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Preface
When something can be read without effort, great effort has gone into its writing.

Enrique Jardiel Poncela

This edition of Digital Image Processing is a major revision of the book. As in 
the 1977 and 1987 editions by Gonzalez and Wintz, and the 1992, 2002, and 2008  
editions by Gonzalez and Woods, this sixth-generation edition was prepared 
with students and instructors in mind. The principal objectives of the book 
continue to be to provide an introduction to basic concepts and methodologies 
applicable to digital image processing, and to develop a foundation that can 
be used as the basis for further study and research in this field. To achieve 
these objectives, we focused again on material that we believe is fundamental 
and whose scope of application is not limited to the solution of specialized 
problems. The mathematical complexity of the book remains at a level well 
within the grasp of college seniors and first-year graduate students who have 
introductory preparation in mathematical analysis, vectors, matrices, probability, 
statistics, linear systems, and computer programming. The book website pro-
vides tutorials to support readers needing a review of this background material.  

One of the principal reasons this book has been the world leader in its field for 
40 years is the level of attention we pay to the changing educational needs of our 
readers. The present edition is based on an extensive survey that involved faculty, 
students, and independent readers of the book in 150 institutions from 30 countries. 
The survey revealed a need for coverage of new material that has matured since the 
last edition of the book. The principal findings of the survey indicated a need for: 

•  New material related to histogram matching.
•  Expanded coverage of the fundamentals of spatial filtering.
•  A more comprehensive and cohesive coverage of image transforms.
•  A more complete presentation of finite differences, with a focus on edge detec-

tion.
•  A discussion of clustering, superpixels, and their use in region segmentation. 
•  New material on active contours that includes snakes and level sets, and their 

use in image segmentation.
•  Coverage of maximally stable extremal regions.
•  Expanded coverage of feature extraction to include the Scale Invariant Feature 

Transform (SIFT).
•  Expanded coverage of neural networks to include deep neural networks, back-

propagation, deep learning, and, especially, deep convolutional neural networks. 
•  More homework problems at the end of the chapters.
•  MATLAB computer projects.

The new and reorganized material that resulted in the present edition is our 
attempt at providing a reasonable balance between rigor, clarity of presentation, 
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x    Preface

and the findings of the survey. In addition to new material, earlier portions of the 
text were updated and clarified. This edition contains 425 new images, 135 new draw-
ings, and 220 new exercises. For the first time, we have included MATLAB projects 
at the end of every chapter. In total there are 120 new MATLAB projects that cover 
a broad range of the material in the book. Although the solutions we provide are 
in MATLAB, the projects themselves are written in such a way that they can be 
implemented in other languages. Projects are an important addition because they 
will allow students to experiment with material they learn in the classroom. A large 
database of digital images is provided for this purpose.

New to This Edition
The highlights of this edition are as follows.

Chapter 1: Some figures were updated, and parts of the text were rewritten to cor-
respond to changes in later chapters.

Chapter 2: Many of the sections and examples were rewritten for clarity. We added 
a new section dealing with random numbers and probability, with an emphasis on 
their application to image processing. We included 12 new examples, 31 new images, 
22 new drawings, 32 new exercises, and 10 new MATLAB projects.

Chapter 3: Major revisions of the topics in this chapter include a new section on 
exact histogram matching. Fundamental concepts of spatial filtering were rewritten 
to include a discussion on separable filter kernels, expanded coverage of the prop-
erties of lowpass Gaussian kernels, and expanded coverage of highpass, bandreject, 
and bandpass filters, including numerous new examples that illustrate their use. In 
addition to revisions in the text, including 6 new examples, the chapter has 67 new 
images, 18 new line drawings, 31 new exercises, and 10 new MATLAB projects.

Chapter 4: Several of the sections of this chapter were revised to improve the clar-
ity of presentation. We replaced dated graphical material with 35 new images and 4 
new line drawings. We added 25 new exercises and 10 new MATLAB projects.	

Chapter 5: Revisions to this chapter were limited to clarifications and a few cor-
rections in notation. We added 6 new images, 17 new exercises, and 10 new MAT-
LAB projects. 

Chapter 6: This is a new chapter that brings together wavelets, several new trans-
forms, and many of the image transforms that were scattered throughout the book. 
The emphasis of this new chapter is on the presentation of these transforms from a 
unified point of view.  We added 24 new images, 20 new drawings, 25 new exercises 
and 10 new MATLAB projects. 

Chapter 7: The material dealing with color image processing was moved to this 
chapter. Several sections were clarified, and the explanation of the CMY and CMYK 
color models was expanded. We added 2 new images and 10 new MATLAB projects.

Chapter 8: In addition to numerous clarifications and minor improvements to the 
presentation, we added 10 new MATLAB projects to this chapter.   
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Chapter 9: Revisions of this chapter included a complete rewrite of several sec-
tions, including redrafting of several line drawings. We added 18 new exercises and 
10 new MATLAB projects.

