniform noise. Note that the param-
eters to specify are a and b in Eq. (5-13). Try
to make your images appear as close as pos-
sible to their Gaussian counterparts. Explain
why image details begin to disappear as the
noise level increases significantly. Note any
significant differences between correspond-
ing images in (a) and (b).

(c)	 You will find that the images in (b) have high-
er contrast than their Gaussian counterparts
in (a). Explain why.

5.3	 Working with salt-and-pepper noise.

(a) *	Explain how you can modify a generator of
uniform random numbers to produce salt-
and-pepper noise with specified probabilities
Ps for salt pixels and Pp for pepper pixels.

5.46	 Show that the Radon transform [Eq. (5-102)] of
the Gaussian shape f x y A x y(,) exp()= − −2 2 is
given by g A(,) exp().r u p r= − 2 (Hint: Refer to
Example 5.15, where we used symmetry to sim-
plify integration.)

5.47	 Do the following:

(a) *	Show that the Radon transform [Eq. (5-102)]
of the unit impulse d(,)x y is a straight ver-
tical line passing through the origin of the
ru-plane .

(b)	 Show that the radon transform of the
impulse d(,)x x y y− −0 0 is a sinusoidal curve
in the ru-plane.

5.48	 Prove the validity of the following properties of
the Radon transform [Eq. (5-102)]:

(a) *	Linearity: The Radon transform is a linear
operator. (See Section 2.6 regarding linear-
ity.)

(b)	 Translation property: The radon transform of
f x x y y(,)− −0 0 is g x y(cos sin ,).r u u u− −0 0

(c) *	Convolution property: The Radon transform
of the convolution of two functions is equal
to the convolution of the Radon transforms
of the two functions.

5.49	 Provide the steps that lead from Eq. (5-113) to
Eq. (5-114). [Hint: G G(,) (,).]v u v u+ = −180°

5.50 *	Prove the validity of Eq. (5-125).

5.51	 Prove the validity of Eq. (5-127).

DIP4E_Print_Ready.indb 446 4/2/2017 8:39:03 PM

451

6 Wavelet and Other Image
Transforms

Preview
The discrete Fourier transform of Chapter 4 is a member of an important class of linear transforms that
include the Hartley, sine, cosine, Walsh-Hadamard, Slant, Haar, and wavelet transforms. These trans-
forms, which are the subject of this chapter, decompose functions into weighted sums of orthogonal or
biorthogonal basis functions, and can be studied using the tools of linear algebra and functional analysis.
When approached from this point of view, images are vectors in the vector space of all images. Basis
functions determine the nature and usefulness of image transforms. Transforms are the coefficients of
linear expansions. And for a given image and transform (or set of basis functions), both the orthogo-
nality of the basis functions and the coefficients of the resulting transform are computed using inner
products. All of an image’s transforms are equivalent in the sense that they contain the same informa-
tion and total energy. They are reversible and differ only in the way that the information and energy is
distributed among the transform’s coefficients.

Upon competion of this chapter, readers should:
	 Understand image transforms in the context

of series expansions.

	 Be familiar with a variety of important image
transforms and transform basis functions.

	 Know the difference between orthogonal and
biorthogonal basis functions.

	 Be able to construct the transformation
matrices of the discrete Fourier, Hartley,
sine, cosine, Walsh-Hadamard, Slant, and
Haar transforms.

	 Be able to compute traditional image trans-
forms, like the Fourier and Haar transforms,
using elementary matrix operations.

	 Understand the time-frequency plane and its
relationship to wavelet transforms.

	 Be able to compute 1-D and 2-D fast wavelet
transforms (FWTs) using filter banks.

	 Understand wavelet packet representations.

	 Be familiar with the use of discrete orthogo-
nal transforms in image processing.

Do not conform any longer to the pattern of this world, but be
transformed by the renewing of your mind.

Romans 12:2

DIP4E_Print_Ready.indb 451 4/2/2017 8:39:05 PM

452 Chapter 6 Wavelet and Other Image Transforms

6.1	PRELIMINARIES

In linear algebra and functional analysis, a vector space (or more formally an abstract
vector space) is a set of mathematical objects or entities, called vectors, that can be
added together and multiplied by scalars. An inner product space is an abstract vec-
tor space over a field of numbers, together with an inner product function that maps
two vectors of the vector space to a scalar of the number field such that

(a)	 u v v u, , *=
(b)	 u v w u w v w+ +, , ,=
(c)	 a au v u v, ,=
(d)	 v v v v v, ,Ú 0 0 0 and if and only if = =

where u, v, and w are vectors, a is a scalar, and p denotes the inner product opera-
tion. A simple example of a vector space is the set of directed line segments in two
dimensions, where the line segments are represented mathematically as 2 1× col-
umn vectors, and the addition of vectors is the arithmetic equivalent of combining
the line segments in a head to tail manner. An example of an inner product space is
the set of real numbers R combined with inner product function u v uv, ,= where
the “vectors” are real numbers, the inner product function is multiplication, and axi-
oms (a) through (d) above correspond to the commutative, distributive, associative,
and “positivity of even powers” properties of multiplication, respectively.

Three inner product spaces are of particular interest in this chapter:

1.	 Euclidean space RN over real number field R with dot or scalar inner product

	 u v u v, = = + =− −
=
∑T

N N i i
i

N

u v u v u v u v0 0 1 1 1 1
0

1

+ +
−

… 	 (6-1)

where u and v are N × 1 column vectors.
2.	 Unitary space CN over complex number field C with inner product function

	 u v u v v u, ,* * *= = =
=

−

∑T
i i

i

N

u v
0

1

	 (6-2)

where * denotes the complex conjugate operation, and u and v are complex-
valued N × 1 column vectors.

3.	 Inner product space C([a, b]), where the vectors are continuous functions on the
interval a x b≤ ≤ and the inner product function is the integral inner product

	 f x g x f x g x dx
a

b

(), () () ()*= 2 	 (6-3)

In all three inner product spaces, the norm or length of vector z, denoted as z , is

	 z z z= , 	 (6-4)

6.1

Consult the Tutorials sec-
tion of the book website
for a brief tutorial on
vectors and matrices.

In Chapter 2, the inner
product of two column
vectors, u and v, is
denoted u i v [see
Eq. (2-50)]. In this
chapter, u v, is used to
denote inner products
within any inner product
space satisfying condi-
tions (a)–(d), including
the Euclidean inner
product space and real-
valued column vectors of
Chapter 2.

Euclidean space RN is an
infinite set containing all
real N-tuples.

A complex vector space
with an inner product is
called a complex inner
product space or unitary
space.

The notation C[a, b}
is also used in the
literature.

Equations (6-4) through
(6-15) are valid for all
inner product spaces,
including those defined
by Eqs. (6-1) to (6-3).

DIP4E_Print_Ready.indb 452 4/2/2017 8:39:07 PM

6.1 Preliminaries 453

and the angle between two nonzero vectors z and w is

	 u = cos
,−1 z w

z w
	 (6-5)

If the norm of z is 1, z is said to be normalized. If z w, = 0 in Eq. (6-5), u = 90° and
z and w are said to be orthogonal. A natural consequence of these definitions is that
a set of nonzero vectors w0, w1, w2, ... is mutually or pairwise orthogonal if and only if

	 w w k lk l, = 0 for ≠ 	 (6-6)

They are an orthogonal basis of the inner product space that they are said to span. If
the basis vectors are normalized, they are an orthonormal basis and

	 w w
k l

k lk l kl, = =
=





d
0

1

 for

 for

≠
	 (6-7)

Similarly, a set of vectors w0, w1, w2, ... and a complementary set of dual vectors
w w w0 1 2
' ' '

p, , , are said to be biorthogonal and a biorthogonal basis of the vector
space that they span if

	 H Iw w k lk l
'

, = 0 for ≠ 	 (6-8)

They are a biorthonormal basis if and only if

	 H Iw w
k l

k lk l kl
'

, = =
≠
=





d
0

1

for

for
	 (6-9)

As a mechanism for concisely describing an infinite set of vectors, the basis of
an inner product space is one of the most useful concepts in linear algebra. The
following derivation, which relies on the orthogonality of basis vectors, is founda-
tional to the matrix-based transforms of the next section. Let W w w w= { }0 1 2, , , …
be an orthogonal basis of inner product space V, and let z V∈ . Vector z can then be
expressed as the following linear combination of basis vectors

	 z w w w= + + +a a a0 0 1 1 2 2 … 	 (6-10)

whose inner product with basis vector wi is

	
w z w w w w

w w w w w w
i i

i i i i i

, ,

, , ,

= + + +
= + + + +

a a a

a a a

0 0 1 1 2 2

0 0 1 1

…
… …

	 (6-11)

Since the wi are mutually orthogonal, the inner products on the right side of
Eq. (6-11) are 0 unless the subscripts of the vectors whose inner products are being

While you must always
take the context into
account, we generally
use the word “vector”
for vectors in an abstract
sense. A vector can be
an N * 1 matrix (i.e.,
column vector) or a
continuous function.

Recall from linear
algebra that a basis of a
vector space is a set of
linearly independent vec-
tors for which any vector
in the space can be writ-
ten uniquely as a linear
combination of basis
vectors. The linear com-
binations are the span
of the basis vectors. A
set of vectors is linearly
independent if no vector
in the set can be written
as a linear combination
of the others.

While you must always
take to the context into
account, we often use
the phrase “orthogonal
basis” or “orthogonal
transform” to refer to
any basis or transform
that is orthogonal, ortho-
normal, biorthogonal, or
biorthonormal.

DIP4E_Print_Ready.indb 453 4/2/2017 8:39:08 PM

6.6 Fourier-Related Transforms 483

ba c
ed f
hg i

FIGURE 6.15 (a) Original image of the 688 688× test pattern from Fig. 4.41(a). (b) Discrete Fourier transform (DFT)
of the test pattern in (a) after padding to size 1376 1376× . The blue overlay is an ideal lowpass filter (ILPF) with
a radius of 60. (c) Result of Fourier filtering. (d)–(f) Discrete Hartley transform, discrete cosine transform (DCT),
and discrete sine transform (DST) of the test pattern in (a) after padding. The blue overlay is the same ILPF in (b),
but appears bigger in (e) and (f) because of the higher frequency resolution of the DCT and DST. (g)–(i) Results of
filtering for the Hartley, cosine, and sine transforms, respectively.

DIP4E_Print_Ready.indb 483 4/2/2017 8:39:44 PM

6.10 Wavelet Transforms 493

from its nearest neighboring approximations, and complementary functions, called
wavelets, are used to encode the differences between adjacent approximations. The
discrete wavelet transform (DWT) uses those wavelets, together with a single scaling
function, to represent a function or image as a linear combination of the wavelets
and scaling function. Thus, the wavelets and scaling function serve as an othonormal
or biorthonormal basis of the DWT expansion. The Daubechies and Biorthogonal
B-splines of Figs. 6.3(f) and (g) and the Haar basis functions of the previous section
are but three of the many bases that can be used in DWTs.

In this section, we present a mathematical framework for the interpretation and
application of discrete wavelet transforms. We use the discrete wavelet transform
with respect to Haar basis functions to illustrate the concepts introduced. As you
proceed through the material, remember that the discrete wavelet transform of a
function with respect to Haar basis functions is not the Haar transform of the func-
tion (although the two are intimately related).

SCALING FUNCTIONS

Consider the set of basis functions composed of all integer translations and binary
scalings of the real, square-integrable father scaling function w()x —that is, the set of
scaled and translated functions E Fw j k x j k, () | , H Z where

	 w wj k
j jx x k, () ()= 2 22

- 	 (6-121)

In this equation, integer translation k determines the position of w j k x, () along the
x-axis and scale j determines its shape—i.e., its width and amplitude. If we restrict j
to some value, say j = j0, then E Fw j k k

0 , | H Z is the basis of the function space spanned
by the w j k x, () for j = j0 and k = …, −1, 0, 1, 2, …, denoted Vj0

. Increasing j0 increases
the number of representable functions in Vj0

, allowing functions with smaller varia-
tions and finer detail to be included in the space. As is demonstrated in Fig. 6.19 with
Haar scaling functions, this is a consequence of the fact that as j0 increases, the scal-
ing functions used to represent the functions in Vj0

 become narrower and separated
by smaller changes in x.

EXAMPLE 6.15 : The Haar scaling function.

Consider the unit-height, unit-width scaling function

	 w()x
x

=




1 0 1

0

≤ <
otherwise

	 (6-122)

and note it is the Haar basis function h x0 () from Eq. (6-115). Figure 6.19 shows a few of the pulse-
shaped scaling functions that can be generated by substituting Eq. (6-122) into Eq. (6-121). Note when
the scale is 1 [i.e., when j = 1 as in Figs. 6.19(d) and (e)], the scaling functions are half as wide as when
the scale is 0 (i.e., when j = 0 as in Figs. 6.19(a) and (b)]. Moreover, for a given interval on x, there are

The discrete wavelet
transform, like all
transforms considered in
this chapter, generates
linear expansions of
functions with respect to
sets of orthonormal or
biorthonormal expansion
functions.

The coefficients of a 1-D
full-scale DWT with
respect to Haar wavelets
and a 1-D Haar trans-
form are the same.

Z is the set of integers.

Recall from Section 6.1
that the span of a basis is
the set of functions that
can be represented as
linear combinations of
the basis functions.

DIP4E_Print_Ready.indb 493 4/2/2017 8:40:03 PM

520 Chapter 6 Wavelet and Other Image Transforms

The cost function just described is both computationally simple and easily adapted to tree optimi-
zation routines. The optimization algorithm must use the function to minimize the “cost” of the leaf
nodes in the decomposition tree. Minimal energy leaf nodes should be favored because they have more
near-zero values, which leads to greater compression. Because the cost function of Eq. (6-163) is a local
measure that uses only the information available at the node under consideration, an efficient algorithm
for finding minimal energy solutions is easily constructed as follows:

For each node of the analysis tree, beginning with the root and proceeding level by level to the leaves:

1.	 Compute both the energy of the node, denoted EP (for parent energy), and the energy of its four
offspring—denoted as EA, EH, EV, and ED. For two-dimensional wavelet packet decompositions,
the parent is a two-dimensional array of approximation or detail coefficients; the offspring are the
filtered approximation, horizontal, vertical, and diagonal details.

2.	 If the combined energy of the offspring is less than the energy of the parent (that is, EA + EH + EV
+ ED < EP), include the offspring in the analysis tree. If the combined energy of the offspring is
greater than or equal to that of the parent, prune the offspring, keeping only the parent. It is a leaf
of the optimized analysis tree.

The preceding algorithm can be used to (1) prune wavelet packet trees or (2) design procedures for com-
puting optimal trees from scratch. In the latter case, nonessential siblings—descendants of nodes that

ba

FIGURE 6.39 (a) A scanned fingerprint and (b) its three-scale, full wavelet packet decomposition. Although the 64
subimages of the packet decomposition appear to be square (e.g., note the approximation subimage), this is merely
an aberration of the program used to produce the result. (Original image courtesy of the National Institute of Stan-
dards and Technology.)

DIP4E_Print_Ready.indb 520 4/2/2017 8:40:41 PM

526 Chapter 6 Wavelet and Other Image Transforms

ysis tree, labeling all nodes with the names of
the proper scaling and wavelet spaces.

(b)	 Draw and label the decomposition’s fre-
quency spectrum.

6.48	 Using the Haar wavelet, determine the minimum
entropy packet decomposition for the function
for f x() .= 0 25 for n = 0, 1, …, 15. Employ the
nonnormalized Shannon entropy

	 E f x f x f x
x

() ()ln ()[] =  ∑ 2 2

as the minimization criterion. Draw the opti-
mal tree, labeling the nodes with the computed
entropy values.

Projects
MATLAB solutions to the projects marked with an asterisk (*) are in the DIP4E Student Support Package (consult
the book website: www.ImageProcessingPlace.com).

6.1 *	 Write a function a = tmat4e(xform,n) to generate
transformation matrices of size n x n. Input string
xform should select between the Fourier, Hartley,
cosine, and sine transforms. Test your function by
generating the transformation matrices of size
8 8× for each of the supported transforms and
comparing the results to those in Figs. 6.7, 6.8, 6.10,
and 6.13.

6.2	 Write a pair of functions t = transform4e(f,xform) and
f = invTransform4e(t,xform) to compute the forward
and inverse 1- and 2-D transforms of discrete func-
tion f. If input f is two dimensional, it can assumed
to be a square matrix for simplicity. Input xform
should select a transformation in accordance with
tmat4e of Problem 6.1. If input f is a row or column
vector, compute a 1-D transform; if f is a matrix,
compute a 2-D transform.

(a)	 Use transform4e to check your answers to
Problem 6.29.

(b)	 Use invTransform4e to verify that all four trans-
forms are reversible.

6.3	 Write a function thp = idealFilter4e(f,xform,type,r) to
filter 2-D input function f using an ideal highpass

or lowpass filter with a cutoff frequency of radius r.
As in Projects 6.1 and 6.2, input xform should select
the transform employed. Use input type to specify
either highpass or lowpass filtering.

(a)	 Download the image characterTestPattern688.tif
and use your function to duplicate the results
of Example 6.12.

(b)	 Use function idealFilter4e to highpass filter the
downloaded image from (a) using the sup-
ported transforms. Use a cutoff frequency of
radius 60 and compare your results to that of
Fig. 4.53(a).

6.4	 Write a function i = basisImage4e(xform,n) to gen-
erate and display the basis images of 2-D trans-
form xform. Input xform should select between the
transforms supported by tmat4e from Project 6.1.
Organize and display the n x n basis images in an n
x n array as demonstrated in Fig. 6.6(a). Use your
function to generate and display the basis images
of the Fourier, Hartley, sine, and cosine trans-
forms of size 4 4× (i.e, with n set to 4). (Note: You
should display the real and imaginary parts of the
Fourier basis images separately.)

DIP4E_Print_Ready.indb 526 4/2/2017 8:40:47 PM

529

7 Color Image Processing

Preview
Using color in image processing is motivated by two principal factors. First, color is a powerful descrip-
tor that often simplifies object identification and extraction from a scene. Second, humans can discern
thousands of color shades, compared to only about two dozen shades of gray. The latter factor is par-
ticularly important in manual image analysis. Color image processing is divided into two major areas:
pseudo- and full-color processing. In the first category, the issue is one of assigning color(s) to a par-
ticular grayscale intensity or range of intensities. In the second, images typically are acquired using a
full-color sensor, such as a digital camera, or color scanner. Until just a few years ago, most digital color
image processing was done at the pseudo- or reduced-color level. However, because color sensors and
processing hardware have become available at reasonable prices, full-color image processing techniques
are now used in a broad range of applications. In the discussions that follow, it will become evident that
some of the grayscale methods covered in previous chapters are applicable also to color images.

Upon completion of this chapter, readers should:
	 Understand the fundamentals of color and

the color spectrum.

	 Be familiar with several of the color models
used in digital image processing.

	 Know how to apply basic techniques in pseudo-
color image processing, including intensity slic-
ing and intensity-to-color transformations.

	 Be familiar with how to determine if a gray-
scale method is extendible to color images.

	 Understand the basics of working with full-
color images, including color transformations,
color complements, and tone/color corrections.

	 Be familiar with the role of noise in color
image processing.

	 Know how to perform spatial filtering on col-
or images.

	 Understand the advantages of using color in
image segmentation.

It is only after years of preparation that the young artist should
touch color—not color used descriptively, that is, but as a means of
personal expression. Henri Matisse

For a long time I limited myself to one color—as a form of discipline.
Pablo Picasso

DIP4E_Print_Ready.indb 529 4/2/2017 8:40:49 PM

530 Chapter 7 Color Image Processing

7.1	 COLOR FUNDAMENTALS

Although the process employed by the human brain in perceiving and interpreting
color is a physiopsychological phenomenon that is not fully understood, the physical
nature of color can be expressed on a formal basis supported by experimental and
theoretical results.

In 1666, Sir Isaac Newton discovered that when a beam of sunlight passes through
a glass prism, the emerging light is not white, but consists instead of a continuous
spectrum of colors ranging from violet at one end to red at the other. As Fig. 7.1
shows, the color spectrum may be divided into six broad regions: violet, blue, green,
yellow, orange, and red. When viewed in full color (see Fig. 7.2), no color in the spec-
trum ends abruptly; rather, each color blends smoothly into the next.

Basically, the colors that humans and some other animals perceive in an object
are determined by the nature of the light reflected from the object. As illustrated in
Fig. 7.2, visible light is composed of a relatively narrow band of frequencies in the
electromagnetic spectrum. A body that reflects light that is balanced in all visible
wavelengths appears white to the observer. However, a body that favors reflectance
in a limited range of the visible spectrum exhibits some shades of color. For example,
green objects reflect light with wavelengths primarily in the 500 to 570 nm range,
while absorbing most of the energy at other wavelengths.

Characterization of light is central to the science of color. If the light is achro-
matic (void of color), its only attribute is its intensity, or amount. Achromatic light
is what you see on movie films made before the 1930s. As defined in Chapter 2, and
used numerous times since, the term gray (or intensity) level refers to a scalar mea-
sure of intensity that ranges from black, to grays, and finally to white.

Chromatic light spans the electromagnetic spectrum from approximately 400
to 700 nm. Three basic quantities used to describe the quality of a chromatic light
source are: radiance, luminance, and brightness. Radiance is the total amount of
energy that flows from the light source, and it is usually measured in watts (W).
Luminance, measured in lumens (lm), is a measure of the amount of energy that
an observer perceives from a light source. For example, light emitted from a source
operating in the far infrared region of the spectrum could have significant energy
(radiance), but an observer would hardly perceive it; its luminance would be almost
zero. Finally, brightness is a subjective descriptor that is practically impossible to
measure. It embodies the achromatic notion of intensity, and is one of the key fac-
tors in describing color sensation.

7.1

FIGURE 7.1
Color spectrum
seen by passing
white light through
a prism.
(Courtesy of the
General Electric
Co., Lighting
Division.)

DIP4E_Print_Ready.indb 530 4/2/2017 8:40:51 PM

7.1 Color Fundamentals 531

As noted in Section 2.1, cones are the sensors in the eye responsible for color
vision. Detailed experimental evidence has established that the 6 to 7 million cones in
the human eye can be divided into three principal sensing categories, corresponding
roughly to red, green, and blue. Approximately 65% of all cones are sensitive to red
light, 33% are sensitive to green light, and only about 2% are sensitive to blue. How-
ever, the blue cones are the most sensitive. Figure 7.3 shows average experimental
curves detailing the absorption of light by the red, green, and blue cones in the eye.
Because of these absorption characteristics, the human eye sees colors as variable
combinations of the so-called primary colors: red (R), green (G), and blue (B).

For the purpose of standardization, the CIE (Commission Internationale de
l’Eclairage—the International Commission on Illumination) designated in 1931 the
following specific wavelength values to the three primary colors: blue nm,= 435 8.
green nm,= 546 1. and red nm.= 700 This standard was set before results such as
those in Fig. 7.3 became available in 1965. Thus, the CIE standards correspond only
approximately with experimental data. It is important to keep in mind that defining
three specific primary color wavelengths for the purpose of standardization does

FIGURE 7.2
Wavelengths compris-
ing the visible range
of the electromagnetic
spectrum. (Courtesy of
the General Electric
Co., Lighting Division.)

FIGURE 7.3
Absorption of
light by the red,
green, and blue
cones in the
human eye as a
function of
wavelength.

A
bs

or
pt

io
n

(a
rb

it
ra

ry
 u

ni
ts

)

400 450 500 550 600 650 700 nm

B
lu

is
h

pu
rp

le

445 nm

Blue

535 nm

Green

575 nm

Red

P
ur

pl
is

h
bl

ue

B
lu

e

B
lu

e
gr

ee
n

G
re

en

Y
el

lo
w

is
h

gr
ee

n

Y
el

lo
w

O
ra

ng
e

R
ed

di
sh

 o
ra

ng
e

R
ed

DIP4E_Print_Ready.indb 531 4/2/2017 8:40:51 PM

538 Chapter 7 Color Image Processing

numbers representable by the number bits in the images. If, as above, the primary
images are 8-bit images, the limits of the cube along each axis becomes [,].0 255
Then, for example, white would be at point [, ,]255 255 255 in the cube.

EXAMPLE 7.1 : Generating a cross-section of the RGB color cube and its thee hidden planes.

The cube in Fig. 7.8 is a solid, composed of the ()28 3 colors mentioned in the preceding paragraph. A
useful way to view these colors is to generate color planes (faces or cross sections of the cube). This is
done by fixing one of the three colors and allowing the other two to vary. For instance, a cross-sectional
plane through the center of the cube and parallel to the GB-plane in Fig. 7.8 is the plane (127, G, B) for
G B, , , , , .= 0 1 2 255… Figure 7.9(a) shows that an image of this cross-sectional plane is generated by feed-
ing the three individual component images into a color monitor. In the component images, 0 represents
black and 255 represents white. Observe that each component image into the monitor is a grayscale
image. The monitor does the job of combining the intensities of these images to generate an RGB image.
Figure 7.9(b) shows the three hidden surface planes of the cube in Fig. 7.8, generated in a similar manner.

Acquiring a color image is the process shown in Fig. 7.9(a) in reverse. A color image can be acquired
by using three filters, sensitive to red, green, and blue, respectively. When we view a color scene with a
monochrome camera equipped with one of these filters, the result is a monochrome image whose inten-
sity is proportional to the response of that filter. Repeating this process with each filter produces three
monochrome images that are the RGB component images of the color scene. In practice, RGB color
image sensors usually integrate this process into a single device. Clearly, displaying these three RGB
component images as in Fig. 7.9(a) would yield an RGB color rendition of the original color scene.	

THE CMY AND CMYK COLOR MODELS
As indicated in Section 7.1, cyan, magenta, and yellow are the secondary colors of
light or, alternatively, they are the primary colors of pigments. For example, when
a surface coated with cyan pigment is illuminated with white light, no red light is
reflected from the surface. That is, cyan subtracts red light from reflected white light,
which itself is composed of equal amounts of red, green, and blue light.

Most devices that deposit colored pigments on paper, such as color printers and
copiers, require CMY data input or perform an RGB to CMY conversion internally.
This conversion is performed using the simple operation

FIGURE 7.8
A 24-bit RGB
color cube.

DIP4E_Print_Ready.indb 538 4/2/2017 8:40:55 PM

7.3 Pseudocolor Image Processing 557

the fourth is in the near infrared (IR) band (see Table 1.1 and Fig. 1.10). The latter band is responsive
to the biomass content of a scene, and we want to use this fact to create a composite RGB color image
in which vegetation is emphasized and the other components of the scene are displayed in more muted
tones.

Figure 7.25(e) is an RGB composite obtained by replacing the red image by infrared. As you see, veg-
etation shows as a bright red, and the other components of the scene, which had a weaker response in
the near-infrared band, show in pale shades of blue-green. Figure 7.25(f) is a similar image, but with the
green replaced by infrared. Here, vegetation shows in a bright green color, and the other components of
the scene show in purplish color shades, indicating that their major components are in the red and blue
bands. Although the last two images do not introduce any new physical information, these images are
much easier to interpret visually once it is known that the dominant component of the images are pixels
of areas heavily populated by vegetation.

The type of processing just illustrated uses the physical characteristics of a single band in a multi-
spectral image to emphasize areas of interest. The same approach can help visualize events of interest

ba c
ed f

FIGURE 7.25 (a)–(d) Red (R), green (G), blue (B), and near-infrared (IR) components of a LANDSAT multispectral
image of the Washington, D.C. area. (e) RGB color composite image obtained using the IR, G, and B component
images. (f) RGB color composite image obtained using the R, IR, and B component images. (Original multispectral
images courtesy of NASA.)

DIP4E_Print_Ready.indb 557 4/2/2017 8:41:09 PM

7.7 Using Color in Image Segmentation 579

when compared to a spherical or elliptical enclosure. Note that the preceding discus-
sion is a generalization of the color-slicing method introduced in Section 7.5.

EXAMPLE 7.15 : Color segmentation in RGB color space.

The rectangular region shown Fig. 7.42(a) contains samples of reddish colors we wish to segment out
of the color image. This is the same problem we considered in Example 7.14 using hue, but now we
approach the problem using RGB color vectors. The approach followed was to compute the mean vec-
tor a using the color points contained within the rectangle in Fig. 7.42(a), and then to compute the
standard deviation of the red, green, and blue values of those samples. A box was centered at a, and its
dimensions along each of the RGB axes were selected as 1.25 times the standard deviation of the data
along the corresponding axis. For example, let sR denote the standard deviation of the red components

b
a

FIGURE 7.42
Segmentation in
RGB space.
(a) Original image
with colors of
interest shown
enclosed by a
rectangle.
(b) Result of
segmentation
in RGB vector
space. Compare
with Fig. 7.40(h).

DIP4E_Print_Ready.indb 579 4/2/2017 8:41:23 PM

 Projects 591

7.24 *	 Given an image in the RGB, CMY, or CMYK
color system, how would you implement the col-
or equivalent of gray-scale histogram matching
(specification) from Section 3.3?

7.25	 Consider the following 500 500× RGB image, in
which the squares are fully saturated red, green,
and blue, and each of the colors is at maximum
intensity. An HSI image is generated from this
image. Answer the following questions.

Green Red

Blue Green

(a)	 Describe the appearance of each HSI com-
ponent image.

(b) *	The saturation component of the HSI image
is smoothed using an averaging kernel of
size 125 125× . Describe the appearance of
the result. (You may ignore image border
effects in the filtering operation.)

(c)	 Repeat (b) for the hue image.

7.26	 Answer the following.

(a) *	Refer to the discussion in Section 7.7 about
segmentation in the RGB color space. Give
a procedure (in flow chart form) for deter-

mining whether a color vector (point) z is
inside a cube with sides W, centered at an
average color vector a. Distance computa-
tions are not allowed.

(b)	 If the box is aligned with the axes this pro-
cess also can be implemented on an image-
by-image basis. Show how you would do it.

7.27	 Show that Eq. (7-49) reduces to Eq. (7-48) when
C I= , the identity matrix.

7.28	 Sketch the surface in RGB space for the points
that satisfy the equation

	 D D
Tz,a z a C z a() = () ()



 =−− −1

0

1
2

where D0 is a positive constant. Assume that
a 0= , and that

	 C =
















8 0 0

0 1 0

0 0 1

7.29	 Refer to the discussion on color edge detection
in Section 7.7. One might think that a logical
approach for defining the gradient of an RGB
image at any point (,)x y would be to compute
the gradient vector (see Section 3.6) of each com-
ponent image and then form a gradient vector for
the color image by summing the three individual
gradient vectors. Unfortunately, this method can
at times yield erroneous results. Specifically, it is
possible for a color image with clearly defined
edges to have a zero gradient if this method were
used. Give an example of such an image. (Hint:
To simplify your analysis, set one of the color
planes to a constant value.)

Projects
MATLAB solutions to the projects marked with an asterisk (*) are in the DIP4E Student Support Package (consult
the book web site: www.ImageProcessingPlace.com).

7.1	 RGB color cube.

(a) *	(a) Write a function g = rgbcube4e(vz,vy,vz) to
generate and display the RGB color cube in
Fig. 7.8 (see Fig. 7.7 for axis-color definitions).
The inputs are the three coordinates of your
viewing position with reference to the origin

of the cube. You should be able to view the
cube from any 3-D viewpoint, and be able to
extract any of its face images. Output g is an
image of the cube displayed by this function.
(Hint: Consider using MATLAB function
patch to generate the cube, and the pair of
functions getframe and frame2im to capture g.)

DIP4E_Print_Ready.indb 591 4/2/2017 8:41:32 PM

595

8 Image Compression and
Watermarking

Preview
Image compression, the art and science of reducing the amount of data required to represent an image,
is one of the most useful and commercially successful technologies in the field of digital image process-
ing. The number of images that are compressed and decompressed daily is staggering, and the compres-
sions and decompressions themselves are virtually invisible to the user. Everyone who owns a digital
camera, surfs the web, or streams the latest Hollywood movies over the Internet benefits from the algo-
rithms and standards that will be discussed in this chapter. The material, which is largely introductory in
nature, is applicable to both still-image and video applications. We will introduce both theory and prac-
tice, examining the most frequently used compression techniques, and describing the industry standards
that make them useful. The chapter concludes with an introduction to digital image watermarking, the
process of inserting visible and invisible data (such as copyright information) into images.

Upon competion of this chapter, students should:
	 Be able to measure the amount of informa-

tion in a digital image.

	 Understand the main sources of data redun-
dancy in digital images.

	 Know the difference between lossy and error-
free compression, and the amount of com-
pression that is possible with each.

	 Be familiar with the popular image compres-
sion standards, such as JPEG and JPEG-2000,
that are in use today.

	 Understand the principal image compression
methods, and how and why they work.

	 Be able to compress and decompress grayscale,
color, and video imagery.

	 Know the difference between visible, invisible,
robust, fragile, public, private, restricted-key,
and unrestricted-key watermarks.

	 Understand the basics of watermark insertion
and extraction in both the spatial and trans-
form domain.

But life is short and information endless ... Abbreviation is a
necessary evil and the abbreviator’s business is to make the best of
a job which, although bad, is still better than nothing.

Aldous Huxley
The Titanic will protect itself.

Robert Ballard

DIP4E_Print_Ready.indb 595 4/2/2017 8:41:32 PM

596 Chapter 8 Image Compression and Watermarking

8.1	FUNDAMENTALS

The term data compression refers to the process of reducing the amount of data
required to represent a given quantity of information. In this definition, data and
information are not the same; data are the means by which information is conveyed.
Because various amounts of data can be used to represent the same amount of infor-
mation, representations that contain irrelevant or repeated information are said to
contain redundant data. If we let b and ′b denote the number of bits (or information-
carrying units) in two representations of the same information, the relative data
redundancy, R, of the representation with b bits is

	 R
C

= 1
1

- 	 (8-1)

where C, commonly called the compression ratio, is defined as

	 C
b
b

=
′

	 (8-2)

If C = 10 (sometimes written 10:1), for instance, the larger representation has 10
bits of data for every 1 bit of data in the smaller representation. The corresponding
relative data redundancy of the larger representation is 0.9 (R = 0.9), indicating that
90% of its data is redundant.

In the context of digital image compression, b in Eq. (8-2) usually is the number of
bits needed to represent an image as a 2-D array of intensity values. The 2-D inten-
sity arrays introduced in Section 2.4 are the preferred formats for human viewing
and interpretation—and the standard by which all other representations are judged.
When it comes to compact image representation, however, these formats are far
from optimal. Two-dimensional intensity arrays suffer from three principal types of
data redundancies that can be identified and exploited:

1.	 Coding redundancy. A code is a system of symbols (letters, numbers, bits, and
the like) used to represent a body of information or set of events. Each piece of
information or event is assigned a sequence of code symbols, called a code word.
The number of symbols in each code word is its length. The 8-bit codes that are
used to represent the intensities in most 2-D intensity arrays contain more bits
than are needed to represent the intensities.