Chapter 10: Several of the sections were rewritten for clarity. We updated the 
chapter by adding coverage of finite differences, K-means clustering, superpixels, 
and graph cuts. The new topics are illustrated with 4 new examples. In total, we 
added 31 new images, 3 new drawings, 8 new exercises, and 10 new MATLAB proj-
ects.

Chapter 11: This is a new chapter dealing with active contours for image segmen-
tation, including snakes and level sets. An important feature in this chapter is that 
it presents a derivation of the fundamental snake equation. Similarly, we provide a 
derivation of the level set equation. Both equations are derived starting from basic 
principles, and the methods are illustrated with numerous examples. The strategy 
when we prepared this chapter was to bring this material to a level that could be 
understood by beginners in our field. To that end, we complemented the text mate-
rial with 17 new examples, 141 new images, 19 new drawings, 37 new problems, and 
10 new MATLAB projects. 

Chapter 12: This is the chapter on feature extraction, which was moved from its 
11th position in the previous edition. The chapter was updated with numerous top-
ics, beginning with a more detailed classification of feature types and their uses. In 
addition to improvements in the clarity of presentation, we added coverage of slope 
change codes, expanded the explanation of skeletons, medial axes, and the distance 
transform, and added several new basic descriptors of compactness, circularity, and 
eccentricity. New material includes coverage of the Harris-Stephens corner detec-
tor, and a presentation of maximally stable extremal regions. A major addition to 
the chapter is a comprehensive discussion dealing with the Scale-Invariant Feature 
Transform (SIFT). The new material is complemented by 65 new images, 15 new 
drawings, 4 new examples, and 15 new exercises. We also added 10 new MATLAB 
projects.

Chapter 13: This is the image pattern classification chapter that was Chapter 12 in 
the previous edition. This chapter underwent a major revision to include an exten-
sive rewrite of neural networks and deep learning, an area that has grown signifi-
cantly since the last edition of the book. We added a comprehensive discussion on 
fully connected, deep neural networks that includes derivation of backpropagation 
starting from basic principles. The equations of backpropagation were expressed in 

“traditional” scalar terms, and then generalized into a compact set of matrix equa-
tions ideally suited for implementation of deep neural nets. The effectiveness of fully 
connected networks was demonstrated with several examples that included a com-
parison with the Bayes classifier. One of the most-requested topics in the survey was 
coverage of deep convolutional neural networks. We added an extensive section 
on this, following the same blueprint we used for deep, fully connected nets. That is, 
we derived the equations of backpropagation for convolutional nets, and showed 
how they are different from “traditional” backpropagation. We then illustrated the 
use of convolutional networks with simple images, and applied them to large image 
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databases of numerals and natural scenes.  The written material is complemented 
by 23 new images, 28 new drawings, and 12 new exercises. We also included 10 new 
MATLAB projects.

Also for the first time, we have created student and faculty support packages that 
can be downloaded from the book website. The Student Support Package contains 
all the original images in the book, answers to selected exercises, detailed answers 
(including MATLAB code) to selected MATLAB projects, and instructions for 
using a set of utility functions that complement the projects. The Faculty Support 
Package contains solutions to all exercises and projects, teaching suggestions, and all 
the art in the book in the form of modifiable PowerPoint slides. One support pack-
age is made available with every new book, free of charge.

MATLAB projects are structured in a unique way that gives instructors significant 
flexibility in how projects are assigned. The MATLAB functions required to solve 
all the projects in the book are provided in executable, p-code format. These func-
tions run just like the original functions, but the source code is not visible, and the 
files cannot be modified. The availability of these functions as a complete package 
makes it possible for projects to be assigned solely for the purpose of experiment-
ing with image processing concepts, without having to write a single line of code. In 
other words, the complete set of MATLAB functions is available as a stand-alone 
p-code toolbox, ready to use without further development. When instructors elect 
to assign projects that involve MATLAB code development, we provide students 
enough answers to form a good base that they can expand, thus gaining experience 
with developing software solutions to image processing problems.  Instructors have 
access to detailed answers to all projects.  

The book website, established during the launch of the 2002 edition, continues to 
be a success, attracting more than 25,000 visitors each month. The site was upgraded 
for the launch of this edition. For more details on site features and content, see The 
Book Website, following the Acknowledgments section.

This edition of Digital Image Processing is a reflection of how the educational 
needs of our readers have changed since 2008. As is usual in an endeavor such as 
this, progress in the field continues after work on the manuscript stops. One of the 
reasons why this book has been so well accepted since it first appeared in 1977 is its 
continued emphasis on fundamental concepts that retain their relevance over time. 
This approach, among other things, attempts to provide a measure of stability in a 
rapidly evolving body of knowledge. We have tried to follow the same principle in 
preparing this edition of the book.

R.C.G.
R.E.W.
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Digital Image Processing is a completely self-contained book. However, the compan-
ion website offers additional support in a number of important areas.

For the Student or Independent Reader the site contains
•  Reviews in areas such as probability, statistics, vectors, and matrices.
•  A Tutorials section containing dozens of tutorials on topics relevant to the mate-

rial in the book.
•  An image database containing all the images in the book, as well as many other 

image databases.

For the Instructor the site contains
•  An Instructor’s Manual with complete solutions to all the problems and MAT-

LAB projects in the book, as well as course and laboratory teaching guidelines. 
The manual is available free of charge to instructors who have adopted the book 
for classroom use.

•  Classroom presentation materials in PowerPoint format.
•  Material removed from previous editions, downloadable in convenient PDF 

format.
•  Numerous links to other educational resources.

For the Practitioner the site contains additional specialized topics such as
•  Links to commercial sites.
•  Selected new references.
•  Links to commercial image databases.

The website is an ideal tool for keeping the book current between editions by includ-
ing new topics, digital images, and other relevant material that has appeared after 
the book was published. Although considerable care was taken in the production 
of the book, the website is also a convenient repository for any errors discovered 
between printings. 

The DIP4E Support Packages
In this edition, we created support packages for students and faculty to organize all 
the classroom support materials available for the new edition of the book into one 
easy download. The Student Support Package contains all the original images in the 
book, answers to selected exercises, detailed answers (including MATLAB code) 
to selected MATLAB projects, and instructions for using a set of utility functions 
that complement the projects. The Faculty Support Package contains solutions to all 
exercises and projects, teaching suggestions, and all the art in the book in modifiable 
PowerPoint slides. One support package is made available with every new book, free 
of charge. Applications for the support packages are submitted at the book website.
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1

1 Introduction

One picture is worth more than ten thousand words.
Anonymous

Preview
Interest in digital image processing methods stems from two principal application areas: improvement 
of pictorial information for human interpretation, and processing of image data for tasks such as storage, 
transmission, and extraction of pictorial information. This chapter has several objectives: (1) to define 
the scope of the field that we call image processing; (2) to give a historical perspective of the origins of 
this field; (3) to present an overview of the state of the art in image processing by examining some of 
the principal areas in which it is applied; (4) to discuss briefly the principal approaches used in digital 
image processing; (5) to give an overview of the components contained in a typical, general-purpose 
image processing system; and (6) to provide direction to the literature where image processing work is 
reported. The material in this chapter is extensively illustrated with a range of images that are represen-
tative of the images we will be using throughout the book.

Upon completion of this chapter, readers should:

	 Understand the concept of a digital image.

	 Have a broad overview of the historical under-
pinnings of the field of digital image process-
ing.

	 Understand the definition and scope of digi-
tal image processing.

	 Know the fundamentals of the electromag-
netic spectrum and its relationship to image 
generation.

	 Be aware of the different fields in which digi-
tal image processing methods are applied.

	 Be familiar with the basic processes involved 
in image processing.

	 Be familiar with the components that make 
up a general-purpose digital image process-
ing system.

	 Be familiar with the scope of the literature 
where image processing work is reported.
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1.1	 WHAT IS DIGITAL IMAGE PROCESSING?  

An image may be defined as a two-dimensional function, f x y( , ), where x and y are 
spatial (plane) coordinates, and the amplitude of f at any pair of coordinates ( , )x y  
is called the intensity or gray level of the image at that point. When x, y, and the 
intensity values of f are all finite, discrete quantities, we call the image a digital image. 
The field of digital image processing refers to processing digital images by means of 
a digital computer. Note that a digital image is composed of a finite number of ele-
ments, each of which has a particular location and value. These elements are called 
picture elements, image elements, pels, and pixels. Pixel is the term used most widely 
to denote the elements of a digital image. We will consider these definitions in more 
formal terms in Chapter 2.

Vision is the most advanced of our senses, so it is not surprising that images 
play the single most important role in human perception. However, unlike humans, 
who are limited to the visual band of the electromagnetic (EM) spectrum, imaging 
machines cover almost the entire EM spectrum, ranging from gamma to radio waves. 
They can operate on images generated by sources that humans are not accustomed 
to associating with images. These include ultrasound, electron microscopy, and com-
puter-generated images. Thus, digital image processing encompasses a wide and var-
ied field of applications.

There is no general agreement among authors regarding where image process-
ing stops and other related areas, such as image analysis and computer vision, start. 
Sometimes, a distinction is made by defining image processing as a discipline in 
which both the input and output of a process are images. We believe this to be a 
limiting and somewhat artificial boundary. For example, under this definition, even 
the trivial task of computing the average intensity of an image (which yields a sin-
gle number) would not be considered an image processing operation. On the other 
hand, there are fields such as computer vision whose ultimate goal is to use comput-
ers to emulate human vision, including learning and being able to make inferences 
and take actions based on visual inputs. This area itself is a branch of artificial intel-
ligence (AI) whose objective is to emulate human intelligence. The field of AI is in its 
earliest stages of infancy in terms of development, with progress having been much 
slower than originally anticipated. The area of image analysis (also called image 
understanding) is in between image processing and computer vision.