2.	 Spatial and temporal redundancy. Because the pixels of most 2-D intensity
arrays are correlated spatially (i.e., each pixel is similar to or dependent upon
neighboring pixels), information is unnecessarily replicated in the representa-
tions of the correlated pixels. In a video sequence, temporally correlated pixels
(i.e., those similar to or dependent upon pixels in nearby frames) also duplicate
information.

3.	 Irrelevant information. Most 2-D intensity arrays contain information that is
ignored by the human visual system and/or extraneous to the intended use of
the image. It is redundant in the sense that it is not used.

8.1

DIP4E_Print_Ready.indb 596 4/2/2017 8:41:33 PM

8.1 Fundamentals 601

quantization. This terminology is consistent with normal use of the word, which gen-
erally means the mapping of a broad range of input values to a limited number of
output values (see Section 2.4). Because information is lost, quantization is an irre-
versible operation.

MEASURING IMAGE INFORMATION

In the previous sections, we introduced several ways to reduce the amount of data
used to represent an image. The question that naturally arises is: How few bits are
actually needed to represent the information in an image? That is, is there a mini-
mum amount of data that is sufficient to describe an image without losing infor-
mation? Information theory provides the mathematical framework to answer this
and related questions. Its fundamental premise is that the generation of information
can be modeled as a probabilistic process which can be measured in a manner that
agrees with intuition. In accordance with this supposition, a random event E with
probability P(E) is said to contain

	 I E
P E

P E() log
()

log ()= =
1

- 	 (8-5)

units of information. If P(E) = 1 (that is , the event always occurs), I(E) = 0 and no
information is attributed to it. Because no uncertainty is associated with the event,
no information would be transferred by communicating that the event has occurred
[it always occurs if P(E) = 1].

The base of the logarithm in Eq. (8-5) determines the unit used to measure infor-
mation. If the base m logarithm is used, the measurement is said to be in m-ary units.
If the base 2 is selected, the unit of information is the bit. Note that if P(E) = ½,
I E() log= - 2 ½ or 1 bit. That is, 1 bit is the amount of information conveyed when
one of two possible equally likely events occurs. A simple example is flipping a coin
and communicating the result.

Consult the book web-
site for a brief review of
information and prob-
ability theory.

.

ba

FIGURE 8.3
(a) Histogram
of the image in
Fig. 8.1(c) and
(b) a histogram
equalized version
of the image.

Intensity

N
um

be
r

of
 p

ix
el

s

0
0

100 250150

1000

20050

2000

3000

4000

5000

6000

7000

DIP4E_Print_Ready.indb 601 4/2/2017 8:41:37 PM

602 Chapter 8 Image Compression and Watermarking

Given a source of statistically independent random events from a discrete set of
possible events a a aJ1 1, , ,p{ } with associated probabilities P a P a P aJ(), (), , () ,1 1 p{ }
the average information per source output, called the entropy of the source, is

	 H P a P aj j
j

J

=
=
∑- () log ()

1

	 (8-6)

The aj in this equation are called source symbols. Because they are statistically inde-
pendent, the source itself is called a zero-memory source.

If an image is considered to be the output of an imaginary zero-memory “inten-
sity source,” we can use the histogram of the observed image to estimate the symbol
probabilities of the source. Then, the intensity source’s entropy becomes

	 H p r p rr k r k
k

L

=
=

∑-

-

() log ()2
0

1

	 (8-7)

where variables L, rk, and p rr k() are as defined earlier and in Section 3.3. Because
the base 2 logarithm is used, Eq. (8-7) is the average information per intensity out-
put of the imaginary intensity source in bits. It is not possible to code the intensity
values of the imaginary source (and thus the sample image) with fewer than H bits/
pixel.

EXAMPLE 8.2 : Image entropy estimates.

The entropy of the image in Fig. 8.1(a) can be estimated by substituting the intensity probabilities from
Table 8.1 into Eq. (8-7):

	

H = []- + + +

=

0 25 0 25 0 47 0 47 0 25 0 25 0 03 0 032 2 2 2. log . . log . . log . . log .

-- - + - + - + -0 25 2 0 47 1 09 0 25 2 0 03 5 06

1 6614

. () . (.) . () . (.)

.
[]

≈ bits/ppixel

In a similar manner, the entropies of the images in Fig. 8.1(b) and (c) can be shown to be 8 bits/pixel and
1.566 bits/pixel, respectively. Note that the image in Fig. 8.1(a) appears to have the most visual informa-
tion, but has almost the lowest computed entropy—1.66 bits/pixel. The image in Fig. 8.1(b) has almost
five times the entropy of the image in (a), but appears to have about the same (or less) visual informa-
tion. The image in Fig. 8.1(c), which seems to have little or no information, has almost the same entropy
as the image in (a). The obvious conclusion is that the amount of entropy, and thus information in an
image, is far from intuitive.

Shannon’s First Theorem

Recall that the variable-length code in Example 8.1 was able to represent the inten-
sities of the image in Fig. 8.1(a) using only 1.81 bits/pixel. Although this is higher
than the 1.6614 bits/pixel entropy estimate from Example 8.2, Shannon’s first theo-
rem, also called the noiseless coding theorem (Shannon [1948]), assures us that the

Equation (8-6) is for
zero-memory sources
with J source symbols.
Equation (8-7) uses
probablitiy estimates
for the L - 1 intensity
values in an image.

DIP4E_Print_Ready.indb 602 4/2/2017 8:41:37 PM

8.1 Fundamentals 603

image in Fig. 8.1(a) can be represented with as few as 1.6614 bits/pixel. To prove
it in a general way, Shannon looked at representing groups of consecutive source
symbols with a single code word (rather than one code word per source symbol),
and showed that

	 lim ,

n

nL

n
H

→









 =



avg 	 (8-8)

where Lavg, n is the average number of code symbols required to represent all n-sym-
bol groups. In the proof, he defined the nth extension of a zero-memory source to
be the hypothetical source that produces n-symbol blocks† using the symbols of the
original source, and computed Lavg, n by applying Eq. (8-4) to the code words used
to represent the n-symbol blocks. Equation (8-8) tells us that L nnavg, can be made
arbitrarily close to H by encoding infinitely long extensions of the single-symbol
source. That is, it is possible to represent the output of a zero-memory source with
an average of H information units per source symbol.

If we now return to the idea that an image is a “sample” of the intensity source
that produced it, a block of n source symbols corresponds to a group of n adjacent
pixels. To construct a variable-length code for n-pixel blocks, the relative frequencies
of the blocks must be computed. But the nth extension of a hypothetical intensity
source with 256 intensity values has 256n possible n-pixel blocks. Even in the simple
case of n = 2, a 65,536 element histogram and up to 65,536 variable-length code
words must be generated. For n = 3, as many as 16,777,216 code words are needed.
So even for small values of n, computational complexity limits the usefulness of the
extension coding approach in practice.

Finally, we note that although Eq. (8-7) provides a lower bound on the compres-
sion that can be achieved when directly coding statistically independent pixels, it
breaks down when the pixels of an image are correlated. Blocks of correlated pixels
can be coded with fewer average bits per pixel than the equation predicts. Rather
than using source extensions, less correlated descriptors (such as intensity run-
lengths) are normally selected and coded without extension. This was the approach
used to compress Fig. 8.1(b) in the section on spatial and temporal redundancy.
When the output of a source of information depends on a finite number of preced-
ing outputs, the source is called a Markov source or finite memory source.

FIDELITY CRITERIA

It was noted earlier that the removal of “irrelevant visual” information involves a
loss of real or quantitative image information. Because information is lost, a means
of quantifying the nature of the loss is needed. Two types of criteria can be used for
such an assessment: (1) objective fidelity criteria, and (2) subjective fidelity criteria.

† The output of the nth extension is an n-tuple of symbols from the underlying single-symbol source. It was con-
sidered a block random variable in which the probability of each n-tuple is the product of the probabilities of
its individual symbols. The entropy of the nth extension is then n times the entropy of the single-symbol source
from which it is derived.

DIP4E_Print_Ready.indb 603 4/2/2017 8:41:38 PM

8.1 Fundamentals 607

In the third and final stage of the encoding process, the symbol coder of Fig. 8.5
generates a fixed-length or variable-length code to represent the quantizer output,
and maps the output in accordance with the code. In many cases, a variable-length
code is used. The shortest code words are assigned to the most frequently occur-
ring quantizer output values, thus minimizing coding redundancy. This operation is
reversible. Upon its completion, the input image has been processed for the removal
of each of the three redundancies described in the previous sections.

The Decoding or Decompression Process

The decoder of Fig. 8.5 contains only two components: a symbol decoder and an
inverse mapper. They perform, in reverse order, the inverse operations of the encod-
er’s symbol encoder and mapper. Because quantization results in irreversible infor-
mation loss, an inverse quantizer block is not included in the general decoder model.
In video applications, decoded output frames are maintained in an internal frame
store (not shown) and used to reinsert the temporal redundancy that was removed
at the encoder.

IMAGE FORMATS, CONTAINERS, AND COMPRESSION STANDARDS

In the context of digital imaging, an image file format is a standard way to organize
and store image data. It defines how the data is arranged and the type of compres-
sion (if any) that is used. An image container is similar to a file format, but han-
dles multiple types of image data. Image compression standards, on the other hand,
define procedures for compressing and decompressing images—that is, for reducing
the amount of data needed to represent an image. These standards are the underpin-
ning of the widespread acceptance of image compression technology.

Figure 8.6 lists the most important image compression standards, file formats, and
containers in use today, grouped by the type of image handled. The entries in blue
are international standards sanctioned by the International Standards Organization
(ISO), the International Electrotechnical Commission (IEC), and/or the International
Telecommunications Union (ITU-T)—a United Nations (UN) organization that was
once called the Consultative Committee of the International Telephone and Telegraph
(CCITT). Two video compression standards, VC-1 by the Society of Motion Pictures
and Television Engineers (SMPTE) and AVS by the Chinese Ministry of Information
Industry (MII), are also included. Note that they are shown in black, which is used
in Fig. 8.6 to denote entries that are not sanctioned by an international standards
organization.

Tables 8.3 through 8.5 summarize the standards, formats, and containers listed
in Fig. 8.6. Responsible organizations, targeted applications, and key compression
methods are identified. The compression methods themselves are the subject of Sec-
tions 8.2 through 8.11, where we will describe the principal lossy and error-free com-
pression methods in use today. The focus of these sections is on methods that have
proven useful in mainstream binary, continuous-tone still-image, and video com-
pression standards. The standards themselves are used to demonstrate the methods
presented. In Tables 8.3 through 8.5, forward references to the relevant sections in
which the compression methods are described are enclosed in square brackets.

DIP4E_Print_Ready.indb 607 4/2/2017 8:45:59 PM

8.4 Arithmetic Coding 617

	
2 2 2 8 2 2 2 2

7 8 15

0 1 2 0 1 2 3+ + + + +≤ <
≤ <

The unary code of 3 is 1110 and Eq. (8-17) of Step 2 yields

	 8 2 8 2 8 2 2 2 8 7 1 00010 0 1 2

0

2

0

3 1

− − − + + −+
−

j j

jj

= = () = = =
==
∑∑

which when truncated to its 3 0+ least significant bits becomes 001. The concatena-
tion of the results from Steps 1 and 2 then yields 1110001. Note that this is the entry
in column 4 of Table 8.6 for n = 8. Finally, we note that like the Huffman codes of the
last section, the Golomb codes of Table 8.6 are variable-length, instantaneous, and
uniquely decodable block codes.

8.4	ARITHMETIC CODING

Unlike the variable-length codes of the previous two sections, arithmetic coding gen-
erates nonblock codes. In arithmetic coding, which can be traced to the work of Elias
(Abramson [1963]), a one-to-one correspondence between source symbols and code
words does not exist. Instead, an entire sequence of source symbols (or message) is
assigned a single arithmetic code word. The code word itself defines an interval of
real numbers between 0 and 1. As the number of symbols in the message increases,
the interval used to represent it becomes smaller, and the number of information
units (say, bits) required to represent the interval becomes larger. Each symbol of
the message reduces the size of the interval in accordance with its probability of
occurrence. Because the technique does not require, as does Huffman’s approach,
that each source symbol translate into an integral number of code symbols (that is,
that the symbols be coded one at a time), it achieves (but only in theory) the bound
established by Shannon’s first theorem of Section 8.1.

Figure 8.12 illustrates the basic arithmetic coding process. Here, a five-symbol
sequence or message, a1a2a3a3a4, from a four-symbol source is coded. At the start of
the coding process, the message is assumed to occupy the entire half-open interval
[0, 1). As Table 8.7 shows, this interval is subdivided initially into four regions based
on the probabilities of each source symbol. Symbol a1, for example, is associated with
subinterval [0, 0.2). Because it is the first symbol of the message being coded, the
message interval is initially narrowed to [0, 0.2). Thus, in Fig. 8.12, [0, 0.2) is expanded
to the full height of the figure, and its end points labeled by the values of the nar-
rowed range. The narrowed range is then subdivided in accordance with the original

8.4

With reference to
Tables 8.3–8.5, arithmetic
coding is used in

•	 JBIG1
•	 JBIG2
•	 JPEG-2000
•	 H.264
•	 MPEG-4 AVC

and other compression
standards.

Source Symbol Probability Initial Subinterval

a1 0.2 [0.0, 0.2)

a2 0.2 [0.2, 0.4)

a3 0.4 [0.4, 0.8)

a4 0.2 [0.8, 1.0)

TABLE 8.7
Arithmetic coding
example.

DIP4E_Print_Ready.indb 617 4/2/2017 8:46:07 PM

628 Chapter 8 Image Compression and Watermarking

EXAMPLE 8.10 : CCITT compression example.

Figure 8.16(a) is a 300 dpi scan of a 7 9 25* . inch book page displayed at about 1 3 scale. Note that about
half of the page contains text, around 9% is occupied by a halftone image, and the rest is white space.
A section of the page is enlarged in Fig. 8.16(b). Keep in mind that we are dealing with a binary image;
the illusion of gray tones is created, as was described in Section 4.5, by the halftoning process used in
printing. If the binary pixels of the image in Fig. 8.16(a) are stored in groups of 8 pixels per byte, the
1952 2697× bit scanned image, commonly called a document, requires 658,068 bytes. An uncompressed
PDF file of the document (created in Photoshop) requires 663,445 bytes. CCITT Group 3 compression
reduces the file to 123,497 bytes, resulting in a compression ratio C = 5 37. . CCITT Group 4 compression
reduces the file to 110,456 bytes, increasing the compression ratio to about 6.

8.7	SYMBOL-BASED CODING

In symbol- or token-based coding, an image is represented as a collection of fre-
quently occurring subimages, called symbols. Each such symbol is stored in a sym-
bol dictionary and the image is coded as a set of triplets (, ,),(, ,), ,x y t x y t1 1 1 2 2 2 p{ }
where each (,)x yi i pair specifies the location of a symbol in the image and token
ti is the address of the symbol or subimage in the dictionary. That is, each triplet
represents an instance of a dictionary symbol in the image. Storing repeated sym-
bols only once can compress images significantly, particularly in document storage
and retrieval applications where the symbols are often character bitmaps that are
repeated many times.

8.7

With reference to
Tables 8.3–8.5, symbol-
based coding is used in

•	 JBIG2

compression.

ba

FIGURE 8.16
A binary scan of
a book page: (a)
scaled to show
the general page
content;
(b) scaled to show
the binary pixels
used in dithering.

DIP4E_Print_Ready.indb 628 4/2/2017 8:46:13 PM

8.7 Symbol-based Coding 629

Consider the simple bilevel image in Fig. 8.17(a). It contains the single word,
banana, which is composed of three unique symbols: a b, three a’s, and two n’s.
Assuming that the b is the first symbol identified in the coding process, its 9 7* bit-
map is stored in location 0 of the symbol dictionary. As Fig. 8.17(b) shows, the token
identifying the b bitmap is 0. Thus, the first triplet in the encoded image’s represen-
tation [see Fig. 8.17(c)] is (0, 2, 0), indicating that the upper-left corner (an arbitrary
convention) of the rectangular bitmap representing the b symbol is to be placed
at location (0, 2) in the decoded image. After the bitmaps for the a and n symbols
have been identified and added to the dictionary, the remainder of the image can
be encoded with five additional triplets. As long as the six triplets required to locate
the symbols in the image, together with the three bitmaps required to define them,
are smaller than the original image, compression occurs. In this case, the starting
image has 9 51 1* * or 459 bits and, assuming that each triplet is composed of three
bytes, the compressed representation has () () () ()6 3 8 9 7 6 7 6 6* * + * * *+ +[] or
285 bits; the resulting compression ratio C = 1 61. . To decode the symbol-based rep-
resentation in Fig. 8.17(c), you simply read the bitmaps of the symbols specified in
the triplets from the symbol dictionary and place them at the spatial coordinates
specified in each triplet.

Symbol-based compression was proposed in the early 1970s (Ascher and Nagy
[1974]), but has become practical only recently. Advances in symbol-matching algo-
rithms (see Chapter 13) and increased CPU computer processing speeds have made
it possible to both select dictionary symbols and to find where they occur in an
image in a timely manner. And like many other compression methods, symbol-based
decoding is significantly faster than encoding. Finally, we note that both the symbol
bitmaps that are stored in the dictionary and the triplets used to reference them
themselves can be encoded to further improve compression performance. If, as in
Fig. 8.17, only exact symbol matches are allowed, the resulting compression is loss-
less; if small differences are permitted, some level of reconstruction error will be
present.

JBIG2 COMPRESSION

JBIG2 is an international standard for bilevel image compression. By segmenting
an image into overlapping and/or non-overlapping regions of text, halftone, and
generic content, compression techniques that are specifically optimized for each
type of content are employed:

ba c

FIGURE 8.17
(a) A bi-level
document, (b)
symbol dictionary,
and (c) the trip-
lets used to locate
the symbols in the
document.

Token Symbol Triplet

0

1

2

(0, 2, 0)
(3,10, 1)
(3, 18, 2)
(3, 26, 1)
(3, 34, 2)
(3, 42, 1)

DIP4E_Print_Ready.indb 629 4/2/2017 8:46:14 PM

8.10 Predictive Coding 661

EXAMPLE 8.22 : Video compression example.

We conclude our discussion of motion compensated predictive coding with an example illustrating the
kind of compression that is possible with modern video compression methods. Figure 8.37 shows fifteen
frames of a 1 minute HD ()1280 720× full-color NASA video, parts of which have been used throughout
this section. Although the images shown are monochrome, the video is a sequence of 1,829 full-color
frames. Note that there are a variety of scenes, a great deal of motion, and multiple fade effects. For
example, the video opens with a 150 frame fade-in from black, which includes frames 21 and 44 in
Fig. 8.37, and concludes with a fade sequence containing frames 1595, 1609, and 1652 in Fig. 8.37, fol-
lowed by a final fade to black. There are also several abrupt scene changes, like the change involving
frames 1303 and 1304 in Fig. 8.37.

An H.264 compressed version of the NASA video stored as a Quicktime file (see Table 8.5) requires
44.56 MB of storage, plus another 1.39 MB for the associated audio. The video quality is excellent. About
5 GB of data would be needed to store the video frames as uncompressed full-color images. It should
be noted that the video contains sequences involving both rotation and scale change (e.g., the sequence
including frames 959, 1023, and 1088 in Fig. 8.37). The discussion in this section, however, has been
limited to translation alone. (See the book website for the NASA video segment used in this example.)

LOSSY PREDICTIVE CODING

In this section, we add a quantizer to the lossless predictive coding model introduced
earlier, and examine the trade-off between reconstruction accuracy and compres-
sion performance within the context of spatial predictors. As Fig. 8.38 shows, the
quantizer, which replaces the nearest integer function of the error-free encoder, is
inserted between the symbol encoder and the point at which the prediction error is
formed. It maps the prediction error into a limited range of outputs, denoted e n(),
which establish the amount of compression and distortion that occurs.

FIGURE 8.36
A typical motion
compensated
video encoder.

Prediction macroblock

Encoded
macroblock

Image
macroblock

Difference
macroblock

Decoded
macroblock

Encoded
motion
vector

Variable-length
coding

Quantizer
Mapper

(e.g., DCT)

Rate
controller

Buffer

Inverse
quantizer

Inverse
Mapper

(e.g., DCT-1)

Variable-length
coding

Motion estimator and
compensator w/frame delay

�
�

�
�

DIP4E_Print_Ready.indb 661 4/2/2017 8:46:34 PM

662 Chapter 8 Image Compression and Watermarking

FIGURE 8.37 Fifteen frames from an 1829-frame, 1-minute NASA video. The original video is in HD full color.
(Courtesy of NASA.)

Frame 0021 Frame 0044 Frame 0201

Frame 0266 Frame 0424 Frame 0801

Frame 0959 Frame 1023 Frame 1088

Frame 1224 Frame 1303 Frame 1304

Frame 1595 Frame 1609 Frame 1652

DIP4E_Print_Ready.indb 662 4/2/2017 8:46:36 PM

8.11 Wavelet Coding 679

FIGURE 8.46 Four JPEG-2000 approximations of Fig. 8.9(a). Each row contains a result after compression and recon-
struction, the scaled difference between the result and the original image, and a zoomed portion of the recon-
structed image. (Compare the results in rows 1 and 2 with the JPEG results in Fig. 8.29.).

DIP4E_Print_Ready.indb 679 4/2/2017 8:46:50 PM

680 Chapter 8 Image Compression and Watermarking

A visual comparison of the error images in rows 1 and 2 of Fig. 8.46 with the corresponding images
in Figs. 8.29(b) and (e) reveals a noticeable decrease of error in the JPEG-2000 results—3.86 and 5.77
intensity levels, as opposed to 5.4 and 10.7 intensity levels for the JPEG results. The computed errors
favor the wavelet-based results at both compression levels. Besides decreasing reconstruction error,
wavelet coding dramatically increases (in a subjective sense) image quality. Note that the blocking arti-
fact that dominated the JPEG results [see Figs. 8.29(c) and (f)] is not present in Fig. 8.46. Finally, we
note that the compression achieved in rows 3 and 4 of Fig. 8.46 is not practical with JPEG. JPEG-2000
provides useable images that are compressed by more than 100:1, with the most objectionable degrada-
tion being increased image blur.

8.12	DIGITAL IMAGE WATERMARKING

The methods and standards of Sections 8.2 through 8.11 make the distribution of
images (in photographs or videos) on digital media and over the Internet practi-
cal. Unfortunately, the images so distributed can be copied repeatedly and without
error, putting the rights of their owners at risk. Even when encrypted for distribution,
images are unprotected after decryption. One way to discourage illegal duplication
is to insert one or more items of information, collectively called a watermark, into
potentially vulnerable images in such a way that the watermarks are inseparable
from the images themselves. As integral parts of the watermarked images, they pro-
tect the rights of their owners in a variety of ways, including:

1.	 Copyright identification. Watermarks can provide information that serves as
proof of ownership when the rights of the owner have been infringed.

2.	 User identification or fingerprinting. The identity of legal users can be encoded
in watermarks and used to identify sources of illegal copies.

3.	Authenticity determination. The presence of a watermark can guarantee that an
image has not been altered, assuming the watermark is designed to be destroyed
by any modification of the image.

4.	Automated monitoring. Watermarks can be monitored by systems that track
when and where images are used (e.g., programs that search the Web for images
placed on Web pages). Monitoring is useful for royalty collection and/or the
location of illegal users.

5.	 Copy protection. Watermarks can specify rules of image usage and copying (e.g.,
to DVD players).

In this section, we provide a brief overview of digital image watermarking, which is
the process of inserting data into an image in such a way that it can be used to make
an assertion about the image. The methods described have little in common with
the compression techniques presented in the previous sections (although they do
involve the coding of information). In fact, watermarking and compression are in
some ways opposites. While the objective in compression is to reduce the amount of
data used to represent images, the goal in watermarking is to add information and
data (i.e., watermarks) to them. As will be seen in the remainder of the section, the
watermarks themselves can be either visible or invisible.

8.12

DIP4E_Print_Ready.indb 680 4/2/2017 8:46:50 PM

8.12 Digital Image Watermarking 681

A visible watermark is an opaque or semi-transparent subimage or image that is
placed on top of another image (i.e., the image being watermarked) so that it is obvi-
ous to the viewer. Television networks often place visible watermarks (fashioned
after their logos) in the upper or lower right-hand corner of the television screen. As
the following example illustrates, visible watermarking typically is performed in the
spatial domain.

EXAMPLE 8.29 : A simple visible watermark.

The image in Fig. 8.47(b) is the lower right-hand quadrant of the image in Fig. 8.9(a) with a scaled ver-
sion of the watermark in Fig. 8.47(a) overlaid on top of it. Letting fw denote the watermarked image, we
can express it as a linear combination of the unmarked image f and watermark w using

	 f fw w= () +1 − a a 	 (8-68)

where constant a controls the relative visibility of the watermark and the underlying image. If a is 1,
the watermark is opaque and the underlying image is completely obscured. As a approaches 0, more of
the underlying image and less of the watermark is seen. In general, 0 1< ≤a ; in Fig. 8.47(b), a = 0 3. . Fig-
ure 8.47(c) is the computed difference (scaled in intensity) between the watermarked image in (b) and
the unmarked image in Fig. 8.9(a). Intensity 128 represents a difference of 0. Note that the underlying
image is clearly visible through the “semi-transparent” watermark. This is evident in both Fig. 8.47(b)
and the difference image in Fig. 8.47(c).

Unlike the visible watermark of the previous example, invisible watermarks can-
not be seen with the naked eye. They are imperceptible but can be recovered with an
appropriate decoding algorithm. Invisibility is assured by inserting them as visually
redundant information [information that the human visual system ignores or cannot

b
a

c

FIGURE 8.47
A simple visible
watermark:
(a) watermark;
(b) the water-
marked image;
and
(c) the
difference
between the
watermarked
image and the
original (non-
watermarked)
image.

Digital Image
Processing

DIP4E_Print_Ready.indb 681 4/2/2017 8:46:51 PM

690 Chapter 8 Image Compression and Watermarking

8.29 *	 Derive the Lloyd-Max decision and reconstruc-
tion levels for L = 4 and the uniform probability
density function

	 p s A
A s A() =

≤ ≤





1
2
0

−

otherwise

8.30	 A radiologist from a well-known research hospital
recently attended a medical conference at which
a system that could transmit 4096 096× 4 12-bit
digitized X-ray images over standard T1 (1.544
Mb/s) phone lines was exhibited. The system
transmitted the images in a compressed format
using a progressive technique in which a reason-
ably good approximation of the X-ray was first
reconstructed at the viewing station, then refined
gradually to produce an error-free display. The
transmission of the data needed to generate the
first approximation took approximately 5 or 6 s.
Refinements were made every 5 or 6 s (on the
average) for the next 1 min, with the first and last
refinements having the most and least significant
impact on the reconstructed X-ray, respectively.
The physician was favorably impressed with the
system, because she could begin her diagnosis by
using the first approximation of the X-ray and
complete it as the error-free reconstruction of
the X-ray was being generated. Upon returning
to her office, she submitted a purchase request
to the hospital administrator. Unfortunately, the
hospital was on a relatively tight budget, which
recently had been stretched by the hiring of an
aspiring young electrical engineering graduate. To

appease the radiologist, the administrator gave
the young engineer the task of designing such a
system. (He thought it might be cheaper to design
and build a similar system in-house. The hospital
currently owned some of the elements of such
a system, but the transmission of the raw X-ray
data took more than 2 min.) The administrator
asked the engineer to have an initial block dia-
gram by the afternoon staff meeting. With little
time and only a copy of Digital Image Processing
from his recent school days in hand, the engineer
was able to devise a system conceptually to sat-
isfy the transmission and associated compression
requirements. Construct a conceptual block dia-
gram of such a system, specifying the compression
techniques you would recommend.

8.31	 Show that the lifting-based wavelet transform
defined by Eq. (8-61) is equivalent to the tradi-
tional FWT filter bank implementation using the
coefficients in Table 6.1. Define the filter coeffi-
cients in terms of a, b, g, d, and K.

8.32	 Compute the quantization step sizes of the sub-
bands for a JPEG-2000 encoded image in which
derived quantization is used and 8 bits are allot-
ted to the mantissa and exponent of the 2LL sub-
band.

8.33	 How would you add a visible watermark to an
image in the frequency domain?

8.34 *	 Design an invisible watermarking system based
on the discrete Fourier transform.

8.35	 Design an invisible watermarking system based
on the discrete wavelet transform.

Projects
MATLAB solutions to the projects marked with an asterisk (*) are in the DIP4E Student Support Package (consult
the book website: www.ImageProcessingPlace.com).

8.1	 Write a function e = entropy4e(f,n) to compute the
amount of information in bits of matrix f, where
n is the number of possible values for each ele-
ment of f. (If matrix f is an 8-bit image, n would
be 256.) Assume f to be the output of a zero-mem-
ory source so that Eq. (8-7) can be used. Make
sure your function can handle negative pixel val-
ues. Use your function to compute the entropy of
the image lena.tif from the book website.

8.2 *	 Write a function cr = compressionRatio4e(f,fc) to
compute the compression ratio of image f and
compressed image fc. If f or fc is a string, assume
that it is the name of a file; otherwise, f or fc is
an image variable. (Hint: Do not use MATLAB’s
whos function, since it reports an extra 124 bytes
for every field in a structure. Instead, add up the
memory of every field.)

(a)	 Use your function to compute the com-

DIP4E_Print_Ready.indb 690 4/2/2017 8:46:58 PM

693

9 Morphological Image
Processing

Preview
The word morphology commonly denotes a branch of biology that deals with the form and structure of
animals and plants. We use the same word here in the context of mathematical morphology as a tool for
extracting image components that are useful in the representation and description of region shape, such
as boundaries, skeletons, and the convex hull. We are interested also in morphological techniques for
pre- or postprocessing, such as morphological filtering, thinning, and pruning.

In the following sections, we will develop a number of fundamental concepts in mathematical mor-
phology, and illustrate how they are applied in image processing. The material in this chapter begins a
transition from methods whose inputs and outputs are images, to methods whose outputs are image
attributes, for tasks such as object extraction and description. Morphology is one of several tools devel-
oped in the remainder of the book—such as segmentation, feature extraction, and object recognition—
that form the foundation of techniques for extracting “meaning” from an image. The material in the
following sections of this chapter deals with methods for processing both binary and grayscale images.

Upon completion of this chapter, readers should:
	 Understand basic concepts of mathematical

morphology, and how to apply them to digital
image processing.

	 Be familiar with the tools used for binary
image morphology, including erosion, dilation,
opening, closing, and how to combine them to
generate more complex tools.

	 Be able to develop algorithms based on bi-
nary image morphology for performing tasks

such as morphological smoothing, edge de-
tection, extracting connected components,
and skeletonizing.

	 Be familiar with how binary image morphol-
ogy can be extended to grayscale images.

	 Be able to develop algorithms for grayscale
image processing for tasks such as textural
segmentation, granulometry, computing gray-
scale image gradients, and others.

In form and feature, face and limb,
I grew so like my brother
That folks got taking me for him
And each for one another.

Henry Sambrook Leigh, Carols of Cockayne, The Twins

DIP4E_Print_Ready.indb 693 4/2/2017 8:46:58 PM

694 Chapter 9 Morphological Image Processing

9.1	PRELIMINARIES

The language of mathematical morphology is set theory. As such, morphology offers
a unified and powerful approach to numerous image processing problems. When
working with images, sets in mathematical morphology represent objects in those
images. In binary images, the sets in question are members of the 2-D integer space
Z2 , where each element of a set is a tuple (2-D vector) whose coordinates are the
coordinates of an object (typically foreground) pixel in the image. Grayscale digital
images can be represented as sets whose components are in Z3. In this case, two
components of each element of the set refer to the coordinates of a pixel, and the
third corresponds to its discrete intensity value. Sets in higher dimensional spaces
can contain other image attributes, such as color and time-varying components.

Morphological operations are defined in terms of sets. In image processing, we use
morphology with two types of sets of pixels: objects and structuring elements (SE’s).
Typically, objects are defined as sets of foreground pixels. Structuring elements can
be specified in terms of both foreground and background pixels. In addition, struc-
turing elements sometimes contain so-called “don’t care” elements, denoted by ×,
signifying that the value of that particular element in the SE does not matter. In this
sense, the value can be ignored, or it can be made to fit a desired value in the evalu-
ation of an expression; for example, it might take on the value of a pixel in an image
in applications in which value matching is the objective.

Because the images with which we work are rectangular arrays, and sets in general
are of arbitrary shape, applications of morphology in image processing require that
sets be embedded in rectangular arrays. In forming such arrays, we assign a back-
ground value to all pixels that are not members of object sets. The top row in Fig. 9.1
shows an example. On the left are sets in the graphical format you are accustomed
to seeing in book figures. In the center, the sets have been embedded in a rectangular
background (white) to form a graphical image.† On the right, we show a digital image
(notice the grid) which is the format we use for digital image processing.

Structuring elements are defined in the same manner, and the second row in Fig. 9.1
shows an example. There is an important difference between the way we represent
digital images and digital structuring elements. Observe on the top right that there is
a border of background pixels surrounding the objects, while there is none in the SE.
As you will learn shortly, structuring elements are used in a form similar to spatial
convolution kernels (see Fig. 3.34), and the image border just described is similar
to the padding we discussed in Section 3.4 and 3.5. The operations are different in
morphology, but the padding and sliding operations are the same as in convolution.

In addition to the set definitions given in Section 2.6, the concept of set reflection
and translation are used extensively in morphology in connection with structuring
elements. The reflection of a set (structuring element) B about its origin, denoted by
ˆ ,B is defined as

† Sets are shown as drawings of objects (e.g. squares and triangles) of arbitrary shape. A graphical image contains
sets that have been embedded into a background to form a rectangular array. When we intend for a drawing to
be interpreted as a digital image (or structuring element), we include a grid in illustrations that might otherwise
be ambiguous. Objects in all drawings are shaded, and the background is shown in white. When working with
actual binary images, we say that objects are foreground pixels. All other pixels are background.

9.1

Before proceeding, you
will find it helpful to
review the discussion in
Section 2.4 dealing with
representing images, the
discussion on
connectivity in Section
2.5, and the discussion on
sets in Section 2.6.

DIP4E_Print_Ready.indb 694 4/2/2017 8:46:59 PM

9.1 Preliminaries 695

	 ˆ ,B b b B= = − ∈{ }w w for 	 (9-1)

That is, if B is a set of points in 2-D, then B̂ is the set of points in B whose (,)x y
coordinates have been replaced by (,).− −x y Figure 9.2 shows several examples of
digital sets (structuring elements) and their reflection. The dot denotes the origin of
the SE. Note that reflection consists simply of rotating an SE by 180° about its origin,
and that all elements, including the background and don’t care elements, are rotated.