There are no clear-cut boundaries in the continuum from image processing at 
one end to computer vision at the other. However, one useful paradigm is to con-
sider three types of computerized processes in this continuum: low-, mid-, and high-
level processes. Low-level processes involve primitive operations such as image 
preprocessing to reduce noise, contrast enhancement, and image sharpening. A low-
level process is characterized by the fact that both its inputs and outputs are images. 
Mid-level processing of images involves tasks such as segmentation (partitioning 
an image into regions or objects), description of those objects to reduce them to a 
form suitable for computer processing, and classification (recognition) of individual 
objects. A mid-level process is characterized by the fact that its inputs generally 
are images, but its outputs are attributes extracted from those images (e.g., edges, 
contours, and the identity of individual objects). Finally, higher-level processing 
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1.2  The Origins of Digital Image Processing    3

involves “making sense” of an ensemble of recognized objects, as in image analysis, 
and, at the far end of the continuum, performing the cognitive functions normally 
associated with human vision.

Based on the preceding comments, we see that a logical place of overlap between 
image processing and image analysis is the area of recognition of individual regions 
or objects in an image. Thus, what we call in this book digital image processing encom-
passes processes whose inputs and outputs are images and, in addition, includes pro-
cesses that extract attributes from images up to, and including, the recognition of 
individual objects. As an illustration to clarify these concepts, consider the area of 
automated analysis of text. The processes of acquiring an image of the area con-
taining the text, preprocessing that image, extracting (segmenting) the individual 
characters, describing the characters in a form suitable for computer processing, and 
recognizing those individual characters are in the scope of what we call digital image 
processing in this book. Making sense of the content of the page may be viewed as 
being in the domain of image analysis and even computer vision, depending on the 
level of complexity implied by the statement “making sense of.” As will become 
evident shortly, digital image processing, as we have defined it, is used routinely in a 
broad range of areas of exceptional social and economic value. The concepts devel-
oped in the following chapters are the foundation for the methods used in those 
application areas.

1.2	THE ORIGINS OF DIGITAL IMAGE PROCESSING  

One of the earliest applications of digital images was in the newspaper industry, 
when pictures were first sent by submarine cable between London and New York. 
Introduction of the Bartlane cable picture transmission system in the early 1920s 
reduced the time required to transport a picture across the Atlantic from more than 
a week to less than three hours. Specialized printing equipment coded pictures for 
cable transmission, then reconstructed them at the receiving end. Figure 1.1 was 
transmitted in this way and reproduced on a telegraph printer fitted with typefaces 
simulating a halftone pattern. 

Some of the initial problems in improving the visual quality of these early digital 
pictures were related to the selection of printing procedures and the distribution of 

1.2

FIGURE 1.1  A digital picture produced in 1921 from a coded tape by a telegraph printer with 
special typefaces. (McFarlane.) [References in the bibliography at the end of the book are 
listed in alphabetical order by authors’ last names.]
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4    Chapter 1  Introduction

intensity levels. The printing method used to obtain Fig. 1.1 was abandoned toward 
the end of 1921 in favor of a technique based on photographic reproduction made 
from tapes perforated at the telegraph receiving terminal. Figure 1.2 shows an image 
obtained using this method. The improvements over Fig. 1.1 are evident, both in 
tonal quality and in resolution.

The early Bartlane systems were capable of coding images in five distinct levels 
of gray. This capability was increased to 15 levels in 1929. Figure 1.3 is typical of the 
type of images that could be obtained using the 15-tone equipment. During this 
period, introduction of a system for developing a film plate via light beams that were 
modulated by the coded picture tape improved the reproduction process consider-
ably.

Although the examples just cited involve digital images, they are not considered 
digital image processing results in the context of our definition, because digital com-
puters were not used in their creation. Thus, the history of digital image processing 
is intimately tied to the development of the digital computer. In fact, digital images 
require so much storage and computational power that progress in the field of digi-
tal image processing has been dependent on the development of digital computers 
and of supporting technologies that include data storage, display, and transmission.

FIGURE 1.2
A digital picture 
made in 1922 
from a tape 
punched after 
the signals had 
crossed the  
Atlantic twice. 
(McFarlane.)

FIGURE 1.3
Unretouched 
cable picture of 
Generals Pershing 
(right) and Foch,  
transmitted in 
1929 from  
London to New 
York by 15-tone 
equipment. 
(McFarlane.)
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1.2  The Origins of Digital Image Processing    5