The translation of a set B by point z z z= ()1 2, , denoted B
z() , is defined as

	 B c c b z b B
z() = = + ∈{ }, for 	 (9-2)

That is, if B is a set of pixels in 2-D, then B
z() is the set of pixels in B whose (,)x y

coordinates have been replaced by x z y z+ +()1 2, . This construct is used to trans-
late (slide) a structuring element over an image, and each location perform a set

Reflection is the same
operation we performed
with kernels prior to
spatial convolution, as
explained in Section 3.4.

FIGURE 9.1 Top row. Left: Objects represented as graphical sets. Center: Objects embedded in a background to form
a graphical image. Right: Object and background are digitized to form a digital image (note the grid). Second row:
Example of a structuring element represented as a set, a graphical image, and finally as a digital SE.

Objects representeed
as sets Objects represented as

a graphical image Digital image

Structuring element
represented as a set

Structuring element
represented as a graphical image

Digital
structuring element

FIGURE 9.2
Structuring
elements and their
reflections about the
origin (the ×’s are
don’t care elements,
and the dots denote
the origin). Reflec-
tion is rotation by
180° of an SE about
its origin.

× ×

× ××

×

B̂B

×
×

B

×
×

B̂

B B̂

B̂B

DIP4E_Print_Ready.indb 695 4/2/2017 8:47:00 PM

704 Chapter 9 Morphological Image Processing

Closing has a similar geometric interpretation, except that now we translate B
outside A. The closing is then the complement of the union of all translations of B
that do not overlap A. Figure 9.9 illustrates this concept. Note that the boundary of
the closing is determined by the furthest points B could reach without going inside
any part of A. Based on this interpretation, we can write the closing of A by B as

 	 A B B B A
z z

c
 = () () = ∅{ }



¨∪ 	 (9-13)

EXAMPLE 9.3 : Morphological opening and closing.

Figure 9.10 shows in more detail the process and properties of opening and closing. Unlike Figs. 9.8
and 9.9, whose main objectives are overall geometrical interpretations, this figure shows the individual
processes and also pays more attention to the relationship between the scale of the final results and the
size of the structuring elements.

Figure 9.10(a) shows an image containing a single object (set) A, and a disk structuring element.
Figure 9.10(b) shows various positions of the structuring element during erosion. This process resulted
in the disjoint set in Fig. 9.10(c). Note how the bridge between the two main sections was eliminated.
Its width was thin in relation to the diameter of the structuring element, which could not be completely
contained in this part of the set, thus violating the definition of erosion. The same was true of the two
rightmost members of the object. Protruding elements where the disk did not fit were eliminated. Figure
9.10(d) shows the process of dilating the eroded set, and Fig. 9.10(e) shows the final result of opening.
Morphological opening removes regions that cannot contain the structuring element, smoothes object
contours, breaks thin connections, and removes thin protrusions.

Figures 9.10(f) through (i) show the results of closing A with the same structuring element. As with
opening, closing also smoothes the contours of objects. However, unlike opening, closing tends to join
narrow breaks, fills long thin gulfs, and fills objects smaller than the structuring element. In this example,
the principal result of closing was that it filled the small gulf on the left of set A.

ba
dc

FIGURE 9.9
(a) Image I,
composed of set
(object) A, and
background.
(b) Structuring
element B.
(c) Translations of B
such that B does not
overlap any part
of A. (A is shown
dark for clarity.)
(d) Closing of A
by B.

B

A B�

Background

A

Image, I

DIP4E_Print_Ready.indb 704 4/2/2017 8:47:06 PM

710 Chapter 9 Morphological Image Processing

match. When the SE is centered on the bottom, right corner pixel, the role of the
don’t care elements is reversed, again resulting in a correct match. The other border
pixels between the two corners were similarly detected by considering all don’t care
elements as foreground. Thus, using don’t care elements increases the flexibility of
structuring elements to perform multiple roles.

9.5	SOME BASIC MORPHOLOGICAL ALGORITHMS

With the preceding discussion as a foundation, we are now ready to consider some
practical uses of morphology. When dealing with binary images, one of the principal
applications of morphology is in extracting image components that are useful in the

9.5

ba c
FIGURE 9.13 Same solution as in Fig. 9.12, but using Eq. (9-17) with a single structuring element.

C

D

E

Image, I

Background

Border of
background pixels

B
Origin of D

Background

Image, I B

Image, I

B

Image, I B

Image, I

B

Image, I B

Image, I

B

Image, I B

ba c
ed f
hg i

FIGURE 9.14
Three examples
of using a single
structuring
element and
Eq. (9-17) to
detect specific
features. First
row: detection
of single-pixel
holes. Second
row: detection of
an upper-right
corner. Third row:
detection of
multiple features.

DIP4E_Print_Ready.indb 710 4/2/2017 8:47:11 PM

9.5 Some Basic Morphological Algorithms 713

X0 X1 X2

X6 X8

BA I cI

8X I�

cA

ba c
ed f
hg i

FIGURE 9.17
Hole filling.
(a) Set A (shown
shaded) contained
in image I.
(b) Complement
of I.
(c) Structuring
element B. Only
the foreground
elements are
used in
computations
(d) Initial point
inside hole, set
to 1.
(e)–(h) Various
steps of Eq. (9-19).
(i) Final result
[union of (a) and
(h)].

EXTRACTION OF CONNECTED COMPONENTS

Being able to extract connected components from a binary image is central to many
automated image analysis applications. Let A be a set of foreground pixels consist-
ing of one or more connected components, and form an image X0 (of the same size
as I, the image containing A) whose elements are 0’s (background values), except
at each location known to correspond to a point in each connected component in A,

Connectivity and
connected components
are discussed in
Section 2.5.

ba

FIGURE 9.18
 (a) Binary image.
The white dots
inside the regions
(shown enlarged
for clarity) are the
starting points for
the hole-filling
algorithm.
(b) Result of
filling all holes.

DIP4E_Print_Ready.indb 713 4/2/2017 8:47:13 PM

9.6 Morphological Reconstruction 725

9.6	MORPHOLOGICAL RECONSTRUCTION

The morphological concepts discussed thus far involve a single image and one or
more structuring elements. In this section, we discuss a powerful morphological
transformation called morphological reconstruction that involves two images and
a structuring element. One image, the marker, which we denote by F, contains the
starting points for reconstruction. The other image, the mask, denoted by G, con-
strains (conditions) the reconstruction. The structuring element is used to define
connectivity.† For 2-D applications, connectivity typically is defined as 8-connectivity,
which is implied by a structuring element of size 3 3× whose elements are all 1’s.

GEODESIC DILATION AND EROSION

Central to morphological reconstruction are the concepts of geodesic dilation and
geodesic erosion. Let F denote the marker image and G the mask image. We assume
in this discussion that both are binary images and that F G8 . The geodesic dila-
tion of size 1 of the marker image with respect to the mask, denoted by D FG

1() (), is
defined as

	 D F F B GG
1() () = (){ ¨ 	 (9-38)

where, as usual, ¨ denotes the set intersection (here ¨ may be interpreted as a logi-
cal AND because we are dealing with binary quantities). The geodesic dilation of
size n of F with respect to G is defined as

	 D F D D FG
n

G G
n() () −()() = ()()1 1 	 (9-39)

where n ≥ 1 is an integer, and D F FG
0() () = . In this recursive expression, the set inter-

section indicated in Eq. (9-38) is performed at each step.‡ Note that the intersec-
tion operation guarantees that mask G will limit the growth (dilation) of marker F.
Figure 9.28 shows a simple example of a geodesic dilation of size 1. The steps in the
figure are a direct implementation of Eq. (9-38). Note that the marker F consists of
just one point from the object in G. The idea is to grow (dilate) this point succes-
sively, masking of the result at each step by G. Continuing with this process would
yield a result whose shape is influenced by the structure of G. In this simple case,
the reconstruction would eventually result in an image identical to G (see Fig. 9.30).

The geodesic erosion of size 1 of marker F with respect to mask G is defined as

	 E F F B GG
1() () = ()| ´ 	 (9-40)

†  In much of the literature on morphological reconstruction, the structuring element is tacitly assumed to be
isotropic and typically is called an elementary isotropic structuring element. In the context of this chapter, an
example of such an SE is a 3 3× array of 1’s with the origin at the center.
‡  Although it is more intuitive to develop morphological reconstruction methods using recursive formulations
(as we do here), their practical implementation typically is based on more computationally efficient algorithms
(see, for example, Vincent [1993] and Soille [2003]).

9.6

See Section 2.5 regarding
connectivity.

DIP4E_Print_Ready.indb 725 4/2/2017 8:47:25 PM

726 Chapter 9 Morphological Image Processing

Marker, F

Mask, G

Marker dilated by B

B

�

Geodesic dilation, D (1)(F)
G

(This is the dilated marker
image masked by G.)

FIGURE 9.28
Illustration of a
geodesic
dilation of
size 1. Note that
the marker image
contains a point
from the object
in G. If continued,
subsequent dila-
tions and maskings
would eventually
result in the object
contained in G.

where ´ denotes set union (or logical OR operation). The geodesic erosion of size n
of F with respect to G is defined as

	 E F E E FG
n

G G
n() () −()() = ()()1 1 	 (9-41)

where n ≥ 1 is an integer and E F FG
0() () = . The set union in Eq. (9-40) is performed

at each step, and guarantees that geodesic erosion of an image remains greater than
or equal to its mask image. As you might have expected from the forms in Eqs. (9-38)
and (9-40), geodesic dilation and erosion are duals with respect to set complementa-
tion (see Problem 9.42). Figure 9.29 shows an example of a geodesic erosion of size 1.
The steps in the figure are a direct implementation of Eq. (9-40).

Geodesic dilation and erosion converge after a finite number of iterative steps,
because propagation or shrinking of the marker image is constrained by the mask.

MORPHOLOGICAL RECONSTRUCTION BY DILATION AND BY EROSION

Based on the preceding concepts, morphological reconstruction by dilation of a
marker image F with respect to a mask image G, denoted R FG

D (), is defined as the
geodesic dilation of F with respect to G, iterated until stability is achieved; that is,

	
R F D FG

D
G

k() = ()() 	 (9-42)

with k such that D F D FG
k

G
k() +()() = ()1 .

Figure 9.30 illustrates reconstruction by dilation. Figure 9.30(a) continues the pro-
cess begun in Fig. 9.28. The next step in reconstruction after obtaining D FG

()1 () is to
dilate this result, then AND it with mask G to yield D FG

() ,2 () as Fig. 9.30(b) shows.
Dilation of D FG

()2 () and masking with G then yields D FG
() ,3 () and so on. This pro-

cedure is repeated until stability is reached. Carrying out this example one more
step would give D F D FG G

() () ,5 6() = () so the image, morphologically reconstructed by
dilation, is given by R F D FG

D
G() = ()()5 , as indicated in Eq. (9-42). The reconstructed

image is identical to the mask, as expected.

DIP4E_Print_Ready.indb 726 4/2/2017 8:47:26 PM

9.6 Morphological Reconstruction 727

In a similar manner, the morphological reconstruction by erosion of a marker
image F with respect to a mask image G, denoted R FG

E (), is defined as the geodesic
erosion of F with respect to G, iterated until stability; that is,

	 R F E FG
E

G
k() = ()() 	 (9-43)

with k such that E F E FG
k

G
k() +()() = ()1 . As an exercise, generate a figure similar to

Fig. 9.30 for morphological reconstruction by erosion. Reconstruction by dilation
and erosion are duals with respect to set complementation (see Problem 9.43).

SAMPLE APPLICATIONS

Morphological reconstruction has a broad spectrum of practical applications, each
determined by the selection of the marker and mask images, by the structuring

Marker, F

Mask, G

Marker eroded by B

B

�

Geodesic erosion, E (1)(F)
G

(This is the eroded maker
image masked by G.)

FIGURE 9.29
Illustration of a
geodesic erosion
of size 1.

ba dc
f he g

FIGURE 9.30
Illustration of
morphological
reconstruction
by dilation. Sets
D FG

()(),1 G, B
and F are from
Fig. 9.28. The
mask (G) is
shown dotted for
reference.

(1)() dilated by GD F B (2)Result of masking = () GD F (2)() dilated by GD F B (3)Result of masking = () GD F

(3)() dilated by GD F B (4)Result of masking = () GD F (4)() dilated by GD F B (5)Result of masking = () GD F
No changes after this point,
so (5)() ()D

G GR F D F=

DIP4E_Print_Ready.indb 727 4/2/2017 8:47:27 PM

9.7 Summary of Morphological Operations on Binary Images 731

	 X I R FI
D= − () 	 (9-48)

to obtain an image, X , with no objects touching the border.
As an example, consider the original text image from Fig. 9.31(a) again.

Figure 9.34(a) shows the reconstruction R FI
D () obtained using a 3 3× structuring

element of 1’s. The objects touching the border of the original image are visible
in the right side of Fig. 9.34(a). Figure 9.34(b) shows image X, computed using Eq.
(9-48). If the task at hand were automated character recognition, having an image in
which no characters touch the border is most useful because the problem of having
to recognize partial characters (a difficult task at best) is avoided.

9.7	SUMMARY OF MORPHOLOGICAL OPERATIONS ON BINARY
IMAGES

Figure 9.35 summarizes the types of structuring elements used in the various binary
morphological methods discussed thus far. The shaded elements are foreground
values (typically denoted by 1’s in numerical arrays), the elements in white are
background values (typically denoted by 0’s), and the ×’s are “don’t care” elements.
Table 9.1 summarizes the binary morphological results developed in the preceding
sections. The Roman numerals in the third column of Table 9.1 refer to the structur-
ing elements in Fig. 9.35.

9.7

ba
dc

FIGURE 9.33
(a) Text image of
size 918 2018×
pixels.
(b) Complement
of (a) for use as a
mask image.
(c) Marker image.
(d) Result of
hole-filling using
Eqs. (9-45) and
(9-46).

ba

FIGURE 9.34
(a) Reconstruction
by dilation of marker
image. (b) Image
with no objects
touching the border.
The original image is
Fig. 9.31(a).

DIP4E_Print_Ready.indb 731 4/2/2017 8:47:31 PM

732 Chapter 9 Morphological Image Processing

9.8	GRAYSCALE MORPHOLOGY

In this section, we extend to grayscale images the basic operations of dilation, ero-
sion, opening, and closing. We then use these operations to develop several basic
grayscale morphological algorithms. Throughout the discussion that follows, we deal
with digital functions of the form f x y(,) and b x y(,), where f x y(,) is a grayscale
image and b x y(,) is a structuring element. The assumption is that these functions
are discrete in the sense defined in Section 2.4. That is, if Z denotes the set of real
integers, then the coordinates (,)x y are integers from the Cartesian product Z2, and
f x y(,) and b x y(,) are functions that assign an intensity value (a real number from
the set of real numbers, R) to each distinct pair of coordinates (,).x y If the intensity
levels are integers also, then Z replaces R.

Structuring elements in grayscale morphology perform the same basic functions
as their binary counterparts: They are used as “probes” to examine a given image for
specific properties. Structuring elements in grayscale morphology belong to one of
two categories: nonflat and flat. Figure 9.36 shows an example of each. Figure 9.36(a)
is a hemispherical grayscale SE shown as an image, and Fig. 9.36(c) is a horizontal
intensity profile through its center. Figure 9.34(b) shows a flat structuring element
in the shape of a disk, and Fig. 9.36(d) is its corresponding intensity profile. (The
shape of this profile explains the origin of the word “flat.”) The elements in Fig. 9.36
are shown as continuous quantities for clarity; their computer implementation is
based on digital approximations. Because of a number of difficulties discussed later
in this section, grayscale nonflat SEs are not used frequently in practice. Finally, we
mention that, as in the binary case, the origin of grayscale structuring elements must
be clearly identified. Unless mentioned otherwise, all the examples in this section
are based on symmetrical, flat structuring elements of unit height whose origins
are at the center. The reflection of an SE in grayscale morphology is as defined in
Section 9.1; we denote it in the following discussion by ˆ , , .b x y b x y() = − −()

GRAYSCALE EROSION AND DILATION

The grayscale erosion of f  by a flat structuring element b at location (,)x y is defined
as the minimum value of the image in the region coincident with b x y(,) when the
origin of b is at (,).x y In equation form, the erosion at (,)x y of an image f  by a struc-
turing element b is given as

	 f b x y f x s y t
s t b

|[]() = + +(){ }() ∈
, min ,

,
	 (9-49)

9.8

FIGURE 9.35
Five basic types
of structuring
elements used for
binary
morphology.

B
I

Bi i � 1, 2, 3, 4
(rotate 90�)

�

�

Bi i � 5, 6, 7, 8
(rotate 90�)

V

B
II

Bi i � 1, 2, 3, 4
(rotate 90�)

III

�

�

�

�

�

Bi i � 1, 2, . . . , 8
(rotate 45�)

IV

� �

�

= origin
= don’t care

DIP4E_Print_Ready.indb 732 4/2/2017 8:47:32 PM

748 Chapter 9 Morphological Image Processing

ba c
ed f
hg i

FIGURE 9.46 (a) Original image of size 1134 1360× pixels. (b) Opening by reconstruction of (a), using a structur-
ing element consisting of a horizontal line 71 pixels long in the erosion. (c) Opening of (a) using the same SE.
(d) Top-hat by reconstruction. (e) Result of applying just a top-hat transformation. (f) Opening by reconstruction
of (d), using a horizontal line 11 pixels long. (g) Dilation of (f) using a horizontal line 21 pixels long. (h) Minimum
of (d) and (g). (i) Final reconstruction result. (Images courtesy of Dr. Steve Eddins, MathWorks, Inc.)

constant intensity. The solution of this problem is a good illustration of the power of grayscale mor-
phology. We begin by suppressing the horizontal reflection on the top of the keys. The reflections are
wider than any single character in the image, so we should be able to suppress them by performing an
opening by reconstruction using a long horizontal line in the erosion operation. This operation will
yield the background containing the keys and their reflections. Subtracting this from the original image
(i.e., performing a top-hat by reconstruction) will eliminate the horizontal reflections and variations in
background from the original image.

DIP4E_Print_Ready.indb 748 4/2/2017 8:47:45 PM

 Problems 755

(Hint: Use proof by induction.)

(a) *	D f E E fg
n

g g

n c
c

c c
() () −()() = 





1 1[()] . Assume a symmetric
structuring element.

(b)	 E f D D fg
n

g g

n c
c

c c
() () −()() = 





1 1[()] . Assume a symmetric
structuring element.

9.48	 Prove the validity of the following grayscale mor-
phological expressions.

(a) *	R f R fg
D

g
E c

c

c() = ()



 .

(b)	 R f R fg
E

g
D c

c

c() = ()



 .

9.49	 Prove the validity of the following grayscale mor-
phological expressions.

(a) *	 f nb f nb
c c

| {() = ()ˆ , where f nb|() indicates
n successive erosions, starting with b.

(b)	 f nb f nb
c c

{ |() = ()ˆ .

9.50	 Prove the validity of the following gray-
scale morphological expressions. Recall that
f x y f x yc(,) (,)= −  and  that ˆ(,) (,).b x y b x y= − −

Assume a symmetric structuring element.

(a) *	O f C fR
n

R
n c

c() ()() = ()



 .

(b)	 C f O fR
n

R
n c

c() ()() = ()



 .

9.51	 Consider the image below, which shows a region
of small circles enclosed by a region of larger
circles.

(a)	 Would you expect the method used to gen-
erate Fig. 9.45(d) to work with this image
also? Explain your reasoning, including any
assumptions that you need to make for the
method to work.

(b) *	If your answer to (a) is yes, sketch what the
boundary will look like.

9.52	 A grayscale image, f x y(,), is corrupted by non-
overlapping noise spikes that can be modeled
as small flat disks of radii R R Rmin max≤ ≤ and
amplitude A A Amin max .≤ ≤

(a) *	Develop a morphological filtering approach
for denoising the image.

(b)	 Repeat (a), but now assume that there is
touching and overlapping of, at most, four
noise spikes appearing either as an array of
2-by-2 spikes, or 4-by-1 spikes.

9.53	 A preprocessing step in an application of mi-
croscopy is concerned with the issue of isolating
individual round particles from similar particles
that overlap in groups of two or more particles
(see the following image). Assuming that all parti-
cles are of the same size, propose a morphological
algorithm that produces three images consisting
respectively of:

(a) *	Only particles that have merged with the
boundary of the image.

(b)	 Only overlapping particles.

(c)	 Only nonoverlapping particles.

9.54	 A high-technology manufacturing plant is award-
ed a government contract to manufacture high-
precision washers of the form shown:

The terms of the contract require that the shape
of all washers be inspected by an imaging system.
In this context, shape inspection refers to devia-
tions from round on the inner and outer edges of

DIP4E_Print_Ready.indb 755 4/2/2017 8:47:52 PM

756 Chapter 9 Morphological Image Processing

the washers. You may assume the following: (1) A
“golden” (perfect with respect to the problem)
image of an acceptable washer is available; and
(2) the imaging and positioning components ulti-
mately used in the system will have an accuracy
high enough to allow you to ignore errors due to

digitalization and positioning. You are hired as a
consultant to help specify the visual inspection
part of the system. Propose a solution based on
morphological/logical operations.

Projects
MATLAB solutions to the projects marked with an asterisk (*) are in the DIP4E Student Support Package (consult
the book website: www.ImageProcessingPlace.com).

9.1 *	 Numerous morphological functions are based on
moving the center of a structuring element (SE)
over an image I and, at each location (,),x y deter-
mining how well the elements of the SE match
the pixels of the corresponding neighborhood of I
centered at (,).x y This is similar to the mechanics
of convolution and correlation discussed in Sec-
tion 3.4 (see Fig. 3.34). Let I be a binary image of
size M × N and B an SE of size m × n (m and n odd)
whose origin is at its canter. The elements of B can
be: 0, corresponding to the background of I; 1, cor-
responding to the foreground; or any other value
(e.g., any integer other than 0 or 1) correspond-
ing to “don’t care” values. As in convolution and
correlation, I must be padded. To accommodate
all possible excursions of B, pad I with m rows
of padval above and below and n columns to the
left and right. The padding value can be 0 (the
default) or 1. The padded image, Ip, will be of size
(M  + 2m) × (N + 2n).

(a)	 Write a function, S = morphoMatch4e(I,B,padval,
mode) that finds all matches of B in I. Output
S has elements with three possible values: 0,
meaning no matches; 0.5, meaning partial
matches; and 1 meaning a perfect match.
Thus, a value of 1 at coordinates (x, y) in S
means that the center of B was at (x, y) when B
and the subimage of Ip directly under B were
identical. In a partial match, at least one ele-
ment of B matches a corresponding element
in Ip. When S is 0 at (x, y), no elements of B and
the corresponding elements of the subimage
were equal. Elements of B that have “don’t
care” values are always forced to match their
corresponding elements in Ip. If mode = 'full', S
will be of the same size as Ip. If mode = 'same'
(the default), S is cropped to the same size

as I. If mode is included in the input argument,
padval must be provided also.

You can implement this function in two basic
ways. If you do not have the Image Process-
ing Toolbox in your MATLAB installation,
use for loops. If you do have the toolbox, you
may optionally write the function using tool-
box function colfilt, which implements slid-
ing neighborhoods. The first approach is the
simplest (but it generally is slower). The sec-
ond approach is much more difficult, but it
is faster and more elegant. We give solutions
using both approaches. The solution using
colfilt is called morphoMatch4e. The solution
using loops is called morphoMatchLoops4e. If
you implement only the loops solution, name
it morphoMatch4e for use in later projects.

(b)	 Function morphoMatch4e is the foundation for
most of the functions you will be writing in
the following projects, so test it extensively
with synthetic images of your choice. In your
tests, make sure you use rectangular arrays
(i.e., not square) for both I and B.

9.2	 Erosion and dilation.

(a) *	Write a function E = morphoErode4e(I,B,padval)
for performing morphological erosion of
binary image I by a structuring element B.
The specifications for I, B, and padval, are the
same as in Project 9.1, except that all ele-
ments of B should be 1. A value of padval = 1 is
used, for example, when eroding the comple-
ment of I. Because we assume that the back-
ground is by default 0, complementing I turns
the background into 1, so the border has to
be padded with 1’s in such cases. (Hint: Use
function morphoMatch4e from Project 9.1.)

DIP4E_Print_Ready.indb 756 4/2/2017 8:47:53 PM

761

10
Image Segmentation I
Edge Detection, Thresholding, and
Region Detection

Preview
The material in the previous chapter began a transition from image processing methods whose inputs
and outputs are images, to methods in which the inputs are images but the outputs are attributes extract-
ed from those images. Most of the segmentation algorithms in this chapter are based on one of two basic
properties of image intensity values: discontinuity and similarity. In the first category, the approach is
to partition an image into regions based on abrupt changes in intensity, such as edges. Approaches in
the second category are based on partitioning an image into regions that are similar according to a set
of predefined criteria. Thresholding, region growing, and region splitting and merging are examples of
methods in this category. We show that improvements in segmentation performance can be achieved
by combining methods from distinct categories, such as techniques in which edge detection is combined
with thresholding. We discuss also image segmentation using clustering and superpixels, and give an
introduction to graph cuts, an approach ideally suited for extracting the principal regions of an image.
This is followed by a discussion of image segmentation based on morphology, an approach that com-
bines several of the attributes of segmentation based on the techniques presented in the first part of the
chapter. We conclude the chapter with a brief discussion on the use of motion cues for segmentation.

Upon completion of this chapter, readers should:
	 Understand the characteristics of various types

of edges found in practice.

	 Understand how to use spatial filtering for
edge detection.

	 Be familiar with other types of edge detection
methods that go beyond spatial filtering.

	 Understand image thresholding using several
different approaches.

	 Know how to combine thresholding and spa-
tial filtering to improve segmentation.

	 Be familiar with region-based segmentation,
including clustering and superpixels.

	 Understand how graph cuts and morphologi-
cal watersheds are used for segmentation.

	 Be familiar with basic techniques for utilizing
motion in image segmentation.

The whole is equal to the sum of its parts.
Euclid

The whole is greater than the sum of its parts.
Max Wertheimer

DIP4E_Print_Ready.indb 761 4/2/2017 8:47:54 PM

762 Chapter 10 Image Segmentation I Edge Detection, Thresholding, and Region Detection

10.1 	FUNDAMENTALS

Let R represent the entire spatial region occupied by an image. We may view image
segmentation as a process that partitions R into n subregions, R R Rn1 2, , , ,… such
that

(a)	 R Ri
i

n

=
=

.
1

∪
(b)	 Ri is a connected set, for i n= 0 1 2, , , , .…

(c)	 R Ri j� = ∅ for all i and j, i j≠ .

(d)	 Q Ri() = TRUE for i n= 0 1 2, , , , .…
(e)	 Q R Ri j�() = FALSE for any adjacent regions Ri and Rj .

where Q Rk() is a logical predicate defined over the points in set Rk , and ∅ is the
null set. The symbols ´ and ¨ represent set union and intersection, respectively, as
defined in Section 2.6. Two regions Ri and Rj are said to be adjacent if their union
forms a connected set, as defined in Section 2.5. If the set formed by the union of two
regions is not connected, the regions are said to disjoint.

Condition (a) indicates that the segmentation must be complete, in the sense that
every pixel must be in a region. Condition (b) requires that points in a region be con-
nected in some predefined sense (e.g., the points must be 8-connected). Condition
(c) says that the regions must be disjoint. Condition (d) deals with the properties that
must be satisfied by the pixels in a segmented region—for example, Q Ri() = TRUE
if all pixels in Ri have the same intensity. Finally, condition (e) indicates that two
adjacent regions Ri and Rj must be different in the sense of predicate Q.†

Thus, we see that the fundamental problem in segmentation is to partition an
image into regions that satisfy the preceding conditions. Segmentation algorithms
for monochrome images generally are based on one of two basic categories dealing
with properties of intensity values: discontinuity and similarity. In the first category,
we assume that boundaries of regions are sufficiently different from each other, and
from the background, to allow boundary detection based on local discontinuities in
intensity. Edge-based segmentation is the principal approach used in this category.
Region-based segmentation approaches in the second category are based on parti-
tioning an image into regions that are similar according to a set of predefined criteria.

Figure 10.1 illustrates the preceding concepts. Figure 10.1(a) shows an image of a
region of constant intensity superimposed on a darker background, also of constant
intensity. These two regions comprise the overall image. Figure 10.1(b) shows the
result of computing the boundary of the inner region based on intensity discontinui-
ties. Points on the inside and outside of the boundary are black (zero) because there
are no discontinuities in intensity in those regions. To segment the image, we assign
one level (say, white) to the pixels on or inside the boundary, and another level (e.g.,
black) to all points exterior to the boundary. Figure 10.1(c) shows the result of such
a procedure. We see that conditions (a) through (c) stated at the beginning of this

† In general, Q can be a compound expression such as, “Q Ri() = TRUE if the average intensity of the pixels in
region Ri is less than mi AND if the standard deviation of their intensity is greater than si,” where mi and si
are specified constants. 

10.1

DIP4E_Print_Ready.indb 762 4/2/2017 8:47:56 PM

10.2 Point, Line, and Edge Detection 763

ba c
ed f

FIGURE 10.1
(a) Image of a
constant intensity
region.
(b) Boundary
based on intensity
discontinuities.
(c) Result of
segmentation.
(d) Image of a
texture region.
(e) Result of
intensity discon-
tinuity computa-
tions (note the
large number of
small edges).
(f) Result of
segmentation
based on region
properties.

section are satisfied by this result. The predicate of condition (d) is: If a pixel is on,
or inside the boundary, label it white; otherwise, label it black. We see that this predi-
cate is TRUE for the points labeled black or white in Fig. 10.1(c). Similarly, the two
segmented regions (object and background) satisfy condition (e).

The next three images illustrate region-based segmentation. Figure 10.1(d) is
similar to Fig. 10.1(a), but the intensities of the inner region form a textured pattern.
Figure 10.1(e) shows the result of computing intensity discontinuities in this image.
The numerous spurious changes in intensity make it difficult to identify a unique
boundary for the original image because many of the nonzero intensity changes are
connected to the boundary, so edge-based segmentation is not a suitable approach.
However, we note that the outer region is constant, so all we need to solve this seg-
mentation problem is a predicate that differentiates between textured and constant
regions. The standard deviation of pixel values is a measure that accomplishes this
because it is nonzero in areas of the texture region, and zero otherwise. Figure 10.1(f)
shows the result of dividing the original image into subregions of size 8 8× . Each
subregion was then labeled white if the standard deviation of its pixels was posi-
tive (i.e., if the predicate was TRUE), and zero otherwise. The result has a “blocky”
appearance around the edge of the region because groups of 8 8× squares were
labeled with the same intensity (smaller squares would have given a smoother
region boundary). Finally, note that these results also satisfy the five segmentation
conditions stated at the beginning of this section.

10.2 POINT, LINE, AND EDGE DETECTION

The focus of this section is on segmentation methods that are based on detecting
sharp, local changes in intensity. The three types of image characteristics in which

10.2

DIP4E_Print_Ready.indb 763 4/2/2017 8:47:57 PM

772 Chapter 10 Image Segmentation I Edge Detection, Thresholding, and Region Detection

point is said to be more likely associated with a horizontal line. If we are interested
in detecting all the lines in an image in the direction defined by a given kernel, we
simply run the kernel through the image and threshold the absolute value of the
result, as in Eq. (10-15). The nonzero points remaining after thresholding are the
strongest responses which, for lines one pixel thick, correspond closest to the direc-
tion defined by the kernel. The following example illustrates this procedure.

EXAMPLE 10.3 : Detecting lines in specified directions.

Figure 10.7(a) shows the image used in the previous example. Suppose that we are interested in find-
ing all the lines that are one pixel thick and oriented at + °45 . For this purpose, we use the kernel in
Fig. 10.6(b). Figure 10.7(b) is the result of filtering the image with that kernel. As before, the shades
darker than the gray background in Fig. 10.7(b) correspond to negative values. There are two principal
segments in the image oriented in the + °45 direction, one in the top left and one at the bottom right. Fig-
ures 10.7(c) and (d) show zoomed sections of Fig. 10.7(b) corresponding to these two areas. The straight
line segment in Fig. 10.7(d) is brighter than the segment in Fig. 10.7(c) because the line segment in the
bottom right of Fig. 10.7(a) is one pixel thick, while the one at the top left is not. The kernel is “tuned”
to detect one-pixel-thick lines in the + °45 direction, so we expect its response to be stronger when such
lines are detected. Figure 10.7(e) shows the positive values of Fig. 10.7(b). Because we are interested in
the strongest response, we let T equal 254 (the maximum value in Fig. 10.7(e) minus one). Figure 10.7(f)
shows in white the points whose values satisfied the condition g T> , where g is the image in Fig. 10.7(e).
The isolated points in the figure are points that also had similarly strong responses to the kernel. In the
original image, these points and their immediate neighbors are oriented in such a way that the kernel
produced a maximum response at those locations. These isolated points can be detected using the kernel
in Fig. 10.4(a) and then deleted, or they can be deleted using morphological operators, as discussed in the
last chapter.

EDGE MODELS

Edge detection is an approach used frequently for segmenting images based on
abrupt (local) changes in intensity. We begin by introducing several ways to model
edges and then discuss a number of approaches for edge detection.

ba c d

FIGURE 10.6 Line detection kernels. Detection angles are with respect to the axis system in Fig. 2.19, with positive
angles measured counterclockwise with respect to the (vertical) x-axis.

�1

2

�1

Horizontal Vertical�45� �45�

�1

2

�1

�1

2

�1

2

�1

�1

�1

2

�1

�1

�1

2

�1

�1

�1

2

2

2

�1

�1

�1

�1

�1

2

�1

2

�1

2

�1

�1

DIP4E_Print_Ready.indb 772 4/2/2017 8:48:04 PM

10.2 Point, Line, and Edge Detection 773

ba c
ed f

FIGURE 10.7 (a) Image of a wire-bond template. (b) Result of processing with the + °45 line detector kernel in Fig.
10.6. (c) Zoomed view of the top left region of (b). (d) Zoomed view of the bottom right region of (b). (e) The image
in (b) with all negative values set to zero. (f) All points (in white) whose values satisfied the condition g T> , where
g is the image in (e) and T = 254 (the maximum pixel value in the image minus 1). (The points in (f) were enlarged
to make them easier to see.)

Edge models are classified according to their intensity profiles. A step edge is
characterized by a transition between two intensity levels occurring ideally over the
distance of one pixel. Figure 10.8(a) shows a section of a vertical step edge and
a horizontal intensity profile through the edge. Step edges occur, for example, in
images generated by a computer for use in areas such as solid modeling and ani-
mation. These clean, ideal edges can occur over the distance of one pixel, provided
that no additional processing (such as smoothing) is used to make them look “real.”
Digital step edges are used frequently as edge models in algorithm development.
For example, the Canny edge detection algorithm discussed later in this section was
derived originally using a step-edge model.

In practice, digital images have edges that are blurred and noisy, with the degree
of blurring determined principally by limitations in the focusing mechanism (e.g.,
lenses in the case of optical images), and the noise level determined principally by
the electronic components of the imaging system. In such situations, edges are more

DIP4E_Print_Ready.indb 773 4/2/2017 8:48:04 PM

774 Chapter 10 Image Segmentation I Edge Detection, Thresholding, and Region Detection

ba c

FIGURE 10.8
From left to right,
models (ideal
representations) of
a step, a ramp, and
a roof edge, and
their corresponding
intensity profiles.

closely modeled as having an intensity ramp profile, such as the edge in Fig. 10.8(b).
The slope of the ramp is inversely proportional to the degree to which the edge is
blurred. In this model, we no longer have a single “edge point” along the profile.
Instead, an edge point now is any point contained in the ramp, and an edge segment
would then be a set of such points that are connected.

A third type of edge is the so-called roof edge, having the characteristics illus-
trated in Fig. 10.8(c). Roof edges are models of lines through a region, with the
base (width) of the edge being determined by the thickness and sharpness of the
line. In the limit, when its base is one pixel wide, a roof edge is nothing more than
a one-pixel-thick line running through a region in an image. Roof edges arise, for
example, in range imaging, when thin objects (such as pipes) are closer to the sensor
than the background (such as walls). The pipes appear brighter and thus create an
image similar to the model in Fig. 10.8(c). Other areas in which roof edges appear
routinely are in the digitization of line drawings and also in satellite images, where
thin features, such as roads, can be modeled by this type of edge.

It is not unusual to find images that contain all three types of edges. Although
blurring and noise result in deviations from the ideal shapes, edges in images that
are reasonably sharp and have a moderate amount of noise do resemble the charac-
teristics of the edge models in Fig. 10.8, as the profiles in Fig. 10.9 illustrate. What the
models in Fig. 10.8 allow us to do is write mathematical expressions for edges in the
development of image processing algorithms. The performance of these algorithms
will depend on the differences between actual edges and the models used in devel-
oping the algorithms.

Figure 10.10(a) shows the image from which the segment in Fig. 10.8(b) was extract-
ed. Figure 10.10(b) shows a horizontal intensity profile. This figure shows also the first
and second derivatives of the intensity profile. Moving from left to right along the
intensity profile, we note that the first derivative is positive at the onset of the ramp
and at points on the ramp, and it is zero in areas of constant intensity. The second
derivative is positive at the beginning of the ramp, negative at the end of the ramp,
zero at points on the ramp, and zero at points of constant intensity. The signs of the
derivatives just discussed would be reversed for an edge that transitions from light to
dark. The intersection between the zero intensity axis and a line extending between
the extrema of the second derivative marks a point called the zero crossing of the
second derivative.

We conclude from these observations that the magnitude of the first derivative
can be used to detect the presence of an edge at a point in an image. Similarly, the
sign of the second derivative can be used to determine whether an edge pixel lies on

DIP4E_Print_Ready.indb 774 4/2/2017 8:48:05 PM

10.2 Point, Line, and Edge Detection 785

ba
dc

FIGURE 10.18
Same sequence as
in Fig. 10.16, but
with the original
image smoothed
using a 5 5× aver-
aging kernel prior
to edge detection.

black. Comparing this image with Fig. 10.16(d), we see that there are fewer edges
in the thresholded image, and that the edges in this image are much sharper (see,
for example, the edges in the roof tile). On the other hand, numerous edges, such
as the sloping line defining the far edge of the roof (see arrow), are broken in the
thresholded image.

When interest lies both in highlighting the principal edges and on maintaining
as much connectivity as possible, it is common practice to use both smoothing and
thresholding. Figure 10.20(b) shows the result of thresholding Fig. 10.18(d), which is
the gradient of the smoothed image. This result shows a reduced number of broken
edges;  for instance, compare the corresponding edges identified by the arrows in
Figs. 10.20(a) and (b).

ba

FIGURE 10.19
Diagonal edge
detection.
(a) Result of using
the Kirsch kernel in
Fig. 10.15(c).
(b) Result of using
the kernel in Fig.
10.15(d). The input
image in both cases
was Fig. 10.18(a).

DIP4E_Print_Ready.indb 785 4/2/2017 8:48:14 PM

786 Chapter 10 Image Segmentation I Edge Detection, Thresholding, and Region Detection

MORE ADVANCED TECHNIQUES FOR EDGE DETECTION

The edge-detection methods discussed in the previous subsections are based on fil-
tering an image with one or more kernels, with no provisions made for edge char-
acteristics and noise content. In this section, we discuss more advanced techniques
that attempt to improve on simple edge-detection methods by taking into account
factors such as image noise and the nature of edges themselves.

The Marr-Hildreth Edge Detector

One of the earliest successful attempts at incorporating more sophisticated analy-
sis into the edge-finding process is attributed to Marr and Hildreth [1980]. Edge-
detection methods in use at the time were based on small operators, such as the
Sobel kernels discussed earlier. Marr and Hildreth argued (1) that intensity chang-
es are not independent of image scale, implying that their detection requires using
operators of different sizes; and (2) that a sudden intensity change will give rise to a
peak or trough in the first derivative or, equivalently, to a zero crossing in the second
derivative (as we saw in Fig. 10.10).

These ideas suggest that an operator used for edge detection should have two
salient features. First and foremost, it should be a differential operator capable of
computing a digital approximation of the first or second derivative at every point in
the image. Second, it should be capable of being “tuned” to act at any desired scale,
so that large operators can be used to detect blurry edges and small operators to
detect sharply focused fine detail.

Marr and Hildreth suggested that the most satisfactory operator fulfilling these
conditions is the filter 2G where, as defined in Section 3.6, 2 is the Laplacian, and
G is the 2-D Gaussian function

	 G x y e
x y

(,) =
− +2 2

22s 	 (10-27)

with standard deviation s (sometimes s is called the space constant in this context).
We find an expression for 2G by applying the Laplacian to Eq. (10-27):

Equation (10-27) differs
from the definition of a
Gaussian function by a
multiplicative constant
[see Eq. (3-54)]. Here,
we are interested only in
the general shape of the
Gaussian function.

ba

FIGURE 10.20
(a) Result of
thresholding
Fig. 10.16(d), the
gradient of the
original image.
(b) Result of
thresholding
Fig. 10.18(d), the
gradient of the
smoothed image.

DIP4E_Print_Ready.indb 786 4/2/2017 8:48:15 PM

788 Chapter 10 Image Segmentation I Edge Detection, Thresholding, and Region Detection

direction, thus avoiding having to use multiple kernels to calculate the strongest
response at any point in the image.

The Marr-Hildreth algorithm consists of convolving the LoG kernel with an input
image,

	 g x y G x y f x y(,) (,) (,)=  2
 	 (10-30)

and then finding the zero crossings of g x y(,) to determine the locations of edges in
f x y(,). Because the Laplacian and convolution are linear processes, we can write
Eq. (10-30) as

	 g x y G x y f x y(,) (,) (,)= ∇ []2
 	 (10-31)

indicating that we can smooth the image first with a Gaussian filter and then com-
pute the Laplacian of the result. These two equations give identical results.

The Marr-Hildreth edge-detection algorithm may be summarized as follows:

1.	 Filter the input image with an n n× Gaussian lowpass kernel obtained by sam-
pling Eq. (10-27).

2.	 Compute the Laplacian of the image resulting from Step 1 using, for example,
the 3 3× kernel in Fig. 10.4(a). [Steps 1 and 2 implement Eq. (10-31).]

3.	 Find the zero crossings of the image from Step 2.

This expression is
implemented in the
spatial domain using
Eq. (3-44). It can be
implemented also in the
frequency domain using
Eq. (4-104).

0 0 �1 0 0

0 �1 �2 �1 0

�1 �2 16 �2 �1

0 �1 �2 �1 0

0 0 �1 0 0

x y

�2G

�2G

Zero crossingZero crossing

2s2

ba
dc

FIGURE 10.21
(a) 3-D plot of
the negative of the
LoG.
(b) Negative of
the LoG
displayed as an
image.
(c) Cross section
of (a) showing
zero crossings.
(d) 5 5× kernel
approximation to
the shape in (a).
The negative
of this kernel
would be used in
practice.

DIP4E_Print_Ready.indb 788 4/2/2017 8:48:17 PM

804 Chapter 10 Image Segmentation I Edge Detection, Thresholding, and Region Detection

orientations of runways throughout the world are available in flight charts, and the direction of travel
is easily obtainable using GPS (Global Positioning System) information. This information also could be
used to compute the distance between the vehicle and the runway, thus allowing estimates of param-
eters such as expected length of lines relative to image size, as we did in this example.

10.3 THRESHOLDING

Because of its intuitive properties, simplicity of implementation, and computational
speed, image thresholding enjoys a central position in applications of image segmen-
tation. Thresholding was introduced in Section 3.1, and we have used it in various
discussions since then. In this section, we discuss thresholding in a more formal way,
and develop techniques that are considerably more general than what has been pre-
sented thus far.

FOUNDATION

In the previous section, regions were identified by first finding edge segments,
then attempting to link the segments into boundaries. In this section, we discuss

10.3

ba
c ed

FIGURE 10.31 (a) A 502 564× aerial image of an airport. (b) Edge map obtained using Canny’s algorithm. (c) Hough
parameter space (the boxes highlight the points associated with long vertical lines). (d) Lines in the image plane
corresponding to the points highlighted by the boxes. (e) Lines superimposed on the original image.

DIP4E_Print_Ready.indb 804 4/2/2017 8:48:42 PM

10.3 Thresholding 805

techniques for partitioning images directly into regions based on intensity values
and/or properties of these values.

The Basics of Intensity Thresholding

Suppose that the intensity histogram in Fig. 10.32(a) corresponds to an image, f x y(,),
composed of light objects on a dark background, in such a way that object and back-
ground pixels have intensity values grouped into two dominant modes. One obvious
way to extract the objects from the background is to select a threshold, T, that sepa-
rates these modes. Then, any point (,)x y in the image at which f x y T(,) > is called
an object point. Otherwise, the point is called a background point. In other words,
the segmented image, denoted by g x y(,), is given by

	 g x y
f x y T

f x y T
(,)

(,)

(,)
=

>



1

0

if

if ≤
	 (10-46)

When T is a constant applicable over an entire image, the process given in this equa-
tion is referred to as global thresholding. When the value of T changes over an image,
we use the term variable thresholding. The terms local or regional thresholding are
used sometimes to denote variable thresholding in which the value of T at any point
(,)x y in an image depends on properties of a neighborhood of (,)x y (for example,
the average intensity of the pixels in the neighborhood). If T depends on the spa-
tial coordinates (,)x y themselves, then variable thresholding is often referred to as
dynamic or adaptive thresholding. Use of these terms is not universal.

Figure 10.32(b) shows a more difficult thresholding problem involving a histo-
gram with three dominant modes corresponding, for example, to two types of light
objects on a dark background. Here, multiple thresholding classifies a point (,)x y as
belonging to the background if f x y T(,) ,≤ 1 to one object class if T f x y T1 2< (,) ,≤
and to the other object class if f x y T(,) .> 2 That is, the segmented image is given by

	 g x y

a f x y T

b T f x y T

c f x y T

,

(,)

(,)

(,)
() =

>
<







if

if

if

2

1 2

1

≤
≤

	 (10-47)

Remember, f(x, y)
denotes the intensity of f
at coordinates (x, y).

Although we follow
convention in using 0
intensity for the back-
ground and 1 for object
pixels, any two distinct
values can be used in
Eq. (10-46).

T T1 T2

ba

FIGURE 10.32
Intensity
histograms that
can be partitioned
(a) by a single
threshold, and
(b) by dual
thresholds.

DIP4E_Print_Ready.indb 805 4/2/2017 8:48:43 PM

10.3 Thresholding 807

[see Fig. 10.33(e)], but their separation is enough so that the depth of the valley
between them is sufficient to make the modes easy to separate. A threshold placed
midway between the two peaks would do the job. Figure 10.33(c) shows the result
of corrupting the image with Gaussian noise of zero mean and a standard deviation
of 50 intensity levels. As the histogram in Fig. 10.33(f) shows, the situation is much
more serious now, as there is no way to differentiate between the two modes. With-
out additional processing (such as the methods discussed later in this section) we
have little hope of finding a suitable threshold for segmenting this image.

The Role of Illumination and Reflectance in Image Thresholding

Figure 10.34 illustrates the effect that illumination can have on the histogram of
an image. Figure 10.34(a) is the noisy image from Fig. 10.33(b), and Fig. 10.34(d)
shows its histogram. As before, this image is easily segmentable with a single thresh-
old. With reference to the image formation model discussed in Section 2.3, suppose
that we multiply the image in Fig. 10.34(a) by a nonuniform intensity function, such
as the intensity ramp in Fig. 10.37(b), whose histogram is shown in Fig. 10.34(e).
Figure 10.34(c) shows the product of these two images, and Fig. 10.34(f) is the result-
ing histogram. The deep valley between peaks was corrupted to the point where sep-
aration of the modes without additional processing (to be discussed later in this sec-
tion) is no longer possible. Similar results would be obtained if the illumination was

In theory, the histogram
of a ramp image is
uniform. In practice, the
degree of uniformity
depends on the size of
the image and number of
intensity levels.

0 63 127 191 255 0 0.2 0.4 0.6 0.8 1 0 63 127 191 255

ba c
ed f

FIGURE 10.34 (a) Noisy image. (b) Intensity ramp in the range [0.2, 0.6]. (c) Product of (a) and (b). (d) through (f)
Corresponding histograms.

DIP4E_Print_Ready.indb 807 4/2/2017 8:48:44 PM

10.3 Thresholding 809

initial choice for T ). If this condition is met, the algorithm converges in a finite num-
ber of steps, whether or not the modes are separable (see Problem 10.32).

EXAMPLE 10.13 : Global thresholding.

Figure 10.35 shows an example of segmentation using the preceding iterative algorithm. Figure 10.35(a)
is the original image and Fig. 10.35(b) is the image histogram, showing a distinct valley. Application
of the basic global algorithm resulted in the threshold T = 125 4. after three iterations, starting with T
equal to the average intensity of the image, and using T = 0. Figure 10.35(c) shows the result obtained
using T = 125 to segment the original image. As expected from the clear separation of modes in the
histogram, the segmentation between object and background was perfect.

OPTIMUM GLOBAL THRESHOLDING USING OTSU’S METHOD

Thresholding may be viewed as a statistical-decision theory problem whose objec-
tive is to minimize the average error incurred in assigning pixels to two or more
groups (also called classes). This problem is known to have an elegant closed-form
solution known as the Bayes decision function (see Section 13.4). The solution is
based on only two parameters: the probability density function (PDF) of the inten-
sity levels of each class, and the probability that each class occurs in a given applica-
tion. Unfortunately, estimating PDFs is not a trivial matter, so the problem usually
is simplified by making workable assumptions about the form of the PDFs, such as
assuming that they are Gaussian functions. Even with simplifications, the process
of implementing solutions using these assumptions can be complex and not always
well-suited for real-time applications.

The approach in the following discussion, called Otsu’s method (Otsu [1979]), is
an attractive alternative. The method is optimum in the sense that it maximizes the

0 63 127 191 255

ba c

FIGURE 10.35 (a) Noisy fingerprint. (b) Histogram. (c) Segmented result using a global threshold (thin image border
added for clarity). (Original image courtesy of the National Institute of Standards and Technology.).

DIP4E_Print_Ready.indb 809 4/2/2017 8:48:45 PM

810 Chapter 10 Image Segmentation I Edge Detection, Thresholding, and Region Detection

between-class variance, a well-known measure used in statistical discriminant analy-
sis. The basic idea is that properly thresholded classes should be distinct with respect
to the intensity values of their pixels and, conversely, that a threshold giving the
best separation between classes in terms of their intensity values would be the best
(optimum) threshold. In addition to its optimality, Otsu’s method has the important
property that it is based entirely on computations performed on the histogram of an
image, an easily obtainable 1-D array (see Section 3.3).

Let 0 1 2 1, , , ,… L −{ } denote the set of L distinct integer intensity levels in a digi-
tal image of size M N× pixels, and let ni denote the number of pixels with intensity i.
The total number, MN, of pixels in the image is MN n n n nL= + + + + −0 1 2 1 . The
normalized histogram (see Section 3.3) has components p n MNi i= , from which it
follows that

	 p pi i
i

L

= ≥
=

−

∑ 1 0
0

1

	 (10-48)

Now, suppose that we select a threshold T k k k L() , ,= < < −0 1 and use it to thresh-
old the input image into two classes, c1 and c2 , where c1 consists of all the pixels in
the image with intensity values in the range [,]0 k and c2 consists of the pixels with
values in the range [,].k L+ −1 1 Using this threshold, the probability, P k1(), that a
pixel is assigned to (i.e., thresholded into) class c1 is given by the cumulative sum

	 P k pi
i

k

1
0

() =
=
∑ 	 (10-49)

Viewed another way, this is the probability of class c1 occurring. For example, if we
set k = 0, the probability of class c1 having any pixels assigned to it is zero. Similarly,
the probability of class c2 occurring is

	 P k p P ki
i k

L

2 1
1

1

1() ()= = −
= +

−

∑ 	 (10-50)

From Eq. (3-36), the mean intensity value of the pixels in c1 is

	

m k iP i c iP c i P i P c

P k
i p

i

k

i

k

i
i

k

1 1
0

1
0

1

1 0

1

() = () = () () ()

= ()

= =

=

∑ ∑

∑
	 (10-51)

where P k1() is given by Eq. (10-49). The term P i c1() in Eq. (10-51) is the probability
of intensity value i, given that i comes from class c1. The rightmost term in the first
line of the equation follows from Bayes’ formula (see Section 2.6):

	 P A B P B A P A P B() = () () ()
The second line follows from the fact that P c i1(), the probability of c1 given i, is 1
because we are dealing only with values of i from class c1. Also, P i() is the probabil-
ity of the ith value, which is the ith component of the histogram, pi . Finally, P c()1 is
the probability of class c1 which, from Eq. (10-49), is equal to P k1().

DIP4E_Print_Ready.indb 810 4/2/2017 8:48:49 PM

824 Chapter 10 Image Segmentation I Edge Detection, Thresholding, and Region Detection

where Q is a predicate based on parameters computed using the pixels in neighbor-
hood Sxy. For example, consider the following predicate, Q mxy xys , ,() based on the
local mean and standard deviation:

	 Q m
f x y a f x y bm

xy xy
xy xy

s
s

,
(,) (,)() =

> >TRUE if AND

FALSE otherwisee






	 (10-82)

Note that Eq. (10-80) is a special case of Eq. (10-81), obtained by letting Q be TRUE
if f x y Txy(,) > and FALSE otherwise. In this case, the predicate is based simply on
the intensity at a point.

EXAMPLE 10.18 : Variable thresholding based on local image properties.

Figure 10.43(a) shows the yeast image from Example 10.16. This image has three predominant inten-
sity levels, so it is reasonable to assume that perhaps dual thresholding could be a good segmentation
approach. Figure 10.43(b) is the result of using the dual thresholding method summarized in Eq. (10-76).
As the figure shows, it was possible to isolate the bright areas from the background, but the mid-gray
regions on the right side of the image were not segmented (i.e., separated) properly. To illustrate the use

ba
dc

FIGURE 10.43
(a) Image from
Fig. 10.40.
(b) Image
segmented using
the dual
thresholding
approach given
by Eq. (10-76).
(c) Image of local
standard
deviations.
(d) Result
obtained using
local thresholding.

DIP4E_Print_Ready.indb 824 4/2/2017 8:49:04 PM

826 Chapter 10 Image Segmentation I Edge Detection, Thresholding, and Region Detection

As another illustration of the effectiveness of this segmentation approach, we used the same param-
eters as in the previous paragraph to segment the image in Fig. 10.45(a), which is corrupted by a sinu-
soidal intensity variation typical of the variations that may occur when the power supply in a document
scanner is not properly grounded. As Figs. 10.45(b) and (c) show, the segmentation results are compa-
rable to those in Fig. 10.44.

Note that successful segmentation results were obtained in both cases using the same values for n
and c, which shows the relative ruggedness of the approach. In general, thresholding based on moving
averages works well when the objects of interest are small (or thin) with respect to the image size, a
condition satisfied by images of typed or handwritten text.

10.4 SEGMENTATION BY REGION GROWING AND BY REGION
SPLITTING AND MERGING

As we discussed in Section 10.1, the objective of segmentation is to partition an
image into regions. In Section 10.2, we approached this problem by attempting to
find boundaries between regions based on discontinuities in intensity levels, where-
as in Section 10.3, segmentation was accomplished via thresholds based on the dis-
tribution of pixel properties, such as intensity values or color. In this section and in
Sections 10.5 and 10.6, we discuss segmentation techniques that find the regions
directly. In Section 10.7, we will discuss a method that finds the regions and their
boundaries simultaneously.

REGION GROWING

As its name implies, region growing is a procedure that groups pixels or subregions
into larger regions based on predefined criteria for growth. The basic approach is to
start with a set of “seed” points, and from these grow regions by appending to each
seed those neighboring pixels that have predefined properties similar to the seed
(such as ranges of intensity or color).

Selecting a set of one or more starting points can often be based on the nature of
the problem, as we show later in Example 10.20. When a priori information is not

10.4

You should review the
terminology introduced
in Section 10.1 before
proceeding.

ba c

FIGURE 10.44 (a) Text image corrupted by spot shading. (b) Result of global thresholding using Otsu’s method.
(c) Result of local thresholding using moving averages.

DIP4E_Print_Ready.indb 826 4/2/2017 8:49:06 PM

10.4 Segmentation by Region Growing and by Region Splitting and Merging 831

3.	 Stop when no further merging is possible.

Numerous variations of this basic theme are possible. For example, a significant
simplification results if in Step 2 we allow merging of any two adjacent regions Rj
and Rk if each one satisfies the predicate individually. This results in a much sim-
pler (and faster) algorithm, because testing of the predicate is limited to individual
quadregions. As the following example shows, this simplification is still capable of
yielding good segmentation results.

EXAMPLE 10.21 : Segmentation by region splitting and merging.

Figure 10.48(a) shows a 566 566× X-ray image of the Cygnus Loop supernova. The objective of this
example is to segment (extract from the image) the “ring” of less dense matter surrounding the dense
inner region. The region of interest has some obvious characteristics that should help in its segmenta-
tion. First, we note that the data in this region has a random nature, indicating that its standard devia-
tion should be greater than the standard deviation of the background (which is near 0) and of the large
central region, which is smooth. Similarly, the mean value (average intensity) of a region containing
data from the outer ring should be greater than the mean of the darker background and less than the
mean of the lighter central region. Thus, we should be able to segment the region of interest using the
following predicate:

ba
dc

FIGURE 10.48
(a) Image of the
Cygnus Loop
supernova, taken
in the X-ray band
by NASA’s
Hubble Telescope.
(b) through (d)
Results of limit-
ing the smallest
allowed
quadregion to be
of sizes of 32 32× ,
16 16× , and 8 8×
pixels,
respectively.
(Original image
courtesy of
NASA.)

DIP4E_Print_Ready.indb 831 4/2/2017 8:49:10 PM

832 Chapter 10 Image Segmentation I Edge Detection, Thresholding, and Region Detection

	 Q R
a m bR R() =

> < <



TRUE if AND

FALSE otherwise

s 0

where sR and mR are the standard deviation and mean of the region being processed, and a and b are
nonnegative constants.

Analysis of several regions in the outer area of interest revealed that the mean intensity of pixels
in those regions did not exceed 125, and the standard deviation was always greater than 10. Figures
10.48(b) through (d) show the results obtained using these values for a and b, and varying the minimum
size allowed for the quadregions from 32 to 8. The pixels in a quadregion that satisfied the predicate
were set to white; all others in that region were set to black. The best result in terms of capturing the
shape of the outer region was obtained using quadregions of size 16 16× . The small black squares in
Fig. 10.48(d) are quadregions of size 8 8× whose pixels did not satisfy the predicate. Using smaller
quadregions would result in increasing numbers of such black regions. Using regions larger than the one
illustrated here would result in a more “block-like” segmentation. Note that in all cases the segmented
region (white pixels) was a connected region that completely separates the inner, smoother region from
the background. Thus, the segmentation effectively partitioned the image into three distinct areas that
correspond to the three principal features in the image: background, a dense region, and a sparse region.
Using any of the white regions in Fig. 10.48 as a mask would make it a relatively simple task to extract
these regions from the original image (see Problem 10.45). As in Example 10.20, these results could not
have been obtained using edge- or threshold-based segmentation.

As used in the preceding example, properties based on the mean and standard
deviation of pixel intensities in a region attempt to quantify the texture of the region
(see Section 12.3 for a discussion on texture). The concept of texture segmentation
is based on using measures of texture in the predicates. In other words, we can per-
form texture segmentation by any of the methods discussed in this section simply by
specifying predicates based on texture content.

10.5 	REGION SEGMENTATION USING CLUSTERING AND
SUPERPIXELS

In this section, we discuss two related approaches to region segmentation. The first
is a classical approach based on seeking clusters in data, related to such variables as
intensity and color. The second approach is significantly more modern, and is based
on using clustering to extract “superpixels” from an image.

REGION SEGMENTATION USING K-MEANS CLUSTERING

The basic idea behind the clustering approach used in this chapter is to partition a
set, Q, of observations into a specified number, k, of clusters. In k-means clustering,
each observation is assigned to the cluster with the nearest mean (hence the name
of the method), and each mean is called the prototype of its cluster. A k-means algo-
rithm is an iterative procedure that successively refines the means until convergence
is achieved.

Let { , , , }z z z1 2 … Q be set of vector observations (samples). These vectors have
the form

10.5

A more general form of
clustering is
unsupervised clustering,
in which a clustering
algorithm attempts to
find a meaningful set of
clusters in a given set
of samples. We do not
address this topic, as
our focus in this brief
introduction is only to
illustrate how supervised
clustering is used for
image segmentation.

DIP4E_Print_Ready.indb 832 4/2/2017 8:49:11 PM

836 Chapter 10 Image Segmentation I Edge Detection, Thresholding, and Region Detection

some minor differences in areas around sharp edges. But remember, the superpixel
image has an order of magnitude fewer elements than the original and, if needed,
contrast differences are easily remedied by histogram processing.

As a final illustration, we show the results of severely decreasing the number of
superpixels to 1,000, 500, and 250. The results in Fig. 10.52, show a significant loss of
detail compared to Fig. 10.50(a), but the first two images contain most of the detail
relevant to the image description discussed earlier. A notable difference is that two
of the three small carvings on the fence in the back were eliminated. The 250-ele-
ment superpixel image even lost the third. However, the boundaries between the
principal regions, as well as the basic topology of the images, were preserved.

ba c

FIGURE 10.51 (a) Original image. (b) Image composed of 40,000 superpixels. (c) Difference between (a) and (b).

FIGURE 10.52 Top row: Results of using 1,000, 500, and 250 superpixels in the representation of Fig. 10.50(a). As before,
the boundaries between superpixels are superimposed on the images for reference. Bottom row: Superpixel images.

DIP4E_Print_Ready.indb 836 4/2/2017 8:49:17 PM

840 Chapter 10 Image Segmentation I Edge Detection, Thresholding, and Region Detection

than is needed for a proper segmentation. In terms of computational advantage, consider that generat-
ing Fig. 10.53(b) required individual processing of over 300K pixels, while (e) required processing of 100
pixels with considerably fewer shades of gray.

Figure 10.54(a) is the same as Fig. 10.49(a), and Fig. 10.54(b) is a 95K-superpixel image (about 20%
of the number of pixels in the original image). The original and the superpixel images are quite close
visually. Although the number of superpixels is significantly smaller than the number of pixels in the
original, they have basically the same content. For example, Fig. 10.54(c) is the result of segmenting Fig.
10.54(b) using the same k-means approach we used to generate Fig. 10.49(b), which is a segmentation of
the original image. You can see by comparing Figs. 10.54(c) and 10.42(b) that the result using superpixels
is superior. An added bonus is that the computational load of segmenting the superpixel image was
significantly less.

10.6 REGION SEGMENTATION USING GRAPH CUTS
In this section, we discuss an approach for partitioning an image into regions by
expressing the pixels of the image as nodes of a graph, and then finding an optimum
partition (cut) of the graph into groups of nodes. Optimality is based on criteria whose

10.6

ba
c ed

FIGURE 10.53 (a) Image of size 533 566× (301,678) pixels. (b) Image segmented using the k-means algorithm.
(c) 100-element superpixel image showing boundaries for reference. (d) Same image without boundaries. (e) Super-
pixel image (d) segmented using the k-means algorithm. (Original image courtesy of NOAA.)

DIP4E_Print_Ready.indb 840 4/2/2017 8:58:07 PM

842 Chapter 10 Image Segmentation I Edge Detection, Thresholding, and Region Detection

The essence of the material in this section is to represent an image to be seg-
mented as a weighted, undirected graph, where the nodes of the graph are the pixels
in the image, and an edge is formed between every pair of nodes. The weight, w(,),i j
of each edge is a function of the similarity between nodes i and j. We then seek to
partition the nodes of the graph into disjoint subsets V V VK1 2, , ,… where, by some
measure, the similarity among the nodes within a subset is high, and the similarity
across the nodes of different subsets is low. The nodes of the partitioned subsets
correspond to the regions in the segmented image.

Set V is partitioned into subsets by cutting the graph. A cut of a graph is a parti-
tion of V into two subsets A and B such that

	 A B V A B´ ¨= = ∅and 	 (10-96)

where the cut is implemented by removing the edges connecting subgraphs A and B.
There are two key aspects of using graph cuts for image segmentation: (1) how to
associate a graph with an image; and (2) how to cut the graph in a way that makes
sense in terms of partitioning the image into background and foreground (object)
pixels. We address these two questions next.

Figure 10.55 shows a simplified approach for generating a graph from an image.
The nodes of the graph correspond to the pixels in the image and, to keep the expla-
nation simple, we allow edges only between adjacent pixels using 4-connectivity,
which means that there are no diagonal edges linking the pixels. But, keep in mind
that, in general, edges are specified between every pair of pixels. The weights for the
edges typically are formed from spatial relationships (for example, distance from the
vertex pixel) and intensity measures (for example, texture and color), consistent with
exhibiting similarity between pixels. In this simple example, we define the degree
of similarity between two pixels as the inverse of the difference in their intensities.

Superpixels are also well
suited for use as graph
nodes. Thus, when we
refer in this section to

“pixels” in an image, we
are, by implication,
also referring to super-
pixels.

Cut

⇓

⇓

⇓Image

Graph

Segmentation

Edge
Node

ba
dc

FIGURE 10.55
(a) A 3 3× image.
(c) A corresponding
graph.
(d) Graph cut.
(c) Segmented
image.

DIP4E_Print_Ready.indb 842 4/2/2017 8:58:10 PM

10.7 Segmentation Using Morphological Watersheds 849

EXAMPLE 10.25 : Segmentation using graph cuts.

Graph cuts are ideally suited for obtaining a rough segmentation of the principal regions in an image.
Figure 10.58 shows a typical result. Figure 10.58(a) is the familiar building image. Consistent with the
idea of extracting the principal regions of an image, Fig. 10.58(b) shows the image smoothed with a
simple 25 25× box kernel. Observe how the fine detail is smoothed out, leaving only major regional
features such as the facade and sky. Figure 10.58(c) is the result of segmentation using the graph cut
algorithm just developed, with weights of the form discussed in the previous example, and allowing only
two partitions. Note how well the region corresponding to the building was extracted, with none of the
details characteristic of the methods discussed earlier in this chapter. In fact, it would have been nearly
impossible to obtain comparable results using any of the methods we have discussed thus far without
significant additional processing. This type of result is ideal for tasks such as providing broad cues for
autonomous navigation, for searching image databases, and for low-level image analysis.

Figure 10.59 shows another example in which the image was smoothed with the same kernel. Here,
we first specified two regions, resulting in Fig. 10.59(c). Note the fidelity of the separation between the
iceberg and the background. Figure 10.59(d) is the result of specifying three regions in the segmenta-
tion. We see by comparing Figs. 10.59(d) and Fig. 10.42(c) that the graph-cut approach yielded a much
more accurate segmentation, in the sense that none of the pixels within the regions were mislabeled as
belonging to another region.

10.7 SEGMENTATION USING MORPHOLOGICAL WATERSHEDS

Thus far, we have discussed segmentation based on three principal concepts: edge
detection, thresholding, and region extraction. Each of these approaches was found
to have advantages (for example, speed in the case of global thresholding) and dis-
advantages (for example, the need for post-processing, such as edge linking, in edge-
based segmentation). In this section, we discuss an approach based on the concept of
so-called morphological watersheds. Segmentation by watersheds embodies many of
the concepts of the other three approaches and, as such, often produces more stable

10.7

ba c

FIGURE 10.58 (a) Image of size 600 600× pixels. (b) Image smoothed with a 25 25× box kernel. (c) Graph cut segmen-
tation obtained by specifying two regions.

DIP4E_Print_Ready.indb 849 4/2/2017 8:58:17 PM

10.7 Segmentation Using Morphological Watersheds 851

Water Water

Water

b
a

d
c

FIGURE 10.60
(a) Original
image.
(b) Topographic
view. Only the
background is
black. The basin
on the left is
slightly lighter
than black.
(c) and (d) Two
stages of flooding.
All constant dark
values of gray are
intensities in the
original image.
Only constant
light gray repre-
sents “water.”
(Courtesy of Dr.
S. Beucher, CMM/
Ecole des Mines
de Paris.)
(Continued on
next page.)

from spilling out through the edges of the image, we imagine the perimeter of the
entire topography (image) being enclosed by dams that are higher than the highest
possible mountain, whose value is determined by the highest possible intensity value
in the input image.

Suppose that a hole is punched in each regional minimum [shown as dark areas in
Fig. 10.60(b)] and that the entire topography is flooded from below by letting water
rise through the holes at a uniform rate. Figure 10.60(c) shows the first stage of flood-
ing, where the “water,” shown in light gray, has covered only areas that correspond
to the black background in the image. In Figs. 10.60(d) and (e) we see that the water
now has risen into the first and second catchment basins, respectively. As the water
continues to rise, it will eventually overflow from one catchment basin into another.
The first indication of this is shown in 10.60(f). Here, water from the lower part of
the left basin overflowed into the basin on the right, and a short “dam” (consisting of
single pixels) was built to prevent water from merging at that level of flooding (the
mathematical details of dam building are discussed in the following section). The
effect is more pronounced as water continues to rise, as shown in Fig. 10.60(g). This

Because of neighboring
contrast, the leftmost
basin in Fig. 10.60(c)
appears black, but it is a
few shades lighter than
the black background.
The mid-gray in the
second basin is a natural
gray from the image
in (a).