The concept of a computer dates back to the invention of the abacus in Asia 
Minor, more than 5000 years ago. More recently, there have been developments 
in the past two centuries that are the foundation of what we call a computer today. 
However, the basis for what we call a modern digital computer dates back to only 
the 1940s, with the introduction by John von Neumann of two key concepts: (1) a 
memory to hold a stored program and data, and (2) conditional branching. These 
two ideas are the foundation of a central processing unit (CPU), which is at the heart 
of computers today. Starting with von Neumann, there were a series of key advanc-
es that led to computers powerful enough to be used for digital image processing. 
Briefly, these advances may be summarized as follows: (1) the invention of the tran-
sistor at Bell Laboratories in 1948; (2) the development in the 1950s and 1960s of 
the high-level programming languages COBOL (Common Business-Oriented Lan-
guage) and FORTRAN (Formula Translator); (3) the invention of the integrated 
circuit (IC) at Texas Instruments in 1958; (4) the development of operating systems 
in the early 1960s; (5) the development of the microprocessor (a single chip consist-
ing of a CPU, memory, and input and output controls) by Intel in the early 1970s; 
(6) the introduction by IBM of the personal computer in 1981; and (7) progressive 
miniaturization of components, starting with large-scale integration (LI) in the late 
1970s, then very-large-scale integration (VLSI) in the 1980s, to the present use of 
ultra-large-scale integration (ULSI) and experimental nonotechnologies. Concur-
rent with these advances were developments in the areas of mass storage and display 
systems, both of which are fundamental requirements for digital image processing.

The first computers powerful enough to carry out meaningful image processing 
tasks appeared in the early 1960s. The birth of what we call digital image processing 
today can be traced to the availability of those machines, and to the onset of the 
space program during that period. It took the combination of those two develop-
ments to bring into focus the potential of digital image processing for solving prob-
lems of practical significance. Work on using computer techniques for improving 
images from a space probe began at the Jet Propulsion Laboratory (Pasadena, Cali-
fornia) in 1964, when pictures of the moon transmitted by Ranger 7 were processed 
by a computer to correct various types of image distortion inherent in the on-board 
television camera. Figure 1.4 shows the first image of the moon taken by Ranger 
7 on July 31, 1964 at 9:09 A.M. Eastern Daylight Time (EDT), about 17 minutes 
before impacting the lunar surface (the markers, called reseau marks, are used for 
geometric corrections, as discussed in Chapter 2).This also is the first image of the 
moon taken by a U.S. spacecraft. The imaging lessons learned with Ranger 7 served 
as the basis for improved methods used to enhance and restore images from the Sur-
veyor missions to the moon, the Mariner series of flyby missions to Mars, the Apollo 
manned flights to the moon, and others.

In parallel with space applications, digital image processing techniques began in 
the late 1960s and early 1970s to be used in medical imaging, remote Earth resourc-
es observations, and astronomy. The invention in the early 1970s of computerized 
axial tomography (CAT), also called computerized tomography (CT) for short, is 
one of the most important events in the application of image processing in medical 
diagnosis. Computerized axial tomography is a process in which a ring of detectors 
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6    Chapter 1  Introduction

encircles an object (or patient) and an X-ray source, concentric with the detector 
ring, rotates about the object. The X-rays pass through the object and are collected 
at the opposite end by the corresponding detectors in the ring. This procedure is 
repeated the source rotates. Tomography consists of algorithms that use the sensed 
data to construct an image that represents a “slice” through the object. Motion of 
the object in a direction perpendicular to the ring of detectors produces a set of 
such slices, which constitute a three-dimensional (3-D) rendition of the inside of the 
object. Tomography was invented independently by Sir Godfrey N. Hounsfield and 
Professor Allan M. Cormack, who shared the 1979 Nobel Prize in Medicine for their 
invention. It is interesting to note that X-rays were discovered in 1895 by Wilhelm 
Conrad Roentgen, for which he received the 1901 Nobel Prize for Physics. These two 
inventions, nearly 100 years apart, led to some of the most important applications of 
image processing today.

From the 1960s until the present, the field of image processing has grown vigor-
ously. In addition to applications in medicine and the space program, digital image 
processing techniques are now used in a broad range of applications. Computer pro-
cedures are used to enhance the contrast or code the intensity levels into color for 
easier interpretation of X-rays and other images used in industry, medicine, and the 
biological sciences. Geographers use the same or similar techniques to study pollu-
tion patterns from aerial and satellite imagery. Image enhancement and restoration 
procedures are used to process degraded images of unrecoverable objects, or experi-
mental results too expensive to duplicate. In archeology, image processing meth-
ods have successfully restored blurred pictures that were the only available records 
of rare artifacts lost or damaged after being photographed. In physics and related 
fields, computer techniques routinely enhance images of experiments in areas such 
as high-energy plasmas and electron microscopy. Similarly successful applications 
of image processing concepts can be found in astronomy, biology, nuclear medicine, 
law enforcement, defense, and industry.

FIGURE 1.4
The first picture 
of the moon by 
a U.S. spacecraft. 
Ranger 7 took 
this image on 
July 31, 1964 at 
9:09 A.M. EDT, 
about 17 minutes 
before impacting 
the lunar surface. 
(Courtesy of 
NASA.) 
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1.3  Examples of Fields that Use Digital Image Processing    7

These examples illustrate processing results intended for human interpretation. 
The second major area of application of digital image processing techniques men-
tioned at the beginning of this chapter is in solving problems dealing with machine 
perception. In this case, interest is on procedures for extracting information from 
an image, in a form suitable for computer processing. Often, this information bears 
little resemblance to visual features that humans use in interpreting the content 
of an image. Examples of the type of information used in machine perception are 
statistical moments, Fourier transform coefficients, and multidimensional distance 
measures. Typical problems in machine perception that routinely utilize image pro-
cessing techniques are automatic character recognition, industrial machine vision 
for product assembly and inspection, military recognizance, automatic processing of 
fingerprints, screening of X-rays and blood samples, and machine processing of aer-
ial and satellite imagery for weather prediction and environmental assessment. The 
continuing decline in the ratio of computer price to performance, and the expansion 
of networking and communication bandwidth via the internet, have created unprec-
edented opportunities for continued growth of digital image processing. Some of 
these application areas will be illustrated in the following section.