DIP4E_Print_Ready.indb 851 4/2/2017 8:58:17 PM

 Problems 873

C Mn i() and T n[] either increases or remains
the same as n increases.

10.50	 You saw in Section 10.7 that the boundaries
obtained using the watershed segmentation algo-
rithm form closed loops (for example, see Figs.
10.62 and 10.64). Advance an argument that estab-
lishes whether or not closed boundaries always
result from application of this algorithm.

10.51 *	Give a step-by-step implementation of the dam-
building procedure for the one-dimensional inten-
sity cross section shown below. Show a drawing
of the cross section at each step, showing “water”
levels and dams constructed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x0

1
2
3
4
5
6
7

10.52	 What would the negative ADI image shown
in Fig. 10.65(c) look like if we tested against T
(instead of testing against −T) in Eq. (10-117)?

10.53	 Are the following statements true or false? Ex-
plain the reason for your answer in each.

(a) *	The nonzero entries in the absolute ADI
continue to grow in dimension, provided
that the object is moving.

(b)	 The nonzero entries in the positive ADI
always occupy the same area, regardless of
the motion undergone by the object.

(c)	 The nonzero entries in the negative ADI
continue to grow in dimension, provided
that the object is moving.

10.54	 Suppose that in Example 10.29 motion along the
x-axis is set to zero. The object now moves only
along the y-axis at 1 pixel per frame for 32 frames
and then (instantaneously) reverses direction
and moves in exactly the opposite direction for
another 32 frames. What would Figs. 10.69(a)
and (b) look like under these conditions?

10.55 *	Advance an argument that demonstrates that
when the signs of S x1 and S x2 in Eqs. (10-125)
and (10-126) are the same, velocity component
V1 is positive.

10.56	 An automated pharmaceutical plant uses image
processing to measure the shapes of medication

tablets for the purpose of quality control. The
segmentation stage of the system is based on
Otsu’s method. The speed of the inspection lines
is so high that a very high rate flash illumina-
tion is required to “stop” motion. When new, the
illumination lamps project a uniform pattern of
light. However, as the lamps age, the illumination
pattern deteriorates as a function of time and
spatial coordinates according to the equation

	 i x y A t t e x M y N(,) () [() ()]= − − − + −2 2 22 2

where M N2 2,() is the center of the viewing
area and t is time measured in increments of
months. The lamps are still experimental and
the behavior of A t() is not fully understood by
the manufacturer. All that is known is that, dur-
ing the life of the lamps, A t() is always greater
than the negative component in the preceding
equation because illumination cannot be nega-
tive. It has been observed that Otsu’s algorithm
works well when the lamps are new, and their
pattern of illumination is nearly constant over the
entire image. However, segmentation perfor-
mance deteriorates with time. Being experimental,
the lamps are exceptionally expensive, so you are
employed as a consultant to help solve the prob-
lem using digital image processing techniques to
compensate for the changes in illumination, and
thus extend the useful life of the lamps. You are
given flexibility to install any special markers or
other visual cues in the viewing area of the imag-
ing cameras. Propose a solution in sufficient detail
that the engineering plant manager can under-
stand your approach. (Hint: Review the image
model discussed in Section 2.3 and consider using
one or more targets of known reflectivity.)

10.57	 The speed of a bullet in flight is to be estimated by
using high-speed imaging techniques. The method
of choice involves the use of a CCD camera and
flash that exposes the scene for K seconds. The bul-
let is 2.5 cm long, 1 cm wide, and its range of speed
is 750 250± m s. The camera optics produce an
image in which the bullet occupies 10% of the
horizontal resolution of a 256 256× digital image.

(a) *	Determine the maximum value of K that
will guarantee that the blur from motion
does not exceed 1 pixel.

(b)	 Determine the minimum number of frames

DIP4E_Print_Ready.indb 873 4/2/2017 8:58:47 PM

874 Chapter 10 Image Segmentation I Edge Detection, Thresholding, and Region Detection

Projects
MATLAB solutions to the projects marked with an asterisk (*) are in the DIP4E Student Support Package (consult
the book website: www.ImageProcessingPlace.com).

10.1	 Edge models.

(a) *	Write a function, g = edgeModel4e(type,M,N,iLow,
iHigh,width,angle) for generating an image of
size M N× containing an edge passing
through the center of the image. Values of
type define the edge as a 'step', 'ramp', or 'roof'
edge. Using a vertical edge (the default) as a
reference, iLow denotes the intensity on the
left side of the edge, and iHigh the intensity
of its right side, with iLow < iHigh. Parameter
width (in pixels) is the width of the transition
of a ramp or roof edge; it is ignored for step
edges. It is required that width be less than
N – 2. The default value for width is (N/4), but a
value for width must be specified for all three
edges if angle is specified (width is ignored for
step edges). Parameter angle (in degrees)
is the rotation of the edge about its center.
The default is 0 for a vertical edge, and a
positive value of angle results in counter-
clockwise rotation. The image generated by
this function must fill the entire M N× , rect-
angle. (Hint: Consider using project function
imageRotate4e to perform the rotation.

(b) *	Use f = edgeModel4e('step',10,10,0,1) to gener-
ate a small vertical binary step edge. Display
the array. Apply both Sobel kernels (see
Project 10.2) individually to the small image
using function twodConv4e and display the
two resulting numerical arrays. Explain why
the results are different.

(c)	 Use function edgeModel4e to generate an
edge as in (b), but oriented at 45°. Convolve
this image with the north Kirsch kernel and
display the resulting array. Repeat using the
south Kirsch kernel. You will find that both

kernels give nonzero results along the edge,
but the results differ in the sign and location
of the values. Explain what this means. Both
results suggest the presence of a binary edge
oriented at 45°, so what is the usefulness of
having two kernels for 45° edge detection?

(d) *	Test function edgeModel4e with more practical
arrays by generating and displaying four 8-bit
images of size 512 512× pixels with: a step
edge oriented at 60°, a step edge oriented at
−60°, a ramp edge with a ramp width of 128
pixels, oriented at −45°, and a roof edge of
the same width oriented at 45°.

(e)	 Show how you would use function edgeMod-
el4e to generate a black image containing
eight white 1-pixel lines in the eight com-
pass directions that intersect in the center of
a 512 512× image.

10.2	 Sobel, Prewitt, and Kirsch compass kernels.

(a)	 Write a function w = edgeKernel4e(type,dir) for
generating the kernels in Figs. 10.14 and 10.15.
Parameter type is one of three strings: 'prewitt',

'sobel', and 'kirsch'. Parameter dir is 'v' for the
vertical edges in the Prewitt and Sobel ker-
nels, and 'h' for the horizontal edges in these
two kernels. For the Kirsch kernels, dir is a
detailed in Fig. 10.15.

(b) *	Display all the kernels that your function is
capable of generating.

10.3	 Edge magnitude and angle.

(a) *	Write a function g = edgeMag4e(f,type,T) for
computing the magnitude of the gradi-
ent of image f. Parameter 'type' designates
the kernel used to compute the gradient:

'prewitt', 'sobel', and 'kirsch', corresponding to

per second that would have to be acquired
in order to guarantee that at least two com-
plete images of the bullet are obtained dur-
ing its path through the field of view of the
camera.

(c) *	Propose a segmentation procedure for
automatically extracting the bullet from a
sequence of frames.

(d)	 Propose a method for automatically deter-
mining the speed of the bullet.

DIP4E_Print_Ready.indb 874 4/2/2017 8:58:48 PM

877

11
Image Segmentation II
Active Contours: Snakes and
Level Sets

Preview
In this chapter, we develop the foundation for image segmentation based on active contours, which are
deformable models confined to the plane. We discuss two approaches: snakes and level sets. Snakes are
active contours based on explicit (e.g., parametric) representation of segmentation curves; they derive
their name from the way the curves appear to "slither" on the image plane in the process of seek-
ing region boundaries. Level sets are based on implicit representation of curves, which are techniques
for representing active contours as the intersection of a 3-D surface with a plane. The fundamental
equations of both approaches are derived starting from basic principles. We give numerous examples
designed to illustrate the strengths and limitations of both methods, and conclude the chapter with a
brief discussion of a fast implementation approach for level sets.

Upon completion of this chapter, readers should:
	 Have a command of the derivation of the

snake and level set equations, starting from
basic principles.

	 Understand how to implement discrete, itera-
tive formulations of both approaches.

	 Be able to formulate explicit functions for use
in snake segmentation.

	 Understand how to formulate implicit func-
tions for use in level set segmentation.

	 Understand force fields and be able to apply
them in active contour algorithms.

	 Know how to generate level set functions, start-
ing with a plane curve.

	 Be aware of the central role played by the
image gradient in both snake and level set
force formulations.

	 Be able to relate a variety of different level
set approaches to the same fundamental iter-
ative solution.

	 Be familiar with the advantages and limita-
tions of snakes and level sets as they apply to
image processing.

Divide each difficulty into as many parts as is feasible and
necessary to resolve it.

Rene Descartes

DIP4E_Print_Ready.indb 877 4/2/2017 8:58:50 PM

878 Chapter 11 Image Segmentation II Active Contours: Snakes and Level Sets

11.1 	BACKGROUND
With the exception of graph cuts and watershed segmentation, the material in the
previous chapter dealt mostly with what we might call “traditional” segmentation
methods, based primarily on detecting intensity discontinuities or similarities. In
this chapter, we discuss techniques that approach segmentation from a “model-
ing” point of view. Specifically, we develop methods whose origin can be traced to
work on deformable models conducted in the 1980s. Deformable models are physi-
cally based models of deformable curves, surfaces, and solids used traditionally in
computer graphics. The topic of this chapter, active contours (also called evolving
fronts or evolving interfaces), are deformable models confined to the plane. The term

“active” indicates that the curves are dynamic, as opposed, for example, to segmenta-
tion curves resulting from a global thresholding operation. In segmentation, these
active curves are attracted to region boundaries, acting under the influence of forces
extracted typically from an image being segmented.

Work on active contours related specifically to image segmentation evolved along
two different paths. One path was based on so-called snakes, introduced by Kass,
Witkin, and Terzopoulus [1988]. Snakes are parametric curves that seek the bound-
ary of a region by minimizing an energy functional, guided by internal forces, and
influenced by image forces that pull it toward image features, such as lines and edges.
The term “snake” is based on the appearance of a curve as it “slithers” on the image
plane in the process of seeking its minimum energy.

A development parallel chronologically to snakes was based on level sets, intro-
duced by Osher and Sethian [1988] as a tool in computational fluid dynamics for
following fronts propagating through a medium. The key difference between the
two approaches is that snakes are based on explicit representations of segmentation
contours as parametric curves, while level sets rely on implicit representations of
contours, expressed as the intersection of a 3-D surface with a plane. For example,
the intersection of a sphere and plane is an implicit representation of a circle.

The body of work on active contours is impressive, both in breadth and depth,
including countless articles and numerous books and monographs dealing with vari-
ous aspects of the subject. Our focus in this chapter is on the foundation of both
active contour approaches. In the next section, we will derive the fundamental snake
equation, starting from basic principles. We then discuss various implementation
details and give several application examples. We will follow a similar path in Sec-
tion 11.3 by deriving the level set equation, and illustrating its implementation and
use in image segmentation. These two equations are the foundation for most of the
active-contour approaches you are likely to encounter in image processing.

11.2 	IMAGE SEGMENTATION USING SNAKES

Snakes are parametric representations of active contours, so begin the discussion by
reviewing some basic concepts of parametric curve representation.

EXPLICIT (PARAMETRIC) REPRESENTATION OF ACTIVE CONTOURS

A parametric curve in the xy-plane is defined by coordinates expressed as

	 (,) (), ()x y g s h s= ()	 (11-1)

11.1

11.2

DIP4E_Print_Ready.indb 878 4/2/2017 8:58:50 PM

11.2 Image Segmentation Using Snakes 887

Solving this equation for x()t and y()t yields the iterative solution of the snake equa-
tion:

	
x I D x F x y

y I D

() () (), ()

()

t t t t t t

t t

x= −[] − + − −() 

= −[]

−

−

 



1

1

1 1 1

yy F x y() (), ()t t t ty− + − −() 1 1 1
	 (11-43)

where I is the K K× identity matrix. The t constant multiplies all derivative and
force terms in this equation, so it has little selective influence on the internal versus
the external forces. A more selective formulation is obtained by letting t = 1 and
multiplying the external force components by a constant g. This allows control of
the internal forces by a and b, and the external force by g. Equation (11-43) then
becomes

	
x I D x F x y

y I D y

() () (), ()

() (

t t t t

t t

x= −[] − + − −() 

= −[] −

−

−

1

1

1 1 1

1

g

)) (), ()+ − −() gF x yy t t1 1
	 (11-44)

The term I D−[]−1 does not depend on k nor t, so it is computed only once for fixed
values of a and b. Letting this term be represented as a constant matrix,

	 A I D= −[]−1 	 (11-45)

we can write Eq. (11-44) as

	
x A x F x y

y A y F x

() () (), ()

() () (),

t t t t

t t t

x

y

= − + − −() 

= − + −

1 1 1

1 1

g

g yy()t −() 1
	 (11-46)

These two equations constitute the iterative form of the snake equation. As you can
see, we have reduced the problem of finding a segmentation snake to solving two
straightforward iterative equations—a trivial task, especially in a matrix-oriented
language, such as MATLAB. The approach is to specify the coordinates x()0 and
y()0 of an initial snake, then solve this equation iteratively for t = 1 2, , .… At any
value of t, x()t and y()t are vectors containing all the coordinates of the snake at that
iterative step, while x()t − 1 and y()t − 1 are vectors containing the coordinates from
the previous step. Similarly, F x yx t t(), ()− −()1 1 and F x yy t t(), ()− −()1 1 are vectors
containing the x and y components of the forces acting on all points of the snake at
step t − 1. In theory, the snake is said to have converged when c stops changing; that
is, when c c() ().t t= − 1 In practice, we have to allow for variations due to factors such
as noise, so comparing for equality is not feasible. One of the simplest ways to mea-
sure change is to compute the vector norm of the difference, c c() () ,t t− − 1 and say
that the snake has converged if the norm is less than a predefined threshold. All that

All vectors in this
equation are
K-dimensional. Matrix A
is of size K  K.

DIP4E_Print_Ready.indb 887 4/2/2017 8:59:01 PM

892 Chapter 11 Image Segmentation II Active Contours: Snakes and Level Sets

ba
dc

FIGURE 11.3
(a) Edge map
used to generate
the results in
Fig. 11.2.
(b) Edge map
with only the
MOG filtered and
then thresholded.
(c) Result after
200 iterations
using the forces
based on (a).
(d) Result after
200 iterations
using the forces
based on (b).
The initial snake
is shown in
Fig. 11.2(a).
(Continued)

FIGURE 11.4
Force field
obtained using
the edge map in
Fig. 11.3(a). All
the arrows are of
the same length
because each
element of the
force field was
normalized using
Eqs. (11-49)
and (11-50).

This fact is illustrated vividly by the force field in Fig. 11.5, which was obtained using the edge map in
Fig. 11.3(b). Note the randomness of the force vectors throughout the entire force field; this explains the
reason for the poor result in Fig. 11.3(d).

The points in the initial snake in Fig. 11.2(a) are equidistant (i.e., the arc distance between adjacent
points is the same). However, because no provision is made in Eq. (11-46) for maintaining this spatial

DIP4E_Print_Ready.indb 892 4/2/2017 8:59:08 PM

11.2 Image Segmentation Using Snakes 901

ba

FIGURE 11.12
(a) MOG-based
snake after 90
iterations. The
snake is beginning
to attach itself
to the boundary,
but it has a long
way to go before
it fully converges
to the boundary.
(b) GVF-based
snake after the
same number of
iterations.

ba c
ed f

FIGURE 11.13 (a) 586 600× MRI image of a breast implant and initial snake. Results after: (b) 10, (c) 20, (d) 40, (e) 60,
and (f) 80 iterations, respectively. The snake parameters used were a = 0 05. , b = 0 5. , and g = 2 5. . (Original image
courtesy of NIH/National Library of Medicine.)

DIP4E_Print_Ready.indb 901 4/2/2017 8:59:17 PM

902 Chapter 11 Image Segmentation II Active Contours: Snakes and Level Sets

implant (the ellipse shown is the initial snake). Our interest is in obtaining the boundary of the implant.
As motivation for this type of processing, imagine you were conducting a study of a historical medical
database containing thousands of images of breast implants. An important aspect of such a study might
be to analyze the shape of the implants, in order to quantify abnormalities (e.g., collapsed implants)
as a percentage of normal implants. Even if total automation is not acceptable (a typical constraint in
medical image processing), a semi-automated technique, in which a human expert initiates the process
by pointing to a starting location in the implants and letting a computer extract the boundary, often is
acceptable. Such an approach can save many hours of effort and yield more accurate measurements
than manual estimates.

To generate the results in Fig. 11.13, we used parameters similar to those in Example 11.3. The smooth-
ing was the same, but the smoothed image was thresholded at 0.01. We used a GVF force field, with
m = 0 2. and 160 iterations, which are the same settings as in Example 11.5. The results in Figs. 11.13(b)
through (f) show how the snake evolved from an initial position straddling the boundary of the implant,
to an almost perfect segmentation of that region. Observe how the snake contracted initially, and then
expanded, finally snapping to the contour of the region of interest.

11.3 	SEGMENTATION USING LEVEL SETS

As we mentioned in Section 11.1, level sets in our context are sets of points of a 2-D
curve formed by the intersection of a plane and a 3-D surface. Unlike the paramet-
ric representation used for snakes, level sets are based on implicit representations.
An important aspect of this approach is that it can adapt to changing topology (e.g.,
the discovery of “holes” within a region, and the emergence of new regions) during
curve evolution. Inherently, parametric curves do not have this capability. However,
as we will illustrate later in this section, each approach has strengths that make it an
appropriate choice in a given application. As noted in Section 11.1, level sets were
used initially to describe the propagation of interfaces between fluids. In the ter-
minology of image segmentation, “fluids” represent image regions, and “interfaces”
become segmentation contours separating one region from another.

IMPLICIT REPRESENTATION OF ACTIVE CONTOURS

The representation of snakes discussed in Section 11.2 is explicit, in the sense that
an active contour is represented by an equation, written typically in Cartesian or
(more frequently) parametric form. An alternate representation of a 2-D contour is
to define it implicitly as the intersection of a plane and a 3-D surface. To illustrate,
consider the explicit equation of a circle centered at point (,)x y0 0 in the xy-plane:

	 () ()x x y y r− + − =0
2

0
2 2

Figure 11.14(a) shows a generic plot of this function. We can write this equation
equivalently as

	 () ()x x y y r− + − − =0
2

0
2 2 0

Suppose that we define the following scalar function of two variables:

	 f(,) () ()x y x x y y r= − + − −0
2

0
2 2

11.3

Remember, a scalar
function outputs a
scalar value, regardless
of the number of scalar
variables on which it
depends.

DIP4E_Print_Ready.indb 902 4/2/2017 8:59:17 PM

11.3 Segmentation Using Level Sets 903

r
0x

0y

2 2 2
0 0() ()x x y y r− + − =

x

y

0x

0y

x

2 2 2
0 0(,) () ()x y x x y y r= − + − −f

Zero
plane

(,) 0x y =f
x

y

Ω−

Ω+

Ω0

Ω

ba c

FIGURE 11.14 (a) Cartesian equation of a circle and its corresponding plot. (b) The same circle, obtained as the level
set curve f(,)x y = 0 (i.e., the intersection of f(,)x y and the zero plane). (c) Top view of (b); the dark area enclosed
by the circle is the visible section of the zero-plane. The symbols Æ0, Æ− , and Æ+ , are the sets of points (on the
plane) that are on, inside, and outside the boundary, respectively, while Æ represents the entire image plane.

Figure 11.14(b) is a plot of f as a function of x and y. As you can see, f is a surface
in 3-D, while the equation of the circle is a curve in 2-D. However, we can extract the
circle from the surface as the locus of points in the intersection of f with the zero-
plane. This set of points is given by values of x and y for which f(,) ,x y = 0 as Fig.
11.14(b) shows. Figure 11.14(c) is a top view, showing the intersection more clearly.

The set of points in the intersection just mentioned is called a level set, and f is
usually referred to as a level set function. When dealing with two variables (which is
our focus in this chapter), the level set reduces to a level set curve C that, based on
the preceding discussion, we define as

	 C x y x y= ={ }(,) (,)f 0 	 (11-57)

That is, a level curve is the set of points (,)x y such that f(,) .x y = 0 † Viewed another
way, we say that a 2-D curve C is embedded into a 3-D function f by letting C be
the zero-level set of this function. In the discussion that follows, level curves will
become segmentation boundaries, and the power of this concept is that the level
set approach does not require an explicit representation of these boundaries. In
fact, you can easily visualize that if f(,)x y in Fig. 11.14 were more complex, C in
Eq. (11-57) could represent an arbitrarily complex curve that would be defined sim-
ply by the locus of points satisfying this equation.

Because the level set curves with which we work in this chapter are closed, it fol-
lows that f(,)x y satisfies the following conditions for an arbitrary point (,) :x y

†  In reality this is the zero-level-set curve of f(,).x y In general, a level set curve can be defined for any constant c,
such that f(,) .x y c= In terms of Fig. 11.14, values of c > 0 would yield circles of a larger diameter than the one
at the zero-plane, and c < 0 would yield circles of smaller diameter. Note that changing c changes the location
(level) of the intersecting plane, hence the use of the term level in “level sets.”

We use the term level set
or level set function to
refer to the 3-D function
φ(x,y) in general, and
zero-level-set, zero-level-
set function, or level-set
curve to refer to the 2-D
curve defined by the
equation φ(x,y) = 0.

DIP4E_Print_Ready.indb 903 4/2/2017 8:59:20 PM

11.3 Segmentation Using Level Sets 915

Property Description

1) Unit gradient magnitude. f(,)x y = 1

2) Unit normal to the boundary at point
 (,).x y

n = =




f

f
f

(,)
(,)

(,)
x y
x y

x y

3) Mean curvature (equal to the
Laplacian).

k
f

f
f f f= = = = []




  i ia b

(,)
(,)

(,) (,) (,)
x y
x y

x y x y x y2 Laplacian

4) Point (,)x yB B on the boundary closest
 to an arbitrary point (,)x y on the plane
(see Fig. 11.14).

x

y

x

y
x yB

B









 =









 − f(,) n

where n is the unit normal from Property 2.

5) Convexity. If Æ− is convex, then its corresponding signed distance function,
f(,),x y is a convex function. (See Section 9.5 regarding convexity.)

6) Signed distance function of union. The signed distance function of the union Æ ´ Æ1 2
− − is given by

f f f(,) min (,), (,) .x y x y x y= Q R1 2

7) Signed distance function of intersection. The signed distance function of the intersection Æ ¨ Æ1 2
− − is given

by f f f(,) max (,), (,) .x y x y x y= Q R1 2

8) Signed distance function of difference. The signed distance function of the set difference ()Æ Æ1 2
− −− is

given by f f f(,) max (,), (,) .x y x y x y= −Q R1 2

9) Inclusion [Eq. (11-89)]. The arrow is
 used to denote “implies.”

For a given (,),x y f(,) (,) ;x y x y>[] ⇒ ∈ +0 Æ

f(,) (,) ;x y x y<[] ⇒ ∈ −0 Æ and f(,) (,) .x y x y=[] ⇒ ∈0 0Æ

TABLE 11.1
Properties of signed distance functions. Regions Æ1

− and Æ2
− are regions enclosed by the zero level sets (i.e. boundar-

ies) of signed distance functions f1(,)x y and f2(,),x y respectively.

	

f f f(,) () ()x y x y

x

x y

y

x y

= ∂ ∂ + ∂ ∂

=
+

+
+

=

2 2

2

2 2

2

2 2

1

showing that, indeed, the given f is a signed distance function.

Although circular functions are useful, their fixed shape limits their applicability.
Fortunately, signed distance functions of arbitrary shape are not difficult to construct.
We begin by specifying any closed interface curve that suits our initial purpose. This
curve is on the plane, so the condition f(,)x y = 0 is automatically satisfied. Because
the curve is closed, it follows that there is an infinite number of possible choices for
the “rest” of f such that any point inside the curve will give f(,) ,x y < 0 and any

DIP4E_Print_Ready.indb 915 4/2/2017 8:59:39 PM

11.3 Segmentation Using Level Sets 917

Our final task in implementing a level set solution for image segmentation is to
specify a force function, F, for use in the general iterative algorithm in Eq. (11-82). In
the following sections, we will discuss two basic classes of force functions suitable for
level set image segmentation. The first and simplest are forces based only on proper-
ties of the image to be segmented. The key advantage of these forces is that they can
be precomputed because the input image obviously is available from the beginning.
This reduces the computational load significantly. Their principal disadvantage is
that properties of the level set function itself are ignored. Forces in the second cat-
egory are based on properties of both the image and level set function. These forces
are in general more powerful, but they have the disadvantage that they must be
computed at every iterative step because the level set function itself changes during
iterations of Eq. (11-82).

FORCE FUNCTIONS BASED ONLY ON IMAGE PROPERTIES

As an introduction to forces suitable for level set segmentation, we start with forces
used for segmenting binary images. Because of their simplicity, these forces are
an ideal way to introduce a number of important concepts that we will use in the
remainder of this chapter. Because they depend only on pixel intensity values, the
forces discussed in this section are calculated only once for a given image. During
evolution, the force value acting on a point on the interface is determined com-
pletely by the (,)x y location of that point. Because the force is precomputed, we can
find max F and use Eq. (11-83) to compute t. All examples in this section use this
method for computing the time step.

In terms of segmentation, binary images are viewed as being composed of objects
and background. The objects can be darker (0) than the background (1), or vice versa,
but not both. For consistency in the following discussion, we assign 0's to dark pixels
and 1's to light pixels. The simplest force we can consider is based only on the inten-
sity of individual pixels. For example,

	 F x y
a f x y

b f x y
(,)

(,)

(,)
=

=
=





if

if

1

0
	 (11-93)

where a and b are constants whose values determine how f behaves as a function of
image intensity. We can write this equation equivalently as

	 F x y af x y b f x y(,) (,) (,)= + −[]1 	 (11-94)

To illustrate how to use this force in Eq. (11-82), consider Fig. 11.18. Part (a) of this
figure shows a dark object on a light background. The curve shown is f0 , specified
as a circle with an offset center (see Problem 11.17). Suppose that we let a = 1 and
b = 0. The force in Eq. (11-94) then becomes

	 F x y f x y(,) (,)= 	

All points in the initial curve have value 1 because they are in the background.
Thus, all values of F at that location are 1, and the force causes the circle to begin
expanding (recall from Example 11.7 that a positive constant force expands a

DIP4E_Print_Ready.indb 917 4/2/2017 8:59:41 PM

918 Chapter 11 Image Segmentation II Active Contours: Snakes and Level Sets

ba dc
f he g

FIGURE 11.18 (a) Character image and initial zero level set boundary (gray = 0 and white = 1). (b)–(d) Results after
100, 400, and 900 iterations of Eq. (11-82) with a = 1 and b = 0 in the force definition. Only the outer boundary was
detected. (e) A different initial level set function. (f)–(h) Results after 100, 400, and 900 iterations with a = 1 and
b = −1 in the force definition. Both outer and inner boundaries were detected. (All curves are closed, but their
values in (a), (d), and (h) are outside the confines of the image area.)

circle out uniformly). The expansion will continue until the evolving curve reach-
es the boundary of an object. Object points in this case have value 0 so, because
F x y f x y(,) (,),= the force acting on points on the object boundary will also be 0,
meaning that points in the evolving curve will cease to move once they reach the
boundary of an object. However, any curve points still residing on the background
will continue to expand until they too reach the boundary. Eventually, the evolving
curve will wrap itself completely around the object. Figures 11.18 (c) and (d) show
various stages of this process.

Because the evolving curve was stopped at the outer boundary of the object, the
inner white region was missed completely. In order to detect it, the initial curve has
to contain at least one point in that region, as in Fig. 11.18(e). Then, because the
force associated with white points is positive [we are still using F x y f x y(,) (,)],=
that part of the curve will expand until it is stopped by the dark inner boundary,
thus completely defining the inner region. However, part of the initial curve is now
contained in the object (whose values are 0) and will not evolve because, again, the
force we are using will be zero when f x y(,) .= 0 Setting b to a positive value would
not work because we do not want the curve to expand within the character. What
we want is for the curve segments within the character to shrink, and this is accom-
plished by using a negative force, say −1. Then, letting a = 1 and b = −1, our force
specification becomes

DIP4E_Print_Ready.indb 918 4/2/2017 8:59:43 PM

922 Chapter 11 Image Segmentation II Active Contours: Snakes and Level Sets

ba c
ed f

FIGURE 11.22 (a) 586 600× MRI image of a breast implant and initial level set curve. (b) Force field displayed as an
image. Results after: (c) 50 iterations, (d) 100 iterations, (e) 200 iterations, and (f) 400 iterations. (Original image
courtesy of NIH/National Library of Medicine.)

EDGE/CURVATURE-BASED FORCES

The forces discussed in the previous section are based only on image intensities. In
this section we discuss forces based on image (edge), and level set (curvature) prop-
erties. Unlike the forces in the previous section, the forces discussed next have to be
computed at every step because the level set function changes during iterations of
Eq. (11-82).

In addition to being more general, the method discussed next is important from
a historical perspective because it establishes that energy-minimizing solutions, like
snakes, can be related to a level set solution based on geodesic curves.† The concept
is based on minimizing a snake-like function of the form

†  A geodesic curve is a local, length-minimizing curve. Equivalently, it can be interpreted as the path that a par-
ticle would follow if it is not accelerating. In a plane, geodesic curves are straight lines. In general, Euclidean
geometry studies shapes on a plane. Riemann geometry is concerned with the way shapes work in spaces that
curve back on themselves (e.g., how curves behave on the surface of a sphere, where geodesic lines are great
circles, like the equator).

DIP4E_Print_Ready.indb 922 4/2/2017 8:59:52 PM

11.3 Segmentation Using Level Sets 933

EXAMPLE 11.14 : Level set segmentation of multiple regions using region-based forces.

Figure 11.32(a) shows a noisy image containing three regions. The initial boundary, shown superimposed
on the image, was specified interactively and then converted to a signed distance function using the
approach discussed in Example 11.11. Figures 11.32(b) through (d) are the results of the number of itera-
tions with the value of m shown in the caption. Normalization and reinitialization was done as in the pre-
vious example. The resulting segmentation contours in Fig. 11.32(d) are an accurate representation of the
content of the image in terms of the number of relevant regions. The second row shows the segmentation
regions themselves, obtained as in Fig. 11.23.

As noted earlier, parameter m controls the influence exercised by curvature on the segmentation pro-
cess. If using m = 0 5. in the previous example resulted in three regions being detected, we would expect
that increasing this parameter would result in fewer segmented regions. As Fig. 11.33 shows, this indeed
was the case (using smaller values of m would result is smaller noise points being picked up, and the region
boundaries would become more ragged). The results in Fig. 11.33 also demonstrate that the region-based
segmentation method has a rudimentary region-size “filtering” capability. None of the methods discussed
earlier are able to do this.

ba c
ed f

FIGURE 11.31 (a) Image and initial contour. (b) through (f) Results after 500, 1000, 1500, 2000, and 3500 iterations
respectively. The following parameters were used: m = 2, n = 0, l1 1= , and l2 1= . Compare (f) with the results in
Fig. 10.48(d). (Original image courtesy of NASA.)

DIP4E_Print_Ready.indb 933 4/2/2017 9:00:04 PM

934 Chapter 11 Image Segmentation II Active Contours: Snakes and Level Sets

ba dc
f he g

FIGURE 11.32 (a) 200 200× image containing three regions and an initial contour. (b)–(d) Results (using m = 0 5.)
after 500, 1000, and 1500 iterations, respectively. The second row shows the corresponding segmented regions (i.e.,
regions for which f(,)).x y ≤ 0

EXAMPLE 11.15 : Level set segmentation of the rose image using region-based forces.

Figure 11.34 shows segmentation of the rose image using region-based active contours. The number
of iterations and parameters used are listed in the figure caption. The relatively low value m = 0 5. was
selected to allow the contour to penetrate the troublesome deep concavity on the right side of the flower
(see the comments in Example 11.12 regarding this issue). Normalization of the force and curvature
were done as in the previous two examples, but the relatively low noise content and uniformity of the
area where the curve evolved made reinitialization of the level set function unnecessary. For the most
part, the contour evolved nicely to enclose the principal object of interest, but the segmentation is not as
accurate as what we obtained with earlier methods. We discuss the reasons why in the following example.

EXAMPLE 11.16 : Some comparisons between snakes and level sets.

We conclude our list of examples of active contours with several comparisons between snakes and the
two principal grayscale level set methods developed in this chapter. Figure 11.35 shows segmentation
of the rose image using snakes, edge-based level sets, and region-based level sets. The boundaries are
displayed with the same graphic symbols for consistency. The first obvious difference is in the smooth-
ness of the contours. The snake result is the smoothest, a fact that can be attributed to the smoothing
effect characteristic of the parametric representation of snakes. In contrast, the edge-based approach
was powerful enough to take advantage of the clear definition of the original edges, without the need for
blurring to extend the influence of the edges, as we had to do for the snake. This is important, because

DIP4E_Print_Ready.indb 934 4/2/2017 9:00:05 PM

11.3 Segmentation Using Level Sets 935

ba c
ed f

FIGURE 11.33
Effect of
parameter m on
the number of
regions detected.
(a) m = 0 5. .
(b) m = 1 5. .
(c) m = 3 0. .
(d)–(f) Corre-
sponding
segmented
regions (i.e.,
regions for which
f(,)).x y ≤ 0

ba c
ed f

FIGURE 11.34 (a) Image and initial contour. Results after: (b) 100, (c) 300, (d) 500, (e) 700, and (f) 1100 iterations,
respectively. We used m = 0 5. in all cases.

DIP4E_Print_Ready.indb 935 4/2/2017 9:00:07 PM

 Problems 947

initial curve encloses all three regions. Let
the object pixels be denoted by 0, and the
background pixels be denoted by 1. Use
a = 1 and b = −1 in Eq. (11-94).

(b)	 Repeat (a) but with the initial contour start-
ing as a small circle near the center of the
image (without touching any of the three
regions).

11.32	 If we let a = −1 and b = 1 in Eq. (11-94), and start
with the configuration in the figure below, what
would the segmentation contour look like at con-
vergence?

11.33	 Propose a segmentation solution based on mor-
phology to obtain the same segmentation result
as in Fig. 11.20(f).

11.34	 It is possible to use a Gaussian function to
accomplish the same objective as Eq. (11-96) for
generating a force field that can be used for level
set segmentation.

(a)	 Propose such a function using the same
parameters, s and l, as in Eq. (11-96). [Note:
Your function should have a Gaussian, form
and not be a modification of Eq. (11-96).]