1.3	EXAMPLES OF FIELDS THAT USE DIGITAL IMAGE PROCESSING  

Today, there is almost no area of technical endeavor that is not impacted in some 
way by digital image processing. We can cover only a few of these applications in the 
context and space of the current discussion. However, limited as it is, the material 
presented in this section will leave no doubt in your mind regarding the breadth and 
importance of digital image processing. We show in this section numerous areas of 
application, each of which routinely utilizes the digital image processing techniques 
developed in the following chapters. Many of the images shown in this section are 
used later in one or more of the examples given in the book. Most images shown are 
digital images. 

The areas of application of digital image processing are so varied that some form 
of organization is desirable in attempting to capture the breadth of this field. One 
of the simplest ways to develop a basic understanding of the extent of image pro-
cessing applications is to categorize images according to their source (e.g., X-ray, 
visual, infrared, and so on).The principal energy source for images in use today is 
the electromagnetic energy spectrum. Other important sources of energy include 
acoustic, ultrasonic, and electronic (in the form of electron beams used in electron 
microscopy). Synthetic images, used for modeling and visualization, are generated 
by computer. In this section we will discuss briefly how images are generated in 
these various categories, and the areas in which they are applied. Methods for con-
verting images into digital form will be discussed in the next chapter.

Images based on radiation from the EM spectrum are the most familiar, espe-
cially images in the X-ray and visual bands of the spectrum. Electromagnetic waves 
can be conceptualized as propagating sinusoidal waves of varying wavelengths, or 
they can be thought of as a stream of massless particles, each traveling in a wavelike 
pattern and moving at the speed of light. Each massless particle contains a certain 
amount (or bundle) of energy. Each bundle of energy is called a photon. If spectral 
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8    Chapter 1  Introduction

bands are grouped according to energy per photon, we obtain the spectrum shown 
in Fig. 1.5, ranging from gamma rays (highest energy) at one end to radio waves 
(lowest energy) at the other. The bands are shown shaded to convey the fact that 
bands of the EM spectrum are not distinct, but rather transition smoothly from one 
to the other.

GAMMA-RAY IMAGING

Major uses of imaging based on gamma rays include nuclear medicine and astro-
nomical observations. In nuclear medicine, the approach is to inject a patient with a 
radioactive isotope that emits gamma rays as it decays. Images are produced from 
the emissions collected by gamma-ray detectors. Figure 1.6(a) shows an image of a 
complete bone scan obtained by using gamma-ray imaging. Images of this sort are 
used to locate sites of bone pathology, such as infections or tumors. Figure 1.6(b) 
shows another major modality of nuclear imaging called positron emission tomogra-
phy (PET). The principle is the same as with X-ray tomography, mentioned briefly 
in Section 1.2. However, instead of using an external source of X-ray energy, the 
patient is given a radioactive isotope that emits positrons as it decays. When a pos-
itron meets an electron, both are annihilated and two gamma rays are given off. 
These are detected and a tomographic image is created using the basic principles of 
tomography. The image shown in Fig. 1.6(b) is one sample of a sequence that con-
stitutes a 3-D rendition of the patient. This image shows a tumor in the brain and 
another in the lung, easily visible as small white masses.

A star in the constellation of Cygnus exploded about 15,000 years ago, generat-
ing a superheated, stationary gas cloud (known as the Cygnus Loop) that glows in 
a spectacular array of colors. Figure 1.6(c) shows an image of the Cygnus Loop in 
the gamma-ray band. Unlike the two examples in Figs. 1.6(a) and (b), this image was 
obtained using the natural radiation of the object being imaged. Finally, Fig. 1.6(d) 
shows an image of gamma radiation from a valve in a nuclear reactor. An area of 
strong radiation is seen in the lower left side of the image.

X-RAY IMAGING

X-rays are among the oldest sources of EM radiation used for imaging. The best 
known use of X-rays is medical diagnostics, but they are also used extensively in 
industry and other areas, such as astronomy. X-rays for medical and industrial imag-
ing are generated using an X-ray tube, which is a vacuum tube with a cathode and 
anode. The cathode is heated, causing free electrons to be released. These electrons 
flow at high speed to the positively charged anode. When the electrons strike a 
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FIGURE 1.5  The electromagnetic spectrum arranged according to energy per photon.
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1.3  Examples of Fields that Use Digital Image Processing    9

nucleus, energy is released in the form of X-ray radiation. The energy (penetrat-
ing power) of X-rays is controlled by a voltage applied across the anode, and by a 
current applied to the filament in the cathode. Figure 1.7(a) shows a familiar chest 
X-ray generated simply by placing the patient between an X-ray source and a film 
sensitive to X-ray energy. The intensity of the X-rays is modified by absorption as 
they pass through the patient, and the resulting energy falling on the film develops it, 
much in the same way that light develops photographic film. In digital radiography, 
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FIGURE 1.6
Examples of 
gamma-ray  
imaging.  
(a) Bone scan.  
(b) PET image. 
(c) Cygnus Loop. 
(d) Gamma radia-
tion (bright spot) 
from a reactor 
valve.  
(Images  
courtesy of  
(a) G.E. Medical 
Systems; (b) Dr. 
Michael E. Casey, 
CTI PET Systems; 
(c) NASA;  
(d) Professors 
Zhong He and 
David K. Wehe,  
University of 
Michigan.) 
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digital images are obtained by one of two methods: (1) by digitizing X-ray films; or; 
(2) by having the X-rays that pass through the patient fall directly onto devices (such 
as a phosphor screen) that convert X-rays to light. The light signal in turn is captured 
by a light-sensitive digitizing system. We will discuss digitization in more detail in 
Chapters 2 and 4.

b

a d
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FIGURE 1.7
Examples of 
X-ray imaging.  
(a) Chest X-ray. 
(b) Aortic  
angiogram.  
(c) Head CT.  
(d) Circuit boards. 
(e) Cygnus Loop. 
(Images courtesy 
of (a) and (c) Dr. 
David R. Pickens, 
Dept. of  
Radiology & 
Radiological  
Sciences,  
Vanderbilt  
University  
Medical Center; 
(b) Dr. Thomas 
R. Gest, Division 
of Anatomical 
Sciences, Univ. of 
Michigan Medical 
School;  
(d) Mr. Joseph 
E. Pascente, Lixi, 
Inc.; and  
(e) NASA.) 
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Angiography is another major application in an area called contrast enhancement 
radiography. This procedure is used to obtain images of blood vessels, called angio-
grams. A catheter (a small, flexible, hollow tube) is inserted, for example, into an 
artery or vein in the groin. The catheter is threaded into the blood vessel and guided 
to the area to be studied. When the catheter reaches the site under investigation, 
an X-ray contrast medium is injected through the tube. This enhances the contrast 
of the blood vessels and enables a radiologist to see any irregularities or blockages. 
Figure 1.7(b) shows an example of an aortic angiogram. The catheter can be seen 
being inserted into the large blood vessel on the lower left of the picture. Note the 
high contrast of the large vessel as the contrast medium flows up in the direction of 
the kidneys, which are also visible in the image. As we will discuss further in Chapter 2, 
angiography is a major area of digital image processing, where image subtraction is 
used to further enhance the blood vessels being studied.

Another important use of X-rays in medical imaging is computerized axial tomog-
raphy (CAT). Due to their resolution and 3-D capabilities, CAT scans revolution-
ized medicine from the moment they first became available in the early 1970s. As 
noted in Section 1.2, each CAT image is a “slice” taken perpendicularly through 
the patient. Numerous slices are generated as the patient is moved in a longitudinal 
direction. The ensemble of such images constitutes a 3-D rendition of the inside of 
the body, with the longitudinal resolution being proportional to the number of slice 
images taken. Figure 1.7(c) shows a typical CAT slice image of a human head.

Techniques similar to the ones just discussed, but generally involving higher 
energy X-rays, are applicable in industrial processes. Figure 1.7(d) shows an X-ray 
image of an electronic circuit board. Such images, representative of literally hundreds 
of industrial applications of X-rays, are used to examine circuit boards for flaws in 
manufacturing, such as missing components or broken traces. Industrial CAT scans 
are useful when the parts can be penetrated by X-rays, such as in plastic assemblies, 
and even large bodies, such as solid-propellant rocket motors. Figure 1.7(e) shows an 
example of X-ray imaging in astronomy. This image is the Cygnus Loop of Fig. 1.6(c), 
but imaged in the X-ray band.

IMAGING IN THE ULTRAVIOLET BAND

Applications of ultraviolet “light” are varied. They include lithography, industrial 
inspection, microscopy, lasers, biological imaging, and astronomical observations. 
We illustrate imaging in this band with examples from microscopy and astronomy.

Ultraviolet light is used in fluorescence microscopy, one of the fastest growing 
areas of microscopy. Fluorescence is a phenomenon discovered in the middle of the 
nineteenth century, when it was first observed that the mineral fluorspar fluoresces 
when ultraviolet light is directed upon it. The ultraviolet light itself is not visible, but 
when a photon of ultraviolet radiation collides with an electron in an atom of a fluo-
rescent material, it elevates the electron to a higher energy level. Subsequently, the 
excited electron relaxes to a lower level and emits light in the form of a lower-energy 
photon in the visible (red) light region. Important tasks performed with a fluores-
cence microscope are to use an excitation light to irradiate a prepared specimen, 
and then to separate the much weaker radiating fluorescent light from the brighter 
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12    Chapter 1  Introduction

excitation light. Thus, only the emission light reaches the eye or other detector. The 
resulting fluorescing areas shine against a dark background with sufficient contrast 
to permit detection. The darker the background of the nonfluorescing material, the 
more efficient the instrument.