(b)	 Discuss how the parameters s and l would
affect the shape of your function.

11.35 *	Demonstrate the validity of Eq. (11-100).

11.36	 With reference to Fig. 11.41(d), assume that the
force acting on point p2 is negative. What would
the boundary look like after p2 is processed?

11.37	 What would the figure below look like after the
application of Procedure 3 in Table 11.4?

Projects
MATLAB solutions to the projects marked with an asterisk (*) are in the DIP4E Student Support Package (consult
the book website: www.ImageProcessingPlace.com).

11.1	 Snake input and display.

(a) *	Read the image rose512.tif and use the util-
ity function snake_manual_input.m to generate
and display the coordinates of a 150-point
snake enclosing the rose. The snake points
should be displayed as small yellow circles.

(b)	 Write the MATLAB code necessary to
generate a circular snake centered in the
middle of image rose512.tif and large enough
to enclose the rose without touching it or
the image border. Use the utility function
snake_display.m to display the image with the
boundary superimposed on it using small
red circles. (Hint: Use the parametric repre-
sentation of a circle to generate the circular
snake.)

11.2	 Snake edge map.

(a) *	Write a function, emap = snakeMap4e(f,T,sig,n,
order), to compute the edge map, emap, of
input image f. If only f is provided in the
input, emap will equal the magnitude of the
gradient (MOG) of f without thresholding.
If only f and T are provided, emap is thres-
holded such that emap > T, where threshold
T is the range [,].0 1 No smoothing filter is
applied. If all inputs are provided, the gradi-
ent is thresholded. Filtering with a Gaussian
kernel of size (n*sig)*(n*sig) and standard de-
viation sig is determined by order, a character
string with the following possible values: If
order = 'before' then image f is filtered before
the map (gradient) is computed. If order = 'af-
ter' filtering is performed on the edge map
after it is computed. If order = 'both' filtering
is performed before and after the edge map

DIP4E_Print_Ready.indb 947 4/2/2017 9:00:20 PM

953

12 Feature Extraction

Preview
After an image has been segmented into regions or their boundaries using methods such as those in
Chapters 10 and 11, the resulting sets of segmented pixels usually have to be converted into a form suit-
able for further computer processing. Typically, the step after segmentation is feature extraction, which
consists of feature detection and feature description. Feature detection refers to finding the features
in an image, region, or boundary. Feature description assigns quantitative attributes to the detected
features. For example, we might detect corners in a region boundary, and describe those corners by
their orientation and location, both of which are quantitative attributes. Feature processing methods
discussed in this chapter are subdivided into three principal categories, depending on whether they are
applicable to boundaries, regions, or whole images. Some features are applicable to more than one cat-
egory. Feature descriptors should be as insensitive as possible to variations in parameters such as scale,
translation, rotation, illumination, and viewpoint. The descriptors discussed in this chapter are either
insensitive to, or can be normalized to compensate for, variations in one or more of these parameters.

Upon completion of this chapter, readers should:
	 Understand the meaning and applicability of

a broad class of features suitable for image
processing.

	 Understand the concepts of feature vectors
and feature space, and how to relate them
to the various descriptors developed in this
chapter.

	 Be skilled in the mathematical tools used in
feature extraction algorithms.

	 Be familiar with the limitations of the various
feature extraction methods discussed.

	 Understand the principal steps used in the
solution of feature extraction problems.

	 Be able to formulate feature extraction algo-
rithms.

	 Have a “feel” for the types of features that
have a good chance of success in a given
application.

Well, but reflect; have we not several times
acknowledged that names rightly given are the
likenesses and images of the things which they name?

Socrates

DIP4E_Print_Ready.indb 953 4/2/2017 9:00:22 PM

954 Chapter 12 Feature Extraction

12.1 	BACKGROUND

Although there is no universally accepted, formal definition of what constitutes an
image feature, there is little argument that, intuitively, we generally think of a fea-
ture as a distinctive attribute or description of “something” we want to label or
differentiate. For our purposes, the key words here are label and differentiate. The

“something” of interest in this chapter refers either to individual image objects, or
even to entire images or sets of images. Thus, we think of features as attributes that
are going to help us assign unique labels to objects in an image or, more gener-
ally, are going to be of value in differentiating between entire images or families of
images.

There are two principal aspects of image feature extraction: feature detection, and
feature description. That is, when we refer to feature extraction, we are referring
to both detecting the features and then describing them. To be useful, the extrac-
tion process must encompass both. The terminology you are likely to encounter in
image processing and analysis to describe feature detection and description varies,
but a simple example will help clarify our use of these term. Suppose that we use
object corners as features for some image processing task. In this chapter, detection
refers to finding the corners in a region or image. Description, on the other hand,
refers to assigning quantitative (or sometimes qualitative) attributes to the detected
features, such as corner orientation, and location with respect to other corners. In
other words, knowing that there are corners in an image has limited use without
additional information that can help us differentiate between objects in an image,
or between images, based on corners and their attributes.

Given that we want to use features for purposes of differentiation, the next ques-
tion is: What are the important characteristics that these features must possess in
the realm of digital image processing? You are already familiar with some of these
characteristics. In general, features should be independent of location, rotation, and
scale. Other factors, such as independence of illumination levels and changes caused
by the viewpoint between the imaging sensor(s) and the scene, also are impor-
tant. Whenever possible, preprocessing should be used to normalize input images
before feature extraction. For example, in situations where changes in illumination
are severe enough to cause difficulties in feature detection, it would make sense to
preprocess an image to compensate for those changes. Histogram equalization or
specification come to mind as automatic techniques that we know are helpful in
this regard. The idea is to use as much a priori information as possible to preprocess
images in order to improve the chances of accurate feature extraction.

When used in the context of a feature, the word “independent” usually has one of
two meanings: invariant or covariant. A feature descriptor is invariant with respect
to a set of transformations if its value remains unchanged after the application (to
the entity being described) of any transformation from the family. A feature descrip-
tor is covariant with respect to a set of transformations if applying to the entity any
transformation from the set produces the same result in the descriptor. For example,
consider this set of affine transformations: {translation, reflection, rotation}, and sup-
pose that we have an elliptical region to which we assign the feature descriptor area.
Clearly, applying any of these transformations to the region does not change its area.

12.1

See Table 2.3 regarding
affine transformations.

DIP4E_Print_Ready.indb 954 4/2/2017 9:00:22 PM

12.2 Boundary Preprocessing 957

The following algorithm traces the boundary of a 1-valued region, R, in a binary
image.

1.	 Let the starting point, b0 , be the uppermost-leftmost point† in the image that is
labeled 1. Denote by c0 the west neighbor of b0 [see Fig. 12.1(b)]. Clearly, c0 is
always a background point. Examine the 8-neighbors of b0 , starting at c0 and
proceeding in a clockwise direction. Let b1 denote the first neighbor encountered
whose value is 1, and let c1 be the (background) point immediately preceding b1
in the sequence. Store the locations of b0 for use in Step 5.

2.	 Let b b= 0 and c c= 0.
3.	 Let the 8-neighbors of b, starting at c and proceeding in a clockwise direction,

be denoted by n n n1 2 8, , , .… Find the first neighbor labeled 1 and denote it by nk .
4.	 Let b nk= and c nk= – .1

5.	 Repeat Steps 3 and 4 until b b= 0. The sequence of b points found when the
algorithm stops is the set of ordered boundary points.

Note that c in Step 4 is always a background point because nk is the first 1-valued
point found in the clockwise scan. This algorithm is referred to as the Moore bound-
ary tracing algorithm after Edward F. Moore, a pioneer in cellular automata theory.

Figure 12.1 illustrates the first few steps of the algorithm. It is easily verified (see
Problem 12.1) that continuing with this procedure will yield the correct boundary,
shown in Fig. 12.1(f), whose points are ordered in a clockwise sequence. The algo-
rithm works equally well with more complex boundaries, such as the boundary with
an attached branch in Fig. 12.2(a) or the self-intersecting boundary in Fig. 12.2(b).
Multiple boundaries [Fig. 12.2(c)] are handled by processing one boundary at a time
(see Project 12.1).

If we start with a binary region instead of a boundary, the algorithm extracts the
outer boundary of the region. Typically, the resulting boundary will be one pixel
thick, but not always [see Problem 12.1(b)]. If the objective is to find the boundaries
of holes in a region (these are called the inner or interior boundaries of the region),

† As you will see later in this chapter and in Problem 12.11, the uppermost-leftmost point in a 1-valued boundary
has the important property that a polygonal approximation to the boundary has a convex vertex at that location.
Also, the left and north neighbors of the point are guaranteed to be background points. These properties make
it a good “standard” point at which to start boundary-following algorithms. 

See Section 2.5 for the
definition of 4-neigh-
bors, 8-neighbors, and
m-neighbors of a point,

ba c ed f

FIGURE 12.1 Illustration of the first few steps in the boundary-following algorithm. The point to be processed next is
labeled in bold, black; the points yet to be processed are gray; and the points found by the algorithm are shaded.
Squares without labels are considered background (0) values.

1 1
1
1
1
1

11

1
1

1
1 1 1

1
1
1
1
1111

1
1

1c0 b0 1
1 1

1
1
1111

1
1

11
c
b

1
1
1
1111

1
1

11
1

c
b

. . .1
1
1111

1
1

c
b

11

DIP4E_Print_Ready.indb 957 4/2/2017 9:00:24 PM

12.2 Boundary Preprocessing 961

Slope Chain Codes

Using Freeman chain codes generally requires resampling a boundary to smooth
small variations, a process that implies defining a grid and subsequently assigning
all boundary points to their closest neighbors in the grid. An alternative to this
approach is to use slope chain codes (SCCs) (Bribiesca [1992, 2013]). The SCC of a
2-D curve is obtained by placing straight-line segments of equal length around the
curve, with the end points of the segments touching the curve.

Obtaining an SSC requires calculating the slope changes between contiguous line
segments, and normalizing the changes to the continuous (open) interval (,).−1 1
This approach requires defining the length of the line segments, as opposed to Free-
man codes, which require defining a grid and assigning curve points to it—a much
more elaborate procedure. Like Freeman codes, SCCs are independent of rotation,
but a larger range of possible slope changes provides a more accurate representa-
tion under rotation than the rotational independence of the Freeman codes, which is
limited to the eight directions in Fig. 12.3(b). As with Freeman codes, SCCs are inde-
pendent of translation, and can be normalized for scale changes (see Problem 12.8).

ba c
ed f

FIGURE 12.5 (a) Noisy image of size 570 570× pixels. (b) Image smoothed with a 9 9× box kernel. (c) Smoothed
image, thresholded using Otsu’s method. (d) Longest outer boundary of (c). (e) Subsampled boundary (the points
are shown enlarged for clarity). (f) Connected points from (e).

DIP4E_Print_Ready.indb 961 4/2/2017 9:00:26 PM

962 Chapter 12 Feature Extraction

Figure 12.6 illustrates how an SCC is generated. The first step is to select the
length of the line segment to use in generating the code [see Fig. 12.6(b)]. Next, a
starting point (the origin) is specified (for an open curve, the logical starting point is
one of its end points). As Fig. 12.6(c) shows, once the origin has been selected, one
end of a line segment is placed at the origin and the other end of the segment is set
to coincide with the curve. This point becomes the starting point of the next line seg-
ment, and we repeat this procedure until the starting point (or end point in the case
of an open curve) is reached. As the figure illustrates, you can think of this process as
a sequence of identical circles (with radius equal to the length of the line segment)
traversing the curve. The intersections of the circles and the curve determine the
nodes of the straight-line approximation to the curve.

Once the intersections of the circles are known, we determine the slope changes
between contiguous line segments. Positive and zero slope changes are normalized
to the open half interval [,),0 1 while negative slope changes are normalized to the
open interval (,).−1 0 Not allowing slope changes of ±1 eliminates the implementa-
tion issues that result from having to deal with the fact that such changes result in
the same line segment with opposite directions.

The sequence of slope changes is the chain that defines the SCC approximation
to the original curve. For example, the code for the curve in Fig. 12.6(e) is 0 12. , 0 20. ,
0 21. , 0 11. , −0 11. , −0 12. , −0 21. , −0 22. , −0 24. , −0 28. , −0 28. , −0 31. , −0 30. . The accu-
racy of the slope changes defined in Fig. 12.6(d) is 10 2− , resulting in an “alphabet”
of 199 possible symbols (slope changes). The accuracy can be changed, of course. For
instance, and accuracy of 10 1− produces an alphabet of 19 symbols (see Problem 12.9).
Unlike a Freeman code, there is no guarantee that the last point of the coded curve
will coincide with the last point of the curve itself. However, shortening the line

Line segment

ba c ed

FIGURE 12.6 (a) An open curve. (b) A straight-line segment. (c) Traversing the curve using circumferences to deter-
mine slope changes; the dot is the origin (starting point). (d) Range of slope changes in the open interval (,)−1 1
(the arrow in the center of the chart indicates direction of travel). There can be ten subintervals between the slope
numbers shown.(e) Resulting coded curve showing its corresponding numerical sequence of slope changes. (Cour-
tesy of Professor Ernesto Bribiesca, IIMAS-UNAM, Mexico.)

DIP4E_Print_Ready.indb 962 4/2/2017 9:00:27 PM

12.2 Boundary Preprocessing 963

length and/or increasing angle resolution often resolves the problem, because the
results of computations are rounded to the nearest integer (remember we work with
integer coordinates).

The inverse of an SCC is another chain of the same length, obtained by reversing
the order of the symbols and their signs. The mirror image of a chain is obtained by
starting at the origin and reversing the signs of the symbols. Finally, we point out
that the preceding discussion is directly applicable to closed curves. Curve following
would start at an arbitrary point (for example, the uppermost-leftmost point of the
curve) and proceed in a clockwise or counterclockwise direction, stopping when the
starting point is reached. We will illustrate an use of SSCs in Example 12.6.

BOUNDARY APPROXIMATIONS USING MINIMUM-PERIMETER
POLYGONS

A digital boundary can be approximated with arbitrary accuracy by a polygon. For a
closed curve, the approximation becomes exact when the number of segments of the
polygon is equal to the number of points in the boundary, so each pair of adjacent
points defines a segment of the polygon. The goal of a polygonal approximation
is to capture the essence of the shape in a given boundary using the fewest pos-
sible number of segments. Generally, this problem is not trivial, and can turn into
a time-consuming iterative search. However, approximation techniques of modest
complexity are well suited for image-processing tasks. Among these, one of the most
powerful is representing a boundary by a minimum-perimeter polygon (MPP), as
defined in the following discussion.

Foundation

An intuitive approach for computing MPPs is to enclose a boundary [see Fig. 12.7(a)]
by a set of concatenated cells, as in Fig. 12.7(b). Think of the boundary as a rubber
band contained in the gray cells in Fig. 12.7(b). As it is allowed to shrink, the rubber
band will be constrained by the vertices of the inner and outer walls of the region
of the gray cells. Ultimately, this shrinking produces the shape of a polygon of mini-
mum perimeter (with respect to this geometrical arrangement) that circumscribes
the region enclosed by the cell strip, as in Fig. 12.7(c). Note in this figure that all the
vertices of the MPP coincide with corners of either the inner or the outer wall.

The size of the cells determines the accuracy of the polygonal approximation.
In the limit, if the size of each (square) cell corresponds to a pixel in the boundary,
the maximum error in each cell between the boundary and the MPP approxima-
tion would be 2d, where d is the minimum possible distance between pixels (i.e.,
the distance between pixels established by the resolution of the original sampled
boundary). This error can be reduced in half by forcing each cell in the polygonal
approximation to be centered on its corresponding pixel in the original boundary.
The objective is to use the largest possible cell size acceptable in a given application,
thus producing MPPs with the fewest number of vertices. Our objective in this sec-
tion is to formulate a procedure for finding these MPP vertices.

The cellular approach just described reduces the shape of the object enclosed
by the original boundary, to the area circumscribed by the gray walls in Fig. 12.7(b).

For an open curve, the
number of segments
of an exact polygonal
approximation is equal
to the number of points
minus 1.

DIP4E_Print_Ready.indb 963 4/2/2017 9:00:27 PM

964 Chapter 12 Feature Extraction

Figure 12.8(a) shows this shape in dark gray. Suppose that we traverse the bound-
ary of the dark gray region in a counterclockwise direction. Every turn encountered
in the traversal will be either a convex or a concave vertex (the angle of a vertex is
defined as an interior angle of the boundary at that vertex). Convex and concave
vertices are shown, respectively, as white and blue dots in Fig. 12.8(b). Note that
these vertices are the vertices of the inner wall of the light-gray bounding region in
Fig. 12.8(b), and that every concave (blue) vertex in the dark gray region has a corre-
sponding concave “mirror” vertex in the light gray wall, located diagonally opposite
the vertex. Figure 12.8(c) shows the mirrors of all the concave vertices, with the MPP
from Fig. 12.7(c) superimposed for reference. We see that the vertices of the MPP
coincide either with convex vertices in the inner wall (white dots) or with the mir-
rors of the concave vertices (blue dots) in the outer wall. Only convex vertices of the
inner wall and concave vertices of the outer wall can be vertices of the MPP.  Thus,
our algorithm needs to focus attention only on those vertices.

MPP Algorithm

The set of cells enclosing a digital boundary [e.g., the gray cells in Fig. 12.7(b)] is
called a cellular complex. We assume the cellular complexes to be simply connected,
in the sense the boundaries they enclose are not self-intersecting. Based on this
assumption, and letting white (W) denote convex vertices, and blue (B) denote mir-
rored concave vertices, we state the following observations:

1.	 The MPP bounded by a simply connected cellular complex is not self-intersecting.

2.	 Every convex vertex of the MPP is a W vertex, but not every W vertex of a bound-
ary is a vertex of the MPP.

A convex vertex is the
center point of a triplet
of points that define an
angle in the range
0° < u < 180°. Similarly,
angles of a concave
vertex are in the range
180° < u < 360°. An
angle of 180° defines a
degenerate vertex (i.e.,
segment of a straight
line), which cannot be an
MPP-vertex.

ba c
FIGURE 12.7 (a) An object boundary. (b) Boundary enclosed by cells (shaded). (c) Minimum-perimeter polygon
obtained by allowing the boundary to shrink. The vertices of the polygon are created by the corners of the inner
and outer walls of the gray region.

DIP4E_Print_Ready.indb 964 4/2/2017 9:00:27 PM

970 Chapter 12 Feature Extraction

tangent-angle values. Because a histogram is a measure of the concentration of val-
ues, the slope density function responds strongly to sections of the boundary with
constant tangent angles (straight or nearly straight segments) and has deep valleys
in sections producing rapidly varying angles (corners or other sharp inflections).

EXAMPLE 12.4 : Signatures of two regions.

Figures 12.11(a) and (d) show two binary objects, and Figs. 12.11(b) and (e) are their boundaries. The
corresponding r()u signatures in Figs. 12.11(c) and (f) range from 0° to 360° in increments of 1°. The
number of prominent peaks in the signatures is sufficient to differentiate between the shapes of the two
objects.

SKELETONS, MEDIAL AXES, AND DISTANCE TRANSFORMS

Like boundaries, skeletons are related to the shape of a region. Skeletons can be
computed from a boundary by filling the area enclosed by the boundary with fore-
ground values, and treating the result as a binary region. In other words, a skeleton is
computed using the coordinates of points in the entire region, including its boundary.
The idea is to reduce a region to a tree or graph by computing its skeleton. As we
explained in Section 9.5 (see Fig. 9.25), the skeleton of a region is the set of points in
the region that are equidistant from the border of the region.

The skeleton is obtained using one of two principal approaches: (1) by succes-
sively thinning the region (e.g., using morphological erosion) while preserving end
points and line connectivity (this is called topology-preserving thinning); or (2)
by computing the medial axis of the region via an efficient implementation of the
medial axis transform (MAT) proposed by Blum [1967]. We discussed thinning in
Section 9.5. The MAT of a region R with border B is as follows: For each point p in
R, we find its closest neighbor in B. If p has more than one such neighbor, it is said

As is true of thinning,
the MAT is highly
susceptible to boundary
and internal region
irregularities, so smooth-
ing and other preprocess-
ing steps generally are
required to obtain a
clean a binary image.

A

0 0

r(u)

A

r
u

A

r
u

u

p

4
p

2
3p
4

5p
4

3p
2

7p
4

p 2p

A

r(u)

u

p

4
p

2
3p
4

5p
4

3p
2

7p
4

p 2p

2A

ba

FIGURE 12.10
Distance-versus-
angle signatures.
In (a), r()u is
constant. In (b),
the signature
consists of
repetitions of
the pattern
r Au u() = sec for
0 4≤ ≤u p , and
r Au u() = csc for
p u p4 2< ≤ .

DIP4E_Print_Ready.indb 970 4/2/2017 9:00:39 PM

972 Chapter 12 Feature Extraction

pixels to their nearest background (zero) pixels, which constitute the region bound-
ary. Thus, we compute the distance transform of the complement of the image, as
Figs. 12.13(c) and (d) illustrate. By comparing Figs. 12.13(d) and 12.12(a), we see
in the former that the MAT (skeleton) is equivalent to the ridge of the distance
transform [i.e., the ridge in the image in Fig. 12.13(d)]. This ridge is the set of local
maxima [shown bold in Fig. 12.13(d)]. Figures 12.13(e) and (f) show the same effect
on a larger ()414 708× binary image.

Finding approaches for computing the distance transform efficiently has been a
topic of research for many years. Numerous approaches exist that can compute the
distance transform with linear time complexity, O K(), for a binary image with K
pixels. For example, the algorithm by Maurer et al. [2003] not only can compute the
distance transform in O K(), it can compute it in O K P() using P processors.

1.41 1 1 1 1.41
 1 0 0 0 1
 1 0 0 0 1
1.41 1 1 1 1.41

0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 0
0 1 2 2 2 2 2 1 0
0 1 2 3 3 3 2 1 0
0 1 2 2 2 2 2 1 0
0 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 0

 0 0 0 0 0 0 0 0 0
 0 1 1 1 1 1 1 1 0
 0 1 1 1 1 1 1 1 0
 0 1 1 1 1 1 1 1 0
 0 1 1 1 1 1 1 1 0
 0 1 1 1 1 1 1 1 0
 0 0 0 0 0 0 0 0 0

ba
dc
fe

FIGURE 12.13
(a) A small
image and (b) its
distance
transform. Note
that all 1-valued
pixels in (a) have
corresponding
0’s in (b). (c) A
small image, and
(d) the distance
transform of its
complement. (e) A
larger image, and
(f) the distance
transform of its
complement. The
Euclidian distance
was used through-
out.

ba c
FIGURE 12.12
Medial axes
(dashed) of three
simple regions.

DIP4E_Print_Ready.indb 972 4/2/2017 9:00:40 PM

12.4 Region Feature Descriptors 983

The value of this descriptor is 1 for a circle (its maximum value) and p 4 for a square.
Note that these two measures are independent of size, orientation, and translation.
Another measure based on a circle is the effective diameter:

	 d
A

e = 2
p

	 (12-20)

This is the diameter of a circle having the same area, A, as the region being pro-
cessed. This measure is neither dimensionless nor independent of region size, but it
is independent of orientation and translation. It can be normalized for size and made
dimensionless by dividing it by the largest diameter expected in a given application.

In a manner analogous to the way we defined compactness and circularity relative
to a circle, we define the eccentricity of a region relative to an ellipse as the eccentricity
of an ellipse that has the same second central moments as the region. For 1-D, the sec-
ond central moment is the variance which, for discrete variables, we estimate using
Eq. (2-114). For 2-D discrete data, we have to consider the variance of each variable
as well as the covariance between them. These are the components of the covariance
matrix, which is estimated from samples using Eq. (2-130), with the samples in this
case being 2-D vectors representing the coordinates of the data.

Figure 12.21(a) shows an ellipse in standard form (i.e., an ellipse whose major and
minor axes are aligned with the coordinate axes). The eccentricity of such an ellipse
is defined as the ratio of the distance between foci (2c in Fig. 12.21), and the length
of its major axis (),2a which gives the ratio 2 2c a c a= . That is,

	 eccentricity = =
−

= −c
a

a b

a
b a a b

2 2
21 () ≥ 	

However, we are interested in the eccentricity of an ellipse that has the same second
central moments as a given 2-D region, which means that our ellipses can have arbi-
trary orientations. Intuitively, what we are trying to do is approximate our 2-D data
by an elliptical region whose axes are aligned with the principal axes of the data, as
Fig. 12.21(b) illustrates. As you will learn in Section 12.5 (see Example 12.17), the
principal axes are the eigenvectors of the covariance matrix, C, of the data, which is
given by:

	 C z z z z=
−

− −
=

∑1
1 1K k k

T

k

K

()() 	 (12-21)

ba

FIGURE 12.21
(a) An ellipse in
standard form.
(b) An ellipse
approximating a
region in arbitrary
orientation.

c

b
FocusFocus

a

2 2 2c a b= −

Centroid
of region

1e

2e 2l 1l

Major axis

Binary
region eigenvectors and

corresponding eigenvalues
of the covariance matrix of
the coordinates of the region

2e 2l1e 1l and are the

Minor axis

DIP4E_Print_Ready.indb 983 4/2/2017 9:00:50 PM

984 Chapter 12 Feature Extraction

where zk is a 2-D vector whose elements are the two spatial coordinates of a point in
the region, K is the total number of points, and z is the mean vector:

	 z z=
=

∑1

1K k
k

K

	 (12-22)

The main diagonal elements of C are the variances of the coordinate values of the
points in the region, and the off-diagonal elements are their covariances (see the
discussion on the multivariate Gaussian density in Section 2.6 and Example 2.22).

An ellipse oriented in the same direction as the principal axes of the region can be
interpreted as the intersection of a 2-D Gaussian function with the xy-plane. The ori-
entation of the axes of the ellipse are also in the direction of the eigenvectors of the
covariance matrix, and the distances from the center of the ellipse to its intersection
with its major and minor axes is equal to the largest and smallest eigenvalues of the
covariance matrix, respectively, as Fig. 12.21(b) shows. With reference to Fig. 12.21,
and the equation of its eccentricity given above, we see by analogy that the eccen-
tricity of an ellipse with the same second moments as the region is given by

	
eccentricity =

−

= −

l l

l

l l l l

2
2

1
2

2

1 2
2

2 11 () ≥

	 (12-23)

For circular regions, l l1 2= and the eccentricity is 0. For a line, l1 0= and the eccen-
tricity is 1. Thus, values of this descriptor are in the range [,].0 1

EXAMPLE 12.9 : Comparison of feature descriptors.

Figure 12.22 shows values of the preceding descriptors for several region shapes. None of the descriptors
for the circle was exactly equal to its theoretical value because digitizing a circle introduces error into
the computation, and because we approximated the length of a boundary as its number of elements. The
eccentricity of the square did have an exact value of 0, because a square with no rotation aligns perfectly
with the sampling grid. The other two descriptors for the square were close to their theoretical values also.

The values listed in the first two rows of Fig. 12.22 carry the same information. For example, we can
tell that the star is less compact and less circular than the other shapes. Similarly, it is easy to tell from the
numbers listed that the teardrop region has by far the largest eccentricity, but it is harder to differentiate
from the other shapes using compactness or circularity.

As we discussed in Section 12.1, feature descriptors typically are arranged in the form of feature
vectors for subsequent processing. Figure 12.23 shows the feature space for the descriptors in Fig. 12.22.

13.230842.2442

0.2975 0.9478

10.1701

1.2356

0.0411 0.0636 0.8117

Compactness

Circularity

Eccentricity

15.9836

0.7862

0

Descriptor

ba c d

FIGURE 12.22
Compactness,
circularity, and
eccentricity of
some simple
binary regions.

DIP4E_Print_Ready.indb 984 4/2/2017 9:00:51 PM

1000 Chapter 12 Feature Extraction

MOMENT INVARIANTS

The 2-D moment of order p q+() of an M N× digital image, f x y(,), is defined as

	 m x y f x ypq
p q

y

N

x

M

= ()
==

∑∑
0

1

0

1 ––

, 	 (12-34)

where p = 0 1 2, , ,… and q = 0 1 2, , ,… are integers. The corresponding central moment
of order p q+() is defined as

	 mpq
y

N

x

M p q
x x y y f x y= () () ()

==
∑∑ – – ,

––

0

1

0

1

	 (12-35)

for p = 0 1 2, , ,… and q = 0 1 2, , , ,… where

	 x
m
m

y
m
m

= =10

00

01

00

and 	 (12-36)

The normalized central moment of order p q+(), denoted hpq , is defined as

	 h
m

m
gpq
pq=
00

	 (12-37)

where

	 g = + +p q
2

1 	 (12-38)

for p q+ = 2 3, , .… A set of seven, 2-D moment invariants can be derived from the
second and third normalized central moments:†

	 f h h1 20 02= + 	 (12-39)

 	 f h h h2 20 02
2

11
24= () +– 	 (12-40)

	 f h h h h3 30 12
2

21 03
2

3 3= () + ()– – 	 (12-41)

	 f h h h h4 30 12
2

21 03
2= +() + +() 	 (12-42)

† Derivation of these results requires concepts that are beyond the scope of this discussion. The book by Bell
[1965] and the paper by Hu [1962] contain detailed discussions of these concepts. For generating moment invari-
ants of an order higher than seven, see Flusser [2000]. Moment invariants can be generalized to n dimensions
(see Mamistvalov [1998]).

DIP4E_Print_Ready.indb 1000 4/2/2017 9:01:10 PM

12.6 Whole-Image Features 1011

The state of the art in image processing is such that as the complexity of the task
increases, the number of techniques suitable for addressing those tasks decreases.
This is particularly true when dealing with feature descriptors applicable to entire
images that are members of a large family of images. In this section, we discuss
two of the principal feature detection methods currently being used for this pur-
pose. One is based on detecting corners, and the other works with entire regions
in an image. Then, in Section 12.7 we present a feature detection and description
approach designed specifically to work with these types of features.

THE HARRIS-STEPHENS CORNER DETECTOR

Intuitively, we think of a corner as a rapid change of direction in a curve. Corners
are highly effective features because they are distinctive and reasonably invariant to
viewpoint. Because of these characteristics, corners are used routinely for matching
image features in applications such as tracking for autonomous navigation, stereo
machine vision algorithms, and image database queries.

In this section, we discuss an algorithm for corner detection formulated by Har-
ris and Stephens [1988]. The idea behind the Harris-Stephens (HS) corner detec-
tor is illustrated in Fig. 12.45. The basic approach is this: Corners are detected by
running a small window over an image, as we did in Chapter 3 for spatial filtering.
The detector window is designed to compute intensity changes. We are interested in
three scenarios: (1) Areas of zero (or small) intensity changes in all directions, which

The discussion in
Sections 13.5 through
13.7 dealing with neural
networks is also impor-
tant in terms of process-
ing large numbers of
entire images for the
purpose of characterizing
their content.

Our use the term “corner”
is broader than just
90° corners; it refers to
features that are “corner-
like.”

x2

x10
0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

y2

y10
0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

y2

y1
�3 �2 �1 1 2 3

3

2

1

�1

�2

�3

x2

e2 e1

x10
0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

ba
dc

FIGURE 12.44
A manual
example.
(a) Original points.
(b) Eigenvectors of
the covariance
matrix of the points
in (a).
(c) Transformed
points obtained
using Eq. (12-49).
(d) Points from (c),
rounded and trans-
lated so that all
coordinate values
are integers greater
than 0. The dashed
lines are included
to facilitate viewing.
They are not part of
the data.

DIP4E_Print_Ready.indb 1011 4/2/2017 9:01:26 PM

1012 Chapter 12 Feature Extraction

happens when the window is located in a constant (or nearly constant) region, as
in location A in Fig. 12.45; (2) areas of changes in one direction but no (or small)
changes in the orthogonal direction, which this happens when the window spans a
boundary between two regions, as in location B; and (3) areas of significant changes
in all directions, a condition that happens when the window contains a corner (or
isolated points), as in location C. The HS corner detector is a mathematical formula-
tion that attempts to differentiate between these three conditions.

Let f denote an image, and let f s t(,) denote a patch of the image defined by the
values of (,).s t A patch of the same size, but shifted by (,),x y is given by f s x t y(,).+ +
Then, the weighted sum of squared differences between the two patches is given by

	 C x y s t f s x t y f s t
ts

(,) (,) (,) (,)= + + −[]∑∑ w
2

	 (12-56)

where w(,)s t is a weighting function to be discussed shortly. The shifted patch can be
approximated by the linear terms of a Taylor expansion

	 f s x t y f s t xf s t yf s tx y(,) (,) (,) (,)+ + ≈ + + 	 (12-57)

where f s t f xx(,) = ∂ ∂ and f s t f yy(,) ,= ∂ ∂ both evaluated at (,).s t We can then write
Eq. (12-56) as

	 C x y s t xf s t yf s tx y
ts

(,) (,) (,) (,)= + ∑∑ w
2

	 (12-58)

This equation can written in matrix form as

	 C x y x y
x

y
(,) = [] 







M 	 (12-59)

A patch is the image area
spanned by the detector
window at any given
time.

FIGURE 12.45
Illustration of how
the Harris-Stephens
corner detector
operates in the
three types of sub-
regions indicated by
A (flat), B (edge),
and C (corner). The
wiggly arrows
indicate graphically
a directional
response in the
detector as it moves
in the three areas
shown.

B C

Region 1

Region 2
A

Boundary

DIP4E_Print_Ready.indb 1012 4/2/2017 9:01:28 PM

12.6 Whole-Image Features 1017

As you can see, numerous detection errors occurred (see, for example, the large number of wrong corner
detections in the right edge of the building). Increasing k alone had little effect on the over-detection
of corners until k was near its maximum value. Using the same values as in Fig. 12.48(c) resulted in the
image in 12.49(c), which shows a reduced number of erroneous corners, at the expense of missing numer-
ous important ones in the front of the building. Reducing k to 0.17 and increasing T to 0.05 did a much
better job, as Fig. 12.49(d) show. Parameter k did not play a major role in corner detection for the building
image. In fact, Figs. 12.49(e) and (f) show essentially the same level of performance obtained by reducing
k to its default value of 0.04, and using T = 0 05. and T = 0 07. , respectively.

Finally, Fig. 12.50 shows corner detection on a rotated image. The result in Fig. 12.50(b) was obtained
using the same parameters we used in Fig. 12.49(f), showing the relative insensitivity of the method to
rotation. Figures 12.49(f) and 12.50(b) show detection of at least one corner in every major structural
feature of the image, such as the front door, all the windows, and the corners that define the apex of the
facade. For matching purposes, these are excellent results.

ba c
ed f

FIGURE 12.49 600 600× image of a building. (b) Result of applying the HS corner detector with k = 0 04. and T = 0 01.
(the default values in our implementation). Numerous irrelevant corners were detected. (c) Result using k = 0 249.
and the default value for T. (d) Result using k = 0 17. and T = 0 05. . (e) Result using the default value for k and
T = 0 05. . (f) Result using the default value of k and T = 0 07. .

DIP4E_Print_Ready.indb 1017 4/2/2017 9:01:33 PM

1018 Chapter 12 Feature Extraction

ba

FIGURE 12.50
(a) Image
rotated 5°.
(b) Corners
detected using the
parameters used
to obtain
Fig. 12.49(f).

MAXIMALLY STABLE EXTREMAL REGIONS (MSERs)

The Harris-Stephens corner detector discussed in the previous section is useful in
applications characterized by sharp transitions of intensities, such as the intersec-
tion of straight edges, that result in corner-like features in an image. Conversely, the
maximally stable extremal regions (MSERs) introduced by Matas et al. [2002] are
more “blob” oriented. As with the HS corner detector, MSERs are intended to yield
whole image features for the purpose of establishing correspondence between two
or more images.

We know from Fig. 2.18 that a grayscale image can be viewed as a topographic
map, with the xy-axes representing spatial coordinates, and the z-axis representing
intensities. Imagine that we start thresholding an 8-bit grayscale image one intensity
level at a time. The result of each thresholding is a binary image in which we show
the pixels at or above the threshold in white, and the pixels below the threshold as
black. When the threshold, T, is 0, the result is a white image (all pixel values are
at or above 0). As we start increasing T in increments of one intensity level, we will
begin to see black components in the resulting binary images. These correspond to
local minima in the topographic map view of the image. These black regions may
begin to grow and merge, but they never get smaller from image to image. Finally,
when we reach T = 255, the resulting image will be black (there are no pixel values
above this level). Because each stage of thresholding results in a binary image, there
will be one or more connected components of white pixels in each image. The set of
all such components resulting from all thresholdings is the set of extremal regions.
Extremal regions that do not change size (number of pixels) appreciably over a
range of threshold values are called maximally stable extremal regions.

As you will see shortly, the procedure just discussed can be cast in the form of a
rooted, connected tree called a component tree, where each level of the tree corre-
sponds to a value of the threshold discussed in the previous paragraph. Each node
of this tree represents an extremal region, R, defined as

	 ∀ ∈ ∀ ∈p R q R I p I q and boundary() : () ()> 	 (12-64)

Remember, ∀  
means “for any,” ∈
means “belonging to,”
and a colon, :,
is used to
mean “it is true that.”

DIP4E_Print_Ready.indb 1018 4/2/2017 9:01:34 PM

12.7 Scale-Invariant Feature Transform (SIFT) 1023

of the original area, we reduced the valid MSER range by one-fourth to 2500 –7500 pixels. Other than
these changes, we used the same parameters as in Fig. 12.53. Figure 12.55(c) shows the resulting MSER.
As you can see, this figure is quite close to the full-size result in Fig. 12.53(e).

12.7 SCALE-INVARIANT FEATURE TRANSFORM (SIFT)

SIFT is an algorithm developed by Lowe [2004] for extracting invariant features from
an image. It is called a transform because it transforms image data into scale-invariant
coordinates relative to local image features. SIFT is by far the most complex feature
detection and description approach we discuss in this chapter.

As you progress though this section, you will notice the use of a significant num-
ber of experimentally determined parameters. Thus, unlike most of the formulations
of individual approaches we have discussed thus far, SIFT is strongly heuristic. This
is a consequence of the fact that our current knowledge is insufficient to tell us how

12.7

ba
c ed

FIGURE 12.53 (a) Building image of size 600 600× pixels. (b) Image smoothed using a 5 5× box kernel. (c) and
(d) MSERs detected using T = 0, T = 10, and MSER size range between 10,000 and 30,000 pixels, corresponding
approximately to 3% and 8% of the area of the image. (e) Composite image.

DIP4E_Print_Ready.indb 1023 4/2/2017 9:01:39 PM

12.7 Scale-Invariant Feature Transform (SIFT) 1025

SCALE SPACE

The first stage of the SIFT algorithm is to find image locations that are invariant
to scale change. This is achieved by searching for stable features across all possible
scales, using a function of scale known as scale space, which is a multi-scale rep-
resentation suitable for handling image structures at different scales in a consis-
tent manner. The idea is to have a formalism for handling the fact that objects in
unconstrained scenes will appear in different ways, depending on the scale at which
images are captured. Because these scales may not be known beforehand, a reason-
able approach is to work with all relevant scales simultaneously. Scale space repre-
sents an image as a one-parameter family of smoothed images, with the objective of
simulating the loss of detail that would occur as the scale of an image decreases. The
parameter controlling the smoothing is referred to as the scale parameter.

In SIFT, Gaussian kernels are used to implement smoothing, so the scale param-
eter is the standard deviation. The reason for using Gaussian kernels in based on
work performed by Lindberg [1994], who showed that the only smoothing kernel
that meets a set of important constraints, such as linearity and shift-invariance, is
the Gaussian lowpass kernel. Based on this, the scale space, L x y(, ,),s of a grayscale
image, f x y(,),† is produced by convolving f with a variable-scale Gaussian kernel,
G x y(, ,) :s

	 L x y G x y f x y(, ,) (, ,) (,)s s=  	 (12-66)

where the scale is controlled by parameter s, and G is of the form

	 G x y e x y(, ,) ()s
ps

s= − +1
2 2

22 2 2

	 (12-67)

The input image f x y(,) is successively convolved with Gaussian kernels having
standard deviations s s s s, , , , . . .k k k2 3 to generate a “stack” of Gaussian-filtered
(smoothed) images that are separated by a constant factor k, as shown in the lower
left of Fig. 12.56.

SIFT subdivides scale space into octaves, with each octave corresponding to a
doubling of s, just as an octave in music theory corresponds to doubling the fre-
quency of a sound signal. SIFT further subdivides each octave into an integer num-
ber, s, of intervals, so that an interval of 1 consists of two images, an interval of 2
consists of three images, and so forth. It then follows that the value used in the Gauss-
ian kernel that generates the image corresponding to an octave is kss s= 2 which
means that k s= 21 . For example, for s = 2, k = 2, and the input image is succes-
sively smoothed using standard deviations of s s s, () , ,2 2 2and () so that the third
image (i.e., the octave image for s = 2) in the sequence is filtered using a Gaussian
kernel with standard deviation ()2 22s s= .

†  Experimental results reported by Lowe [2004] suggest that smoothing the original image using a Gaussian
kernel with s = 0 5. and then doubling its size by linear (nearest-neighbor) interpolation improves the number
of stable features detected by SIFT. This preprocessing step is an integral part of the algorithm. Images are
assumed to have values in the range [,].0 1

As in Chapter 3, “”
indicates spatial convolu-
tion.

DIP4E_Print_Ready.indb 1025 4/2/2017 9:01:41 PM

1026 Chapter 12 Feature Extraction

The preceding discussion indicates that the number of smoothed images gener-
ated in an octave is s + 1. However, as you will see in the next section, the smoothed
images in scale space are used to compute differences of Gaussians [see Eq. (10-32)]
which, in order to cover a full octave, implies that an additional two images past the
octave image are required, giving a total of s + 3 images. Because the octave image is
always the ()s + 1 th image in the stack (counting from the bottom), it follows that this
image is the third image from the top in the expanded sequence of s + 3 images. Each
octave in Fig. 12.56 contains five images, indicating that s = 2 was used in this case.

The first image in the second octave is formed by downsampling the original
image (by skipping every other row and column), and then smoothing it using a
kernel with twice the standard deviation used in the first octave (i.e., s s2 12=).
Subsequent images in that octave are smoothed using s2 , with the same sequence
of values of k as in the first octave (this is denoted by dots in Fig. 12.56). The same
basic procedure is then repeated for subsequent octaves. That is, the first image of
the new octave is formed by: (1) downsampling the original image enough times
to achieve half the size of the image in the previous octave, and (2) smoothing the
downsampled image with a new standard deviation that is twice the standard devia-
tion of the previous octave. The rest of the images in the new octave are obtained by
smoothing the downsampled image with the new standard deviation multiplied by
the same sequence of values of k as before.

When k = 2, we can obtain the first image of a new octave without having to
smooth the downsampled image. This is because, for this value of k, the kernel used
to smooth the first image of every octave is the same as the kernel used to smooth

Instead of repeatedly
downsampling the
original image, we can
carry the previously
downsampled image,
and downsample it
by 2 to obtain the image
required for the next
octave.

Images smoothed using
Gaussian lowpass kernelsOctave 1

Scale

Scale

Scale
Octave 2

Octave 3

.

.

.
More octaves

6
6 Standard deviations used

in the Gaussian lowpass
kernels of each octave (the
same number of images
with the same powers of k is
generated in each octave)

.

.

.

1s
1ks

2
1k s

3
1k s

4
1k s

2 12=s s
2ks

4
2k s...

2=3 2s s

4
3k s...

3ks 6
FIGURE 12.56
Scale space,
showing three
octaves. Because
s = 2 in this case,
each octave has five
smoothed
images. A
Gaussian ker-
nel was used for
smoothing, so the
space parameter
is s.

DIP4E_Print_Ready.indb 1026 4/2/2017 9:01:42 PM

1028 Chapter 12 Feature Extraction

	 G x y k G x y k G(, ,) (, ,) ()s s s− ≈ − 1 2 2 	 (12-70)

Therefore, DoGs already have the necessary scaling “built in.” The factor ()k − 1 is
constant over all scales, so it does not influence the process of locating extrema in
scale space. Although Eqs. (12-68) and (12-69) are applicable to the first two images

1

2

3

Scale
1 2 3 4 5

0.707 1.000 1.414 2.000 2.828

1.414 2.000 2.828 4.000 5.657

2.828 4.000 5.657 8.000 11.314

Octave

Octave 1

B
oo

k
P

ag
e

W
rit

ab
le

 A
re

a
(4

5p
6

by
 3

7p
0)

2 1.414k = =

Sc
al

e

1 2 2 0.707= =s

1s

1ks

2
1k s

3
1k s

4
1k s

Octave 2

Sc
al

e
2ks

2
2k s

3
2k s

4
2k s

Octave 3

Sc
al

e

3 2 12 4= =s s s

3ks

2
3k s

3
3k s

4
3k s

2 12=s s

FIGURE 12.57
Illustration using
images of the first
three octaves of
scale space in
SIFT. The entries
in the table are
values of standard
deviation used
at each scale of
each octave. For
example the
standard
deviation used in
scale 2 of octave 1
is ks1, which is
equal to 1.0.
(The images
of octave 1 are
shown slightly
overlapped to
fit in the figure
space.)

DIP4E_Print_Ready.indb 1028 4/2/2017 9:01:44 PM

1044 Chapter 12 Feature Extraction

full. As they move along a conveyor line past an
automatic filling and capping station, the bottles
appear as shown in the following image. A bottle
is considered imperfectly filled when the level
of the liquid is below the midway point between
the bottom of the neck and the shoulder of the
bottle. The shoulder is defined as the intersection
of the sides and slanted portions of the bottle.
The bottles move at a high rate of speed, but the
company has an imaging system equipped with
an illumination flash front end that effectively
stops motion, so you will be given images that
look very close to the sample shown here. Based
on the material you have learned up to this point,
propose a solution for detecting bottles that are
not filled properly. State clearly all assumptions
that you make and that are likely to impact the
solution you propose.

12.42	 Having heard about your success with the
bottle inspection problem, you are contacted by a

fluids company that wishes to automate bubble-
counting in certain processes for quality control.
The company has solved the imaging problem
and can obtain 8-bit images of size 700 700× pix-
els, such as the one shown in the figure below.

Each image represents an area of 7 2cm . The
company wishes to do two things with each
image: (1) Determine the ratio of the area occu-
pied by bubbles to the total area of the image;
and (2) count the number of distinct bubbles.
Based on the material you have learned up to
this point, propose a solution to this problem. In
your report, state the physical dimensions of the
smallest bubble your solution can detect. State
clearly all assumptions that you make and that
are likely to impact the solution you propose.

Projects

MATLAB solutions to the projects marked with an asterisk (*) are in the DIP4E Student Support Package (consult
the book website: www.ImageProcessingPlace.com).

12.1	 Boundary tracing.

(a) *	Write a function B = boundaryTracer4e(I,dir) that
traces the boundaries of multiple objects in
binary image I using 8-connectivity. The back-
ground pixels in I must be 0. If dir = 'cw' the
boundary is traced in the clockwise direc-
tion (this is the default). If dir = 'ccw' the
boundary is traced in the counterclockwise
direction. In either case, tracing starts at the
uppermost-leftmost point in each object [see
part (b)]. B is a cell array with P cells, where
P is the number of objects in I. Each cell of B
is an np × 2 matrix, each row of which con-
tains the coordinates of one boundary point,

and np is the total number of points. The key
usefulness of this algorithm is that it returns
boundary points as an ordered sequence in
a specified direction.

(b)	 Write a function ulp = uppermostLeftmost4e(b)
that finds the uppermost-leftmost point
in a boundary whose 2-D coordinates are
given in np × 2 array b. In the output, ulp is
a 1 2× vector containing the (,)x y coordi-
nates of the uppermost-leftmost point in b.
As discussed in Section 12.3, the uppermost-
leftmost point has some very important prop-
erties that are useful for setting the starting
point of boundary processing algorithms.

DIP4E_Print_Ready.indb 1044 4/2/2017 9:01:55 PM

1049

13 Image Pattern Classification

Preview
We conclude our coverage of digital image processing with an introduction to techniques for image
pattern classification. The approaches developed in this chapter are divided into three principal catego-
ries: classification by prototype matching, classification based on an optimal statistical formulation, and
classification based on neural networks. The first two approaches are used extensively in applications in
which the nature of the data is well understood, leading to an effective pairing of features and classifier
design. These approaches often rely on a great deal of engineering to define features and elements of a
classifier. Approaches based on neural networks rely less on such knowledge, and lend themselves well
to applications in which pattern class characteristics (e.g., features) are learned by the system, rather
than being specified a priori by a human designer. The focus of the material in this chapter is on prin-
ciples, and on how they apply specifically in image pattern classification.

Upon completion of this chapter, readers should:
	 Understand the meaning of patterns and pat-

tern classes, and how they relate to digital
image processing.

	 Be familiar with the basics of minimum-dis-
tance classification.

	 Know how to apply image correlation tech-
niques for template matching.

	 Understand the concept of string matching.

	 Be familiar with Bayes classifiers.

	 Understand perceptrons and their history.

	 Be familiar with the concept of learning from
training samples.

	 Understand neural network architectures.

	 Be familiar with the concept of deep learning
in fully connected and deep convolutional neu-
ral networks. In particular, be familiar with the
importance of the latter in digital image pro-
cessing.

One of the most interesting aspects of the world is that it can be
considered to be made up of patterns.

A pattern is essentially an arrangement. It is characterized by
the order of the elements of which it is made, rather than by the
intrinsic nature of these elements.

Norbert Wiener

DIP4E_Print_Ready.indb 1049 4/2/2017 9:01:57 PM

1050 Chapter 13 Image Pattern Classification

13.1 	BACKGROUND

Humans possess the most sophisticated pattern recognition capabilities in the known
biological world. By contrast, the capabilities of current recognition machines pale
in comparison with tasks humans perform routinely, from being able to interpret the
meaning of complex images, to our ability for generalizing knowledge stored in our
brains. But recognition machines play an important, sometimes even crucial role in
everyday life. Imagine what modern life would be like without machines that read
barcodes, process bank checks, inspect the quality of manufactured products, read
fingerprints, sort mail, and recognize speech.

In image pattern recognition, we think of a pattern as a spatial arrangement of
features. A pattern class is a set of patterns that share some common properties. Pat-
tern recognition by machine encompasses techniques for automatically assigning
patterns to their respective classes. That is, given a pattern or sets of patterns whose
class is unknown, the job of a pattern recognition system is to assign a class label to
each of its input patterns.

There are four main stages involved in recognition: (1) sensing, (2) preprocessing,
(3) feature extraction, and (4) classification. In terms of image processing, sensing is
concerned with generating signals in a spatial (2-D) or higher-dimensional format.
We covered numerous aspects of image sensing in Chapter 1. Preprocessing deals
with techniques for tasks such as noise reduction, enhancement, restoration, and
segmentation, as discussed in earlier chapters. You learned about feature extraction
in Chapters 12. Classification, the focus of this chapter, deals with using a set of fea-
tures as the basis for assigning class labels to unknown input image patterns.

In the following section, we will discuss three basic approaches used for image
pattern classification: (1) classification based on matching unknown patterns against
specified prototypes, (2) optimum statistical classifiers, and (3) neural networks.
One way to characterize the differences between these approaches is in the level
of “engineering” required to transform raw data into formats suitable for computer
processing. Ultimately, recognition performance is determined by the discriminative
power of the features used.

In classification based on prototypes, the objective is to make the features so
unique and easily detectable that classification itself becomes a simple task. A good
example of this are bank-check processors, which use stylized font styles to simplify
machine processing (we will discuss this application in Section 13.3).

In the second category, classification is cast in decision-theoretic, statistical terms,
and the classification approach is based on selecting parameters that can be shown
to yield optimum classification performance in a statistical sense. Here, emphasis is
placed on both the features used, and the design of the classifier. We will illustrate
this approach in Section 13.4 by deriving the Bayes pattern classifier, starting from
basic principles.

In the third category, classification is performed using neural networks. As you
will learn in Sections 13.5 and 13.6, neural networks can operate using engineered
features too, but they have the unique ability of being able to generate, on their own,
representations (features) suitable for recognition. These systems can accomplish
this using raw data, without the need for engineered features.

13.1

DIP4E_Print_Ready.indb 1050 4/2/2017 9:01:57 PM

13.1 Background 1051

One characteristic shared by the preceding three approaches is that they are
based on parameters that must be either specified or learned from patterns that rep-
resent the recognition problem we want to solve. The patterns can be labeled, mean-
ing that we know the class of each pattern, or unlabeled, meaning that the data are
known to be patterns, but the class of each pattern is unknown. A classic example
of labeled data is the character recognition problem, in which a set of character
samples is collected and the identity of each character is recorded as a label from
the group 0 through 9 and a through z. An example of unlabeled data is when we are
seeking clusters in a data set, with the aim of utilizing the resulting cluster centers as
being prototypes of the pattern classes contained in the data.

When working with a labeled data, a given data set generally is subdivided into
three subsets: a training set, a validation set, and a test set (a typical subdivision might
be 50% training, and 25% each for the validation and test sets). The process by
which a training set is used to generate classifier parameters is called training. In
this mode, a classifier is given the class label of each pattern, the objective being to
make adjustments in the parameters if the classifier makes a mistake in identify-
ing the class of the given pattern. At this point, we might be working with several
candidate designs. At the end of training, we use the validation set to compare the
various designs against a performance objective. Typically, several iterations of train-
ing/validation are required to establish the design that comes closest to meeting the
desired objective. Once a design has been selected, the final step is to determine how
it will perform “in the field.” For this, we use the test set, which consists of patterns
that the system has never “seen” before. If the training and validation sets are truly
representative of the data the system will encounter in practice, the results of train-
ing/validation should be close to the performance using the test set. If training/vali-
dation results are acceptable, but test results are not, we say that training/validation

“over fit” the system parameters to the available data, in which case further work on
the system architecture is required. Of course all this assumes that the given data are
truly representative of the problem we want to solve, and that the problem in fact
can be solved by available technology.

A system that is designed using training data is said to undergo supervised learn-
ing. If we are working with unlabeled data, the system learns the pattern classes
themselves while in an unsupervised learning mode. In this chapter, we deal only
with supervised learning. As you will see in this and the next chapter, supervised
learning covers a broad range of approaches, from applications in which a system
learns parameters of features whose form is fixed by a designer, to systems that uti-
lize deep learning and large sets of raw data sets to learn, on their own, the features
required for classification. These systems accomplish this task without a human
designer having to specify the features, a priori.

After a brief discussion in the next section of how patterns are formed, and on
the nature of patterns classes, we will discuss in Section 13.3 various approaches for
prototype-based classification. In Section 13.4, we will start from basic principles
and derive the equations of the Bayes classifier, an approach characterized by opti-
mum classification performance on an average basis. We will also discuss supervised
training of a Bayes classifier based on the assumption of multivariate Gaussian

Because the examples in
this chapter are intended
to demonstrate basic
principles and are not
large scale, we dispense
with validation and
subdivide the pattern
data into training and
test sets.

Generally, we associate
the concept of deep
learning with large sets
of data. These ideas are
discussed in more detail
later in this section and
next.

DIP4E_Print_Ready.indb 1051 4/2/2017 9:01:57 PM

1052 Chapter 13 Image Pattern Classification

distributions. Starting with Section 13.5, we will spend the rest of the chapter discuss-
ing neural networks. We will begin Section 13.5 with a brief introduction to percep-
trons and some historical facts about machine learning. Then, we will introduce the
concept of deep neural networks and derive the equations of backpropagation, the
method of choice for training deep neural nets. These networks are well-suited for
applications in which input patterns are vectors. In Section 13.6, we will introduce
deep convolutional neural networks, which currently are the preferred approach
when the system inputs are digital images. After deriving the backpropagation equa-
tions used for training convolutional nets, we will give several examples of appli-
cations involving classes of images of various complexities. In addition to working
directly with image inputs, deep convolutional nets are capable of learning, on their
own, image features suitable for classification. This is accomplished starting with raw
image data, as opposed to the other classification methods discussed in Sections 13.3
and 13.4, which rely on “engineered” features whose form, as noted earlier, is speci-
fied a priori by a human designer.

13.2 	PATTERNS AND PATTERN CLASSES

In image pattern classification, the two principal pattern arrangements are quantita-
tive and structural. Quantitative patterns are arranged in the form of pattern vectors.
Structural patterns typically are composed of symbols, arranged in the form of strings,
trees, or, less frequently, as graphs. Most of the work in this chapter is based on pat-
tern vectors, but we will discuss structural patterns briefly at the end of this section,
and give an example at the end of Section 13.3.

PATTERN VECTORS

Pattern vectors are represented by lowercase letters, such as x, y, and z, and have
the form

	 x =



















x

x

xn

1

2


	 (13-1)

where each component, xi , represents the ith feature descriptor, and n is the total
number of such descriptors. We can express a vector in the form of a column, as
in Eq. (13-1), or in the equivalent row form x = ()x x xn

T
1 2, , , ,… where T indicates

transposition. A pattern vector may be “viewed” as a point in n-dimensional Euclid-
ean space, and a pattern class may be interpreted as a “hypercloud” of points in this
pattern space. For the purpose of recognition, we like for our pattern classes to be
grouped tightly, and as far away from each other as possible.

Pattern vectors can be formed directly from image pixel intensities by vector-
izing the image using, for example, linear indexing, as in Fig. 13.1. A more common
approach is for pattern elements to be features. An early example is the work of
Fisher [1936] who, close to a century ago, reported the use of what then was a new

13.2

We discussed linear
indexing in Section 2.4
(see Fig. 2.22).

DIP4E_Print_Ready.indb 1052 4/2/2017 9:01:59 PM

13.2 Patterns and Pattern Classes 1055

Spectral band 1

Spectral band 2

Spectral band 3

Spectral band 4

Spectral band 5

Spectral band 6

x

x1

x2

x3

x4

x5

x6

�

Images in spectral bands 1 3–

Images in spectral bands 4 6–

FIGURE 13.5
An example of
pattern vectors
based on
properties of
subimages. See
Table 12.3 for an
explanation of the
components of x.

1

2

3

4

5

6

x

x

x

x

x

x

 
 
 
 

=  
 
 
 
  

x

x1 = max probability
x2 = correlation
x3 = contrast
x4 = uniformity
x5 = homogeneity
x6 = entropy

FIGURE 13.6 Feature
vectors with
components that
are invariant to
transformations
such as rotation,
scaling, and
translation. The
vector compo-
nents are moment
invariants.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

x

x

x

x

x

x

x

   
   
   
   
   

= =   
   
   
   
   
   

x

f

f

f

f

f

f

f

The 's are moment invariantsf

FIGURE 13.7 Pattern (feature) vectors formed by concatenating corresponding pixels from a set of registered images.
(Original images courtesy of NASA.)

DIP4E_Print_Ready.indb 1055 4/2/2017 9:02:01 PM

13.3 Pattern Classification by Prototype Matching 1063

white dot the location of this maximum correlation value (in this case there was a unique match whose
maximum value was 1), which we see corresponds closely with the location of the eye in Fig. 13.13(a).	

MATCHING SIFT FEATURES

We discussed the scale-invariant feature transform (SIFT) in Section 12.7. SIFT
computes a set of invariant features that can be used for matching between known
(prototype) and unknown images. The SIFT implementation in Section 12.7 yields
128-dimensional feature vectors for each local region in an image. SIFT performs
matching by looking for correspondences between sets of stored feature vector pro-
totypes and feature vectors computed for an unknown image. Because of the large
number of features involved, searching for exact matches is computationally inten-
sive. Instead, the approach is to use a best-bin-first method that can identify the near-
est neighbors with high probability using only a limited amount of computation (see
Lowe [1999], [2004]). The search is further simplified by looking for clusters of poten-
tial solutions using the generalized Hough transform proposed by Ballard [1981]. We

ba
dc

FIGURE 13.13
(a) 913 913×
satellite image
of Hurricane
Andrew.
(b) 31 31×
template of the
eye of the storm.
(c) Correlation
coefficient shown
as an image (note
the brightest
point, indicated
by an arrow).
(d) Location of
the best match
(identified by the
arrow). This point
is a single pixel,
but its size was
enlarged to make
it easier to see.
(Original image
courtesy of
NOAA.)

DIP4E_Print_Ready.indb 1063 4/2/2017 9:02:11 PM

1064 Chapter 13 Image Pattern Classification

know from the discussion in Section 10.2 that the Hough transform simplifies looking
for data patterns by utilizing bins that reduce the level of detail with which we look at
a data set. We already discussed the SIFT algorithm in Section 12.7. The focus in this
section is to further illustrate the capabilities of SIFT for prototype matching.

Figure 13.14 shows the circuit board image we have used several times before.
The small rectangle enclosing the rightmost connector on the top of the large image
identifies an area from which an image of the connector was extracted. The small
image is shown zoomed for clarity.  The sizes of the large and small images are shown
in the figure caption. Figure 13.15 shows the keypoints found by SIFT, as explained
in Section 12.7. They are visible as faint lines on both images. The zoomed view of
the subimage shows them a little clearer. It is important to note that the keypoints
for the image and subimage were found independently by SIFT.  The large image
had 2714 keypoints, and the small image had 35.

Figure 13.16 shows the matches between keypoints found by SIFT. A total of 41
matches were found between the two images. Because there are only 35 keypoints

FIGURE 13.15
Keypoints found
by SIFT. The
large image has
2714 keypoints
(visible as faint
gray lines). The
subimage has 35
keypoints. This is
a separate image,
and SIFT found
its keypoints inde-
pendently of the
large image. The
zoomed section is
shown for clarity.

FIGURE 13.14
Circuit board
image of size
948 915× pixels,
and a subimage
of one of the
connectors. The
subimage is of size
212 128× pixels,
shown zoomed
on the right for
clarity. (Original
image courtesy of
Mr. Joseph E.
Pascente, Lixi,
Inc.)

DIP4E_Print_Ready.indb 1064 4/2/2017 9:02:11 PM

13.4 Optimum (Bayes) Statistical Classifiers 1069

13.4 	OPTIMUM (BAYES) STATISTICAL CLASSIFIERS

In this section, we develop a probabilistic approach to pattern classification. As is
true in most fields that deal with measuring and interpreting physical events, prob-
ability considerations become important in pattern recognition because of the ran-
domness under which pattern classes normally are generated. As shown in the fol-
lowing discussion, it is possible to derive a classification approach that is optimal in
the sense that, on average, it yields the lowest probability of committing classifica-
tion errors (see Problem 13.12).

DERIVATION OF THE BAYES CLASSIFIER

The probability that a pattern vector x comes from class ci is denoted by p ci x(). If
the pattern classifier decides that x came from class cj when it actually came from ci
it incurs a loss (to be defined shortly), denoted by Lij . Because pattern x may belong
to any one of Nc possible classes, the average loss incurred in assigning x to class cj is

	 r L p cj kj
k

N

k

c

x x() = ()
=

∑
1

	 (13-16)

Quantity rj()x is called the conditional average risk or loss in decision-theory termi-
nology.

We know from Bayes’ rule (see Section 2.6) that p a b p a p b a p b() () () (),= [] so
we can write Eq. (13-16) as

	 r
p

L p c P cj kj
k

N

k k

c

x
x

x() = () () ()
=

∑1

1

	 (13-17)

where p ckx() is the probability density function (PDF) of the patterns from class
ck , and P ck() is the probability of occurrence of class ck (sometimes P ck() is referred
to as the a priori, or simply the prior, probability). Because 1 p()x is positive and
common to all the r j Nj cx() =, , , , ,1 2 … it can be dropped from Eq. (13-17) without
affecting the relative order of these functions from the smallest to the largest value.
The expression for the average loss then reduces to

	 r L p c P cj kj
k

N

k k

c

x x() = () ()
=

∑
1

	 (13-18)

Given an unknown pattern, the classifier has Nc possible classes from which to
choose. If the classifier computes r r rNc1 2(), (), , ()x x x… for each pattern x and
assigns the pattern to the class with the smallest loss, the total average loss with
respect to all decisions will be minimum. The classifier that minimizes the total
average loss is called the Bayes classifier. This classifier assigns an unknown pat-
tern x to class ci if r ri j() ()x x< for j N j ic= ≠1 2, , , ; .… In other words, x is assigned
to class ci if

	 L p c P c L p c P cki k
k

N

k qj q q
q

Nc c

x x() () < () ()
= =

∑ ∑
1 1

	 (13-19)

13.4

DIP4E_Print_Ready.indb 1069 4/2/2017 9:02:18 PM

1074 Chapter 13 Image Pattern Classification

	 C C1 2
1

16

3 1 1

1 3 1

1 1 3

= = −
−

















The inverse of this matrix is

	 C C1
1

2
1

8 4 4

4 8 4

4 4 8

− −= =
− −

−
−

















Next, we obtain the decision functions. Equation (13-34) applies because the covariance matrices are
equal, and we are assuming that the classes are equally likely:

	 dj
T

j j
T

jx x C m m C m() = −− −1 11
2

Carrying out the vector-matrix expansion, we obtain the two decision functions:

	 d x d x x x1 1 2 1 2 34 1 5 4 8 8 5 5x x() = − () = − + + −. .and

The decision boundary separating the two classes is then

	 d d x x x1 2 1 2 38 8 8 4 0x x() − () = − − + =

Figure 13.20 shows a section of this planar surface. Note that the classes were separated effectively.

EXAMPLE 13.6 : Classification of multispectral data using a Bayes classifier.

As discussed in Sections 1.3 and 12.5, a multispectral scanner responds to selected bands of the electro-
magnetic energy spectrum, such as the bands: 0.45– 0.52, 0.53– 0.61, 0.63– 0.69, and 0.78– 0.90 microns.
These ranges are in the visible blue, visible green, visible red, and near infrared bands, respectively. A
region on the ground scanned using these multispectral bands produces four digital images of the region,

x3

x1

(1, 0, 0)

(1, 0, 1)

(0, 0, 0)

(1, 1, 1)

(0, 0, 1)
(0, 1, 1)

(0, 1, 0)

(1, 1, 0)

x2

1c∈

2c∈

FIGURE 13.20
Two simple
pattern classes
and the portion
of their Bayes
decision bound-
ary (shaded) that
intersects the
cube.

DIP4E_Print_Ready.indb 1074 4/2/2017 9:02:27 PM

1076 Chapter 13 Image Pattern Classification

ba c
ed f
hg i

FIGURE 13.21 Bayes classification of multispectral data. (a)–(d) Images in the visible blue, visible green, visible red,
and near infrared wavelength bands. (e) Masks for regions of water (labeled 1), urban development (labeled 2),
and vegetation (labeled 3). (f) Results of classification; the black dots denote points classified incorrectly. The other
(white) points were classified correctly. (g) All image pixels classified as water (in white). (h) All image pixels clas-
sified as urban development (in white). (i) All image pixels classified as vegetation (in white).

DIP4E_Print_Ready.indb 1076 4/2/2017 9:02:28 PM

13.5 Neural Networks and Deep Learning 1077

Training Patterns Test Patterns

Class
No. of

Samples

Classified into Class %
Correct Class

No. of
Samples

Classified into Class %
Correct1 2 3 1 2 3

1 484 482 2 0 99.6 1 483 478 3 2 98.9

2 933 0 885 48 94.9 2 932 0 880 52 94.4

3 483 0 19 464 96.1 3 482 0 16 466 96.7

TABLE 13.1
Bayes classification of multispectral image data. Classes 1, 2, and 3 are water, urban, and vegetation, respectively.

have mentioned previously, estimating these densities is not a trivial task. If assump-
tions have to be made (e.g., as in assuming Gaussian densities), then the degree of
optimality achieved in classification depends on how close the assumptions are to
reality.

13.5 	NEURAL NETWORKS AND DEEP LEARNING

The principal objectives of the material in this section and in Section 13.6 are to
present an introduction to deep neural networks, and to derive the equations that
are the foundation of deep learning. We will discuss two types of networks. In this
section, we focus attention on multilayer, fully connected neural networks, whose
inputs are pattern vectors of the form introduced in Section 13.2. In Section 13.6, we
will discuss convolutional neural networks, which are capable of accepting images
as inputs. We follow the same basic approach in presenting the material in these two
sections. That is, we begin by developing the equations that describe how an input is
mapped through the networks to generate the outputs that are used to classify that
input. Then, we derive the equations of backpropagation, which are the tools used
to train both types of networks. We give examples in both sections that illustrate the
power of deep neural networks and deep learning for solving complex pattern clas-
sification problems.

BACKGROUND

The essence of the material that follows is the use of a multitude of elemental non-
linear computing elements (called artificial neurons), organized as networks whose
interconnections are similar in some respects to the way in which neurons are inter-
connected in the visual cortex of mammals. The resulting models are referred to
by various names, including neural networks, neurocomputers, parallel distributed
processing models, neuromorphic systems, layered self-adaptive networks, and con-
nectionist models. Here, we use the name neural networks, or neural nets for short.
We use these networks as vehicles for adaptively learning the parameters of decision
functions via successive presentations of training patterns.

Interest in neural networks dates back to the early 1940s, as exemplified by the
work of McCulloch and Pitts [1943], who proposed neuron models in the form of

13.5

DIP4E_Print_Ready.indb 1077 4/2/2017 9:02:29 PM

1078 Chapter 13 Image Pattern Classification

binary thresholding devices, and stochastic algorithms involving sudden 0–1 and 1–0
changes of states, as the basis for modeling neural systems. Subsequent work by
Hebb [1949] was based on mathematical models that attempted to capture the con-
cept of learning by reinforcement or association.

During the mid-1950s and early 1960s, a class of so-called learning machines origi-
nated by Rosenblatt [1959, 1962] caused a great deal of excitement among research-
ers and practitioners of pattern recognition. The reason for the interest in these
machines, called perceptrons, was the development of mathematical proofs showing
that perceptrons, when trained with linearly separable training sets (i.e., training sets
separable by a hyperplane), would converge to a solution in a finite number of itera-
tive steps. The solution took the form of parameters (coefficients) of hyperplanes
that were capable of correctly separating the classes represented by patterns of the
training set.

Unfortunately, the expectations following discovery of what appeared to be a
well-founded theoretical model of learning soon met with disappointment. The
basic perceptron, and some of its generalizations, were inadequate for most pattern
recognition tasks of practical significance. Subsequent attempts to extend the power
of perceptron-like machines by considering multiple layers of these devices lacked
effective training algorithms, such as those that had created interest in the percep-
tron itself. The state of the field of learning machines in the mid-1960s was sum-
marized by Nilsson [1965]. A few years later, Minsky and Papert [1969] presented
a discouraging analysis of the limitation of perceptron-like machines. This view was
held as late as the mid-1980s, as evidenced by comments made by Simon [1986]. In
this work, originally published in French in 1984, Simon dismisses the perceptron
under the heading “Birth and Death of a Myth.”

More recent results by Rumelhart, Hinton, and Williams [1986] dealing with the
development of new training algorithms for multilayers of perceptron-like units
have changed matters considerably. Their basic method, called backpropagation
(backprop for short), provides an effective training method for multilayer networks.
Although this training algorithm cannot be shown to converge to a solution in the
sense of the proof for the single-layer perceptron, backpropagation is capable of
generating results that have revolutionized the field of pattern recognition.

The approaches to pattern recognition we have studied up to this point rely on
human-engineered techniques to transform raw data into formats suitable for com-
puter processing. The methods of feature extraction we studied in Chapter 12 are
examples of this. Unlike these approaches, neural networks can use backpropaga-
tion to automatically learn representations suitable for recognition, starting with
raw data. Each layer in the network “refines” the representation into more abstract
levels. This type of multilayered learning is commonly referred to as deep learning,
and this capability is one of the underlying reasons why applications of neural net-
works have been so successful. As we noted at the beginning of this section, practical
implementations of deep learning generally are associated with large data sets.

Of course, these are not “magical” systems that assemble themselves. Human
intervention is still required for specifying parameters such as the number of layers,
the number of artificial neurons per layer, and various coefficients that are problem

DIP4E_Print_Ready.indb 1078 4/2/2017 9:02:29 PM

13.5 Neural Networks and Deep Learning 1085

EXAMPLE 13.8 : Using the perceptron to classify two sets of iris data measurements.

In Fig. 13.10 we showed a reduced set of the iris database in two dimensions, and mentioned that the
only class that was separable from the others is the class of Iris setosa. As another illustration of the
perceptron, we now find the full decision boundary between the Iris setosa and the Iris versicolor classes.
As we mentioned when discussing Fig. 13.10, these are 4-D data sets. Letting a = 0 5. , and starting with
all parameters equal to zero, the perceptron converged in only four epochs to the solution weight vector
w = − −[. , . , . , . , .] ,0 65 2 05 2 60 1 10 0 50 T where the last element is wn+1.

In practice, linearly separable pattern classes are rare, and a significant amount
of research effort during the 1960s and 1970s went into developing techniques for
dealing with nonseparable pattern classes. With recent advances in neural networks,
many of those methods have become items of mere historical interest, and we will
not dwell on them here. However, we mention briefly one approach because it is rel-
evant to the discussion of neural networks in the next section. The method is based
on minimizing the error between the actual and desired response at any training step.

Let r denote the response we want the perceptron to have for any pattern during
training. The output of our perceptron is either +1 or −1, so these are the two pos-
sible values that r can have. We want to find the augmented weight vector, w, that
minimizes the mean squared error (MSE) between the desired and actual responses
of the perceptron. The function should be differentiable and have a unique mini-
mum. The function of choice for this purpose is a quadratic of the form

	 E r T()w w= −()1
2

2
x 	 (13-47)

where E is our error measure, w is the weight vector we are seeking, x is any pattern
from the training set, and r is the response we desire for that pattern. Both w and x
are augmented vectors.

The 1 ⁄ 2 is used to cancel
out the 2 that will result
from taking the deriva-
tive of this expression.
Also, remember that wTx
is a scalar.

0 1 2 3

1

2

3

x1

0
1

2
3

1
2

3 x1

x2

1 2 1 2() (,) 3d d x x x x= = + −x

1 2 3x x+ −

1 2 3 0x x+ − =

+

1 2 3 0x x+ − =

x2

ba

FIGURE 13.24
(a) Segment
of the decision
boundary learned
by the perceptron
algorithm.
(b) Section of the
decision surface.
The decision
boundary is the
intersection of the
decision surface
with the x x1 2 -
plane.

DIP4E_Print_Ready.indb 1085 4/2/2017 9:02:39 PM

1086 Chapter 13 Image Pattern Classification

We find the minimum of E()w using an iterative gradient descent algorithm, whose
form is

	 w w
w

w
w w

k k
E

k

+() = −
∂ ()

∂










= ()
1 () a 	 (13-48)

where the starting weight vector is arbitrary, and a > 0.
Figure 13.25(a) shows a plot of E for scalar values, w and x, of w and x. We want

to move w incrementally so E()w approaches a minimum, which implies that E
should stop changing or, equivalently, that ∂ ∂ =E() .w w 0 Equation (13-48) does
precisely this. If ∂ ∂ >E() ,w w 0 a portion of this quantity (determined by the value
of the learning increment a) is subtracted from w()k to create a new, updated value
w(),k + 1 of the weight. The opposite happens if ∂ ∂ <E() .w w 0 If ∂ ∂ =E() ,w w 0
the weight is unchanged, meaning that we have arrived at a minimum, which is the
solution we are seeking. The value of a determines the relative magnitude of the
correction in weight value. If a is too small, the step changes will be correspond-
ingly small and the weight would move slowly toward convergence, as Fig. 13.25(a)
illustrates. On the other hand, choosing a too large could cause large oscillations
on either side of the minimum, or even become unstable, as Fig. 13.25(b) illustrates.
There is no general rule for choosing a. However, a logical approach is to start small
and experiment by increasing a to determine its influence on a particular set of
training patterns. Figure 13.25(c) shows the shape of the error function for two vari-
ables.

Because the error function is given analytically and it is differentiable, we can
express Eq. (13-48) in a form that does not require computing the gradient explicitly
at every step. The partial of E()w with respect to w is

	
∂ ()

∂
= − −()E

r Tw

w
w x x 	 (13-49)

Note that the right side
of this equation is the
gradient of E(w).

E

xw
0 1 2

0.25

0.50

0

E

xw
0 1 2

0.25

0.50

0

0

1

2
1

2
0

0.5

1

ba c

FIGURE 13.25 Plots of E as a function of wx for r = 1. (a) A value of a that is too small can slow down convergence.
(b) If a is too large, large oscillations or divergence may occur. (c) Shape of the error function in 2-D.

DIP4E_Print_Ready.indb 1086 4/2/2017 9:02:43 PM

13.5 Neural Networks and Deep Learning 1089

Natural questions at this point are: Can more than one perceptron solve the XOR
problem? If so, what is the minimum number of units required? We know that a
single perceptron can implement one straight line, and we need to implement two
lines, so the obvious answers are: yes to the first question, and two units to the sec-
ond. Figure 13.28(a) shows the solution for two variables, which requires a total of
six coefficients because we need two lines. The solution coefficients are such that,
for either of the two patterns from class c1, one output is true (1) and the other is
false (0). The opposite condition must hold for either pattern from class c2. This
solution requires that we analyze two outputs. If we want to implement the truth
table, meaning that a single output should give the same response as the XOR func-
tion [the third column in Fig. 13.27(a)], then we need one additional perceptron.
Figure 13.28(b) shows the architecture for this solution. Here, one perceptron in the
first layer maps any input from one class into a 1, and the other perceptron maps a
pattern from the other class into a 0. This reduces the four possible inputs into two
outputs, which is a two-point problem. As you know from Fig. 13.24, a single percep-
tron can solve this problem. Therefore, we need three perceptrons to implement the
XOR table, as in Fig. 13.28(b).

With a little work, we could determine by inspection the coefficients needed to
implement either solution in Fig. 13.28. However, rather than dwell on that, we focus
attention in the following section on a more general, layered architecture, of which
the XOR solution is a trivial, special case.

MULTILAYER FEEDFORWARD NEURAL NETWORKS

In this section, we discuss the architecture and operation of multilayer neural net-
works, and derive the equations of backpropagation used to train them. We then
give several examples illustrating the capabilities of neural nets

Model of an Artificial Neuron

Neural networks are interconnected perceptron-like computing elements called
artificial neurons. These neurons perform the same computations as the perceptron,
but they differ from the latter in how they process the result of the computations.
As illustrated in Fig. 13.23, the perceptron uses a “hard” thresholding function that
outputs two values, such as +1 and −1, to perform classification. Suppose that in a
network of perceptrons, the output before thresholding of one of the perceptrons
is infinitesimally greater than zero. When thresholded, this very small signal will be
turned into a +1. But a similarly small signal with the opposite sign would cause

1x

2x

1w

2w
1

3w

1

4w

5w

6w

1x

2x

1w

2w
1

3w

1

4w

5w

6w

7w

8w
9w
1

ba

FIGURE 13.28
(a) Minimum
perceptron solution
to the XOR problem
in 2-D. (b) A solution
that implements the
XOR truth table in
Fig. 13.27(a).

DIP4E_Print_Ready.indb 1089 4/2/2017 9:02:46 PM

1090 Chapter 13 Image Pattern Classification

a large swing in value from +1 to −1. Neural networks are formed from layers of
computing units, in which the output of one unit affects the behavior of all units fol-
lowing it. The perceptron’s sensitivity to the sign of small signals can cause serious
stability problems in an interconnected system of such units, making perceptrons
unsuitable for layered architectures.

The solution is to change the characteristic of the activation function from a hard-
limiter to a smooth function. Figure 13.29 shows an example based on using the
activation function

	 h z
e z() =

+ −
1

1
	 (13-51)

where z is the result of the computation performed by the neuron, as shown in Fig.
13.29. Except for more complicated notation, and the use of a smooth function rath-
er than a hard threshold, this model performs the same sum-of-products operations
as in Eq. (13-36) for the perceptron. Note that the bias term is denoted by b instead

0.0

0.5

1.0

1.0−

0.5−

0.0

0.5

1.0

0

2

4

6

2− 0 2 4 66− 4−2− 0 2 4 66− 4− 2− 0 2 4 66− 4−

1
()

1 zh z
e−=

+
[]() () 1 ()h z h z h z= −�

() tanh()h z z=

[]2() 1 ()h z h z= −�

() max(0,)h z z=
1 if 0

()
0 if 0

z
h z

z

>
=  ≤

�

Sigmoid tanh ReLu

ba c

FIGURE 13.30 Various activation functions. (a) Sigmoid. (b) Hyperbolic tangent (also has a sigmoid shape, but it is
centered about 0 in both dimensions). (c) Rectifier linear unit (ReLU).

1

..... ()ib+ �

1

1

() () (1)
n

i ij j
j

z a
−

=
= −∑

�

� � �w

2(1)a −�

1(1)a −�

1
(1)na

−
−

�
�

h

()() ()i ia h z=� �

2()i �w
1()i �w

1
()in −�
�w

()ib �
Neuron i in layer �

FIGURE 13.29
Model of an
artificial neuron,
showing all the
operations it
performs. The
“” is used to
denote a
particular layer in
a layered
network.

DIP4E_Print_Ready.indb 1090 4/2/2017 9:02:47 PM

1092 Chapter 13 Image Pattern Classification

sometimes you will see the words “shallow” and “deep” used subjectively to denote
networks with a “few” and with “many” layers, respectively.

We used the notation in Eq. (13-37) to label all the inputs and weights of a per-
ceptron. In a neural network, the notation is more complicated because we have to
account for neuron weights, inputs, and outputs within a layer, and also from layer
to layer. Ignoring layer notation for a moment, we denote by wij the weight that
associates the link connecting the output of neuron j to the input of neuron i. That is,

x1

x2

x3

xn

Layer 1
(Input)

Layer L
(Output)

Hidden Layers
(The number of nodes in
the hidden layers can be

different from layer to layer)

Neuron in hidden layer i �

layer �

()ia �
Output () goes to all neurons in layer 1ia +� �

1

.....

.....
()ib+ �

1

1

() () (1)
n

i ij j
j

z a
−

=
= −∑

�

� � �w

2(1)a −�

1(1)a −�

(1)ja −�

1
(1)na

−
−

�
�

h

()() ()i ia h z=� �

FIGURE 13.31
General model
of a feedforward,
fully connected
neural net. The
neuron is the
same as in
Fig. 13.29. Note
how the output of
each neuron goes
to the input of all
neurons in the
following layer,
hence the name
fully connected
for this type of
architecture.

DIP4E_Print_Ready.indb 1092 4/2/2017 9:02:49 PM

13.5 Neural Networks and Deep Learning 1099

size n np−1 × , B() is of size n np × , and A() is of size n np × . Table 13.2 summa-
rizes the matrix formulation for the forward pass through a fully connected, feed-
forward neural network for all pattern vectors. Implementing these operations in a
matrix-oriented language like MATLAB is a trivial undertaking. Performance can
be improved significantly by using dedicated hardware, such as one or more graphics
processing units (GPUs).

The equations in Table 13.2 are used to classify each of a set of patterns into one
of nL pattern classes. Each column of output matrix A()L contains the activation
values of the nL output neurons for a specific pattern vector. The class membership
of that pattern is given by the location of the output neuron with the highest activa-
tion value. Of course, this assumes we know the weights and biases of the network.
These are obtained during training using backpropagation, as we explain next.

USING BACKPROPAGATION TO TRAIN DEEP NEURAL NETWORKS

A neural network is defined completely by its weights, biases, and activation func-
tion. Training a neural network refers to using one or more sets of training patterns
to estimate these parameters. During training, we know the desired response of
every output neuron of a multilayer neural net. However, we have no way of know-
ing what the values of the outputs of hidden neurons should be. In this section, we
develop the equations of backpropagation, the tool of choice for finding the value
of the weights and biases in a multilayer network. This training by backpropaga-
tion involves four basic steps: (1) inputting the pattern vectors; (2) a forward pass
through the network to classify all the patterns of the training set and determine the
classification error; (3) a backward (backpropagation) pass that feeds the output
error back through the network to compute the changes required to update the
parameters; and (4) updating the weights and biases in the network. These steps are
repeated until the error reaches an acceptable level. We will provide a summary of
all principal results derived in this section at the end of the discussion (see Table
13.3). As you will see shortly, the principal mathematical tool needed to derive the
equations of backpropagation is the chain rule from basic calculus.

The Equations of Backpropagation

Given a set of training patterns and a multilayer feedforward neural network archi-
tecture, the approach in the following discussion is to find the network parameters

Step Description Equations

Step 1 Input patterns A X()1 =

Step 2 Feedforward For  …= 2, , ,L compute Z W A B() () () ()   = − +1 and A Z() () = ()h

Step 3 Output A Z() ()L h L= ()

TABLE 13.2
Steps in the matrix computation of a forward pass through a fully connected, feedforward multilayer neural net.

DIP4E_Print_Ready.indb 1099 4/2/2017 9:03:01 PM

1106 Chapter 13 Image Pattern Classification

	 W b W() ; ()
.

.
; (2 2

4 590

4 486
3=









 =

−










4.792 4.792

4.486 4.486
)) ; ()

.

.
=

−
−









 =

−










9.180 9.429

9.178 9.427
b 3

4 420

4 419

Figure 13.35 shows the neural net based on these values.
When presented with the four training patterns after training was completed, the results at the two

outputs should have been equal to the values in R. Instead, the values were close:

	 A()
.

3
0 010

=










0.987 0.990 0.010 0.010

0.013 0.990 0.990

These weights and biases, along with the sigmoid activation function, completely specify our trained
neural network. To test its performance with values other than the training patterns, which we know it
classifies correctly, we created a set of 2-D test patterns by subdividing the pattern space into increments
of 0.1, from −1 5. to 1.5 in both directions, and classified the resulting points using a forward pass through

x1

x2

4.792 4.792
(2)

4.486 4.486
 

=  
 

W

4.590
(2)

4.486
 

=  − 
b

9.180 9.429
(3)

9.178 9.427

− 
=  − 

W

4.420
(3)

4.419
 

=  − 
b

FIGURE 13.35
Neural net used
to solve the XOR
problem, showing
the weights and
biases learned
via training using
the equations in
Table 13.3.

1−

1–

1

1
x1

x2

0

1

0.2

0.4

0.6

0.8

1.5–1.5

0.5

0.5–

0.5–

0.5

1.5

1.0–

1.0−

0.0

1.0

1.0

0.0

–1.5

1c∈
2c∈

ba c

FIGURE 13.34 Neural net solution to the XOR problem. (a) Four patterns in an XOR arrangement. (b) Results of
classifying additional points in the range −1 5. to 1 5. in increments of 0.1. All solid points were classified as belong-
ing to class c1 and all open circles were classified as belonging to class c2 . Together, the two lines separating the
regions constitute the decision boundary [compare with Fig. 13.27(b)]. (c) Decision surface, shown as a mesh. The
decision boundary is the pair of dashed, white lines in the intersection of the surface and a plane perpendicular to
the vertical axis, intersecting that axis at 0.5. (Figure (c) is shown in a different perspective than (b) in order to make
all four patterns visible.)

DIP4E_Print_Ready.indb 1106 4/2/2017 9:03:14 PM

1108 Chapter 13 Image Pattern Classification

and vegetation. Figure 13.37 shows the four multispectral images used in the experiment, the masks used
to extract the training and test samples, and the approach used to generate the 4-D pattern vectors.

As in Example 13.6, we extracted a total of 1900 training pattern vectors and 1887 test pattern vectors
(see Table 13.1 for a listing of vectors by class). After preliminary runs with the training data to establish
that the mean squared error was decreasing as a function of epoch, we determined that a neural net
with one hidden layer of two nodes achieved stable learning with a = 0 001. and 1,000 training epochs.
Keeping those two parameters fixed, we varied the number of nodes in the internal layer, as listed in
Table 13.4. The objective of these preliminary runs was to determine the smallest neural net that would
give the best recognition rate. As you can see from the results in the table, [4 3 3] is clearly the architec-
ture of choice in this case. Figure 13.38 shows this neural net, along with the parameters learned during
training.

After the basic architecture was defined, we kept the learning rate constant at a = 0 001. and varied the
number of epochs to determine the best recognition rate with the architecture in Fig. 13.38. Table 13.5
shows the results. As you can see, the recognition rate improved slowly as a function of epoch, reach-
ing a plateau at around 50,000 epochs. In fact, as Fig. 13.39 shows, the MSE decreased quickly up to
about 800 training epochs and decreased slowly after that, explaining why the correct recognition rate
changed so little after about 2,000 epochs. Similar results were obtained with a = 0 01. , but decreasing

(a) Images in spectral bands 1 4 and binary mask used to extract training samples

Spectral band 1

Spectral band 2

Spectral band 3

Spectral band 4

1

2

3

4

x

x

x

x

 
 
 =  
 
  

x

(b) Approach used to extract pattern vectors

–

FIGURE 13.37 (a) Starting with the leftmost image: blue, green, red, near infrared, and binary mask images. In the
mask, the lower region is for water, the center region is for the urban area, and the left mask corresponds to vegeta-
tion. All images are of size 512 512× pixels. (b) Approach used for generating 4-D pattern vectors from a stack of
the four multispectral images. (Multispectral images courtesy of NASA.)

Network
Architecture

[4 2 3] [4 3 3] [4 4 3] [4 5 3] [4 2 2 3] [4 4 3 3] [4 4 4 3] [4 10 3 3] [4 10 10 3]

Recognition
Rate

95.8% 96.2% 95.9% 96.1% 74.6% 90.8% 87.1% 84.9% 89.7%

TABLE 13.4
Recognition rate as a function of neural net architecture for a = 0 001. and 1,000 training epochs. The network archi-
tecture is defined by the numbers in brackets. The first and last number inside each bracket refer to the number of
input and output nodes, respectively. The inner entries give the number of nodes in each hidden layer.

DIP4E_Print_Ready.indb 1108 4/2/2017 9:03:16 PM

1110 Chapter 13 Image Pattern Classification

this parameter to a = 0 1. resulted in a drop of the best correct recognition rate to 49.1%. Based on the
preceding results, we used a = 0 001. and 50,000 epochs to train the network.

The parameters in Fig. 13.38 were the result of training. The recognition rate for the training data
using these parameters was 97%. We achieved a recognition rate of 95.6% on the test set using the same
parameters. The difference between these two figures, and the 96.4% and 96.2%, respectively, obtained
for the same data with the Bayes classifier (see Example 13.6), are statistically insignificant.

The fact that our neural networks achieved results comparable to those obtained with the Bayes
classifier is not surprising. It can be shown (Duda, Hart, and Stork [2001]) that a three-layer neural net,
trained by backpropagation using a sum of errors squared criterion, approximates the Bayes decision
functions in the limit, as the number of training samples approaches infinity. Although our training sets
were small, the data were well behaved enough to yield results that are close to what theory predicts.

13.6 	DEEP CONVOLUTIONAL NEURAL NETWORKS

Up to this point, we have organized pattern features as vectors. Generally, this
assumes that the form of those features has been specified (i.e., “engineered” by a
human designer) and extracted from images prior to being input to a neural network
(Example 13.13 is an illustration of this approach). But one of the strengths of neural
networks is that they are capable of learning pattern features directly from training
data. What we would like to do is input a set of training images directly into a neural
network, and have the network learn the necessary features on its own. One way to
do this would be to convert images to vectors directly by organizing the pixels based
on a linear index (see Fig. 13.1), and then letting each element (pixel) of the linear
index be an element of the vector. However, this approach does not utilize any spa-
tial relationships that may exist between pixels in an image, such as pixel arrange-
ments into corners, the presence of edge segments, and other features that may help
to differentiate one image from another. In this section, we present a class of neural
networks called deep convolutional neural networks (CNNs or ConvNets for short)
that accept images as inputs and are ideally suited for automatic learning and image
classification. In order to differentiate between CNNs and the neural nets we stud-
ied in Section 13.5, we will refer to the latter as “fully connected” neural networks.

A BASIC CNN ARCHITECTURE

In the following discussion, we use a LeNet architecture (see references at the end of
this chapter) to introduce convolutional nets. We do this for two main reasons: First,
the LeNet architecture is reasonably simple to understand. This makes it ideal for
introducing basic CNN concepts. Second, our real interest is in deriving the equa-
tions of backpropagation for convolutional networks, a task that is simplified by the
intuitiveness of LeNets.

The CNN in Fig. 13.40 contains all the basic elements of a LeNet architecture,
and we use it without loss of generality. A key difference between this architecture
and the neural net architectures we studied in the previous section is that inputs to
CNNs are 2-D arrays (images), while inputs to our fully connected neural networks
are vectors. However, as you will see shortly, the computations performed by both
networks are very similar: (1) a sum of products is formed, (2) a bias value is added,

13.6

To simplify the explana-
tion of the CNN in
Fig. 13.40, we focus
attention initially on
a single image input.
Multiple input images
are a trivial extension we
will consider later in our
discussion.

DIP4E_Print_Ready.indb 1110 4/2/2017 9:03:17 PM

13.6 Deep Convolutional Neural Networks 1111

(3) the result is passed through an activation function, and (4) the activation value
becomes a single input to a following layer.

Despite the fact that the computations performed by CNNs and fully connected
neural nets are similar, there are some basic differences between the two, beyond
their input formats being 2-D versus vectors. An important difference is that CNNs
are capable of learning 2-D features directly from raw image data, as mentioned ear-
lier. Because the tools for systematically engineering comprehensive feature sets for
complex image recognition tasks do not exist, having a system that can learn its own
image features from raw image data is a crucial advantage of CNNs. Another major
difference is in the way in which layers are connected. In a fully connected neural net,
we feed the output of every neuron in a layer directly into the input of every neuron in
the next layer. By contrast, in a CNN we feed into every input of a layer, a single value,
determined by the convolution (hence the name convolutional neural net) over a
spatial neighborhood in the output of the previous layer. Therefore, CNNs are not
fully connected in the sense defined in the last section. Another difference is that the
2-D arrays from one layer to the next are subsampled to reduce sensitivity to transla-
tional variations in the input. These differences and their meaning will become clear
as we look at various CNN configurations in the following discussion.

Basics of How a CNN Operates

As noted above, the type of neighborhood processing in CNNs is spatial convolu-
tion. We explained the mechanics of spatial convolution in Fig. 3.36, and expressed
it mathematically in Eq. (3-44). As that equation shows, convolution computes a
sum of products between pixels and a set of kernel weights. This operation is car-
ried out at every spatial location in the input image. The result at each location
(,)x y in the input is a scalar value. Think of this value as the output of a neuron in
a layer of a fully connected neural net. If we add a bias and pass the result through
an activation function (see Fig. 13.29), we have a complete analogy between the

We will discuss in the
next subsection the exact
form of neural computa-
tions in a CNN, and show
they are equivalent in
form to the computations
performed by neurons in
a fully connected neural
net.

Input image

Subsampling

Feature maps Pooled
feature
maps

Feature
maps

B

A

Subsampling

Pooled
feature
maps

V
ec

to
ri

zi
ng

Convolution

+
Activation

Bias
+

Convolution + Bias + Activation

Fully connected
neural net

O
u
t
p
u
t

Receptive field

FIGURE 13.40 A CNN containing all the basic elements of a LeNet architecture. Points A and B are specific values
to be addressed later in this section. The last pooled feature maps are vectorized and serve as the input to a fully
connected neural network. The class to which the input image belongs is determined by the output neuron with the
highest value.

DIP4E_Print_Ready.indb 1111 4/2/2017 9:03:17 PM

1120 Chapter 13 Image Pattern Classification

and

	 a h zx y x y, ,() () = () 	 (13-92)

for  …= 1 2, , , ,Lc where Lc is the number of convolutional layers, and ax y, ()
denotes the values of pooled features in convolutional layer . When  = 1,

	 ax y, ()0 = { }values of pixels in the input image(s) 	 (13-93)

When  = Lc ,

	 (),a Lx y c = values of pooled features in last layer of the CNNN{ } 	 (13-94)

Note that  starts at 1 instead of 2, as we did in Section 13.5. The reason is that we are
naming layers, as in “convolutional layer .” It would be confusing to start at convo-
lutional layer 2. Finally, we note that the pooling does not require any convolutions.
The only function of pooling is to reduce the spatial dimensions of the feature map
preceding it, so we do not include explicit pooling equations here.

Equations (13-91) through (13-94) are all we need to compute all values in a
forward pass through the convolutional section of a CNN. As described in Fig. 13.40,
the values of the pooled features of the last layer are vectorized and fed into a fully
connected feedforward neural network, whose forward propagation is explained in
Eqs. (13-54) and (13-55) or, in matrix form, in Table 13.2.

THE EQUATIONS OF BACKPROPAGATION USED TO TRAIN CNNs

As you saw in the previous section, the feedforward equations of a CNN are similar
to those of a fully connected neural net, but with multiplication replaced by convo-
lution, and notation that reflects the fact that CNNs are not fully connected in the
sense defined in Section 13.5. As you will see in this section, the equations of back-
propagation also are similar in many respects to those in fully connected neural nets.

As in the derivation of backpropagation in Section 13.5, we start with the defini-
tion of how the output error of our CNN changes with respect to each neuron in the
network. The form of the error is the same as for fully connected neural nets, but
now it is a function of x and y instead of j:

	 dx y
x y

E
z,

,

()
()




= ∂
∂

	 (13-95)

As in Section 13.5, we want to relate this quantity to dxy(), + 1 which we again do
using the chain rule:

	 dx y
x y uu

u

x y

E
z

E
z

z

z,
, ,

,

,

()
() ()

()

()


 



= ∂

∂
= ∂

∂ +
∂ +

∂∑∑
vv

v

1

1
	 (13-96)

DIP4E_Print_Ready.indb 1120 4/2/2017 9:03:26 PM

1126 Chapter 13 Image Pattern Classification

significant variability in the characters—and this is just a small sampling of the 70,000 characters avail-
able for experimentation.

Figure 13.49 shows the architecture of the CNN we trained to recognize the ten digits in the MNIST
database. We trained the system for 200 epochs using a = 1 0. . Figure 13.50 shows the training MSE as a
function of epoch for the 60,000 training images in the MNIST database.

Training was done using mini batches of 50 images at a time to improve the learning rate (see the dis-
cussion in Section 13.7). We also classified all images of the training set and all images of the test set after
each epoch of training. The objective of doing this was to see how quickly the system was learning the
characteristics of the data. Figure 13.51 shows the results. A high level of correct recognition performance
was achieved after relatively few epochs for both data sets, with approximately 98% correct recognition
achieved after about 40 epochs. This is consistent with the training MSE in Fig. 13.50, which dropped
quickly, then began a slow descent after about 40 epochs. Another 160 epochs of training were required
for the system to achieve recognition of about 99.9%. These are impressive results for such a small CNN.

6 feature maps
of size 24 � 24

6 pooled
feature
maps of

size 12 � 12
Image of size 28 � 28

12
feature
maps of

size 8 � 8

12
pooled
feature

maps of
size 4 � 4 Fully connected

two-layer neural net

10
output

 neurons

V
ec

to
ri

za
ti

on

192 input neurons

FIGURE 13.49 CNN used to recognize the ten digits in the MNIST database. The system was trained with 60,000
numerical character images of the same size as the image shown on the left. This architecture is the same as the
architecture we used in Fig. 13.42. (Image courtesy of NIST.)

FIGURE 13.48
Samples
similar to those
available in the
NIST and MNIST
databases. Each
character
subimage is
of size 28 28×
pixels.(Individual
images courtesy
of NIST.)

DIP4E_Print_Ready.indb 1126 4/2/2017 9:03:33 PM

13.6 Deep Convolutional Neural Networks 1129

FIGURE 13.54 Kernels of the second layer after 200 epochs of training, displayed as images of size 5 5× . There are six
inputs (pooled feature maps) into the second layer. Because there are twelve feature maps in the second layer, the
CNN learned the weights of 6 12 72× = kernels.

FIGURE 13.53
Kernels of the
first layer after
200 epochs of
training, shown as
images.

FIGURE 13.55
Results of a for-
ward pass for one
digit image through
the CNN in Fig.
13.49 after training.
The feature maps
were generated
using the kernels
from Figs. 13.53 and
13.54, followed by
pooling. The neural
net is the two-layer
neural network
from Fig. 13.49. The
output high value
(in white) indicates
that the CNN rec-
ognized the input
properly. (This
figure is the same
as Fig. 13.44.)

0

1

2

3

4

5

6

7

8

9

Feature
maps

Pooled
feature
maps

Neural
net

Feature
maps

Pooled
feature
maps

V
ec

to
r

DIP4E_Print_Ready.indb 1129 4/2/2017 9:03:34 PM

1130 Chapter 13 Image Pattern Classification

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

FIGURE 13.56
Mini images
of size 32 32×
pixels,
representative of
the 50,000
training and
10,000 test images
in the CIFAR-10
database (the 10
stands for ten
classes). The class
names are shown
on the right.
(Images courtesy
of Pearson
Education.)

0 100 200 300 400 500
0.20

0.25

0.30

0.35

0.40

0.45

Epoch

Tr
ai

ni
ng

 M
SE

FIGURE 13.57
Training mean
squared error
as a function of
the number of
epochs for a train-
ing set of 50,000
CIFAR-10 images.

DIP4E_Print_Ready.indb 1130 4/2/2017 9:03:35 PM

 Problems 1139

in the second layer is 6, and that the size of
the pooling neighborhoods is again 2 2× .
What are the dimensions of the vectors that
result from vectorizing the last layer of the
CNN? Assume that vectorization is done
using linear indexing.

13.31	 Suppose the input images to a CNN are padded
to compensate for the size reduction caused by
convolution and subsampling (pooling). Let P
denote the thickness of the padding border, let V
denote the width of the (square) input images, let
S denote the stride, and let F denote the width of
the (square) receptive field.

(a)	 Show that the number, N, of neurons in
each row in the resulting feature map is

	 N
V P F

S
= + − +2

1

(b) *	How would you interpret a result using this
equation that is not an integer?

13.32 *	Show the validity of Eq. (13-106).

13.33	 An experiment produces binary images of blobs
that are nearly elliptical in shape, as the following
example image shows. The blobs are of three siz-
es, with the average values of the principal axes
of the ellipses being (1.3, 0.7), (1.0, 0.5), and (0.75,
0.25). The dimensions of these axes vary ±10%
about their average values.

Develop an image processing system capable of
rejecting incomplete or overlapping ellipses, then
classifying the remaining single ellipses into one
of the three given size classes. Show your solu-
tion in block diagram form, giving specific details
regarding the operation of each block. Solve the
classification problem using a minimum distance
classifier, indicating clearly how you would go
about obtaining training samples, and how you
would use these samples to train the classifier.

13.34	 A factory mass-produces small American flags
for sporting events. The quality assurance team
has observed that, during periods of peak pro-
duction, some printing machines have a tendency
to drop (randomly) between one and three stars
and one or two entire stripes. Aside from these
errors, the flags are perfect in every other way.
Although the flags containing errors represent a
small percentage of total production, the plant
manager decides to solve the problem. After
much investigation, she concludes that automatic
inspection using image processing techniques is
the most economical approach. The basic specifi-
cations are as follows: The flags are approximate-
ly 7.5 cm by 12.5 cm in size. They move length-
wise down the production line (individually, but
with a ±15% variation in orientation) at approxi-
mately 50 cm/s, with a separation between flags of
approximately 5 cm. In all cases, “approximately”
means ± 5%. The plant manager employs you to
design an image processing system for each pro-
duction line. You are told that cost and simplicity
are important parameters in determining the via-
bility of your approach. Design a complete sys-
tem based on the model of Fig. 1.23. Document
your solution (including assumptions and speci-
fications) in a brief (but clear) written report
addressed to the plant manager. You can use any
of the methods discussed in the book.

Projects
MATLAB solutions to the projects marked with an asterisk (*) are in the DIP4E Student Support Package (consult
the book website: www.ImageProcessingPlace.com).

13.1	 Minimum-distance classifier.

(a)	 Write a function minDistClass4e that imple-
ments the minimum-distance classifier dis-
cussed in Section 13.3. Your function should

have two modes of operation: 'train', in which
the function computes the mean (prototype)
vector of each class using a set of training
patterns, and 'classify', in which the function

DIP4E_Print_Ready.indb 1139 4/2/2017 9:03:45 PM