Fluorescence microscopy is an excellent method for studying materials that can be 
made to fluoresce, either in their natural form (primary fluorescence) or when treat-
ed with chemicals capable of fluorescing (secondary fluorescence). Figures 1.8(a) 
and (b) show results typical of the capability of fluorescence microscopy. Figure 
1.8(a) shows a fluorescence microscope image of normal corn, and Fig. 1.8(b) shows 
corn infected by “smut,” a disease of cereals, corn, grasses, onions, and sorghum that 
can be caused by any one of more than 700 species of parasitic fungi. Corn smut is 
particularly harmful because corn is one of the principal food sources in the world. 
As another illustration, Fig. 1.8(c) shows the Cygnus Loop imaged in the high-energy 
region of the ultraviolet band.

IMAGING IN THE VISIBLE AND INFRARED BANDS
Considering that the visual band of the electromagnetic spectrum is the most famil-
iar in all our activities, it is not surprising that imaging in this band outweighs by far 
all the others in terms of breadth of application. The infrared band often is used in 
conjunction with visual imaging, so we have grouped the visible and infrared bands 
in this section for the purpose of illustration. We consider in the following discus-
sion applications in light microscopy, astronomy, remote sensing, industry, and law 
enforcement.

Figure 1.9 shows several examples of images obtained with a light microscope. 
The examples range from pharmaceuticals and microinspection to materials char-
acterization. Even in microscopy alone, the application areas are too numerous to 
detail here. It is not difficult to conceptualize the types of processes one might apply 
to these images, ranging from enhancement to measurements.

ba c

FIGURE 1.8  Examples of ultraviolet imaging. (a) Normal corn. (b) Corn infected by smut. (c) Cygnus Loop. (Images 
(a) and (b) courtesy of Dr. Michael W. Davidson, Florida State University, (c) NASA.) 
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1.3  Examples of Fields that Use Digital Image Processing    13

Another major area of visual processing is remote sensing, which usually includes 
several bands in the visual and infrared regions of the spectrum. Table 1.1 shows the 
so-called thematic bands in NASA’s LANDSAT satellites. The primary function of 
LANDSAT is to obtain and transmit images of the Earth from space, for purposes 
of monitoring environmental conditions on the planet. The bands are expressed in 
terms of wavelength, with 1mm  being equal to 10 6−  m (we will discuss the wave-
length regions of the electromagnetic spectrum in more detail in Chapter 2). Note 
the characteristics and uses of each band in Table 1.1.

In order to develop a basic appreciation for the power of this type of multispec-
tral imaging, consider Fig. 1.10, which shows one image for each of the spectral bands 
in Table 1.1. The area imaged is Washington D.C., which includes features such as 
buildings, roads, vegetation, and a major river (the Potomac) going though the city. 
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FIGURE 1.9
Examples of light  
microscopy images.  
(a) Taxol (antican-
cer agent), magni-
fied 250 ×. 
(b) Cholesterol—
40 ×.  
(c) Microproces-
sor—60 ×.  
(d) Nickel oxide 
thin film—600 ×.  
(e) Surface of audio 
CD—1750 ×.   
(f) Organic super-
conductor— 450 ×.  
(Images courtesy of 
Dr. Michael W.  
Davidson, Florida 
State University.) 
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Images of population centers are used over time to assess population growth and 
shift patterns, pollution, and other factors affecting the environment. The differenc-
es between visual and infrared image features are quite noticeable in these images. 
Observe, for example, how well defined the river is from its surroundings in Bands 
4 and 5.

Weather observation and prediction also are major applications of multispectral 
imaging from satellites. For example, Fig. 1.11 is an image of Hurricane Katrina, one 
of the most devastating storms in recent memory in the Western Hemisphere. This 
image was taken by a National Oceanographic and Atmospheric Administration 
(NOAA) satellite using sensors in the visible and infrared bands. The eye of the hur-
ricane is clearly visible in this image.

Band No. Name
Wavelength 

(Mm)
Characteristics and Uses

1 Visible blue 0.45– 0.52 Maximum water penetration

2 Visible green 0.53– 0.61 Measures plant vigor

3 Visible red 0.63– 0.69 Vegetation discrimination

4 Near infrared 0.78– 0.90 Biomass and shoreline mapping

5 Middle infrared 1.55–1.75 Moisture content: soil/vegetation

6 Thermal infrared 10.4–12.5 Soil moisture; thermal mapping

7 Short-wave infrared 2.09–2.35 Mineral mapping

TABLE 1.1
Thematic bands 
of NASA’s 
LANDSAT  
satellite.

1 2 3

4 5 6 7

FIGURE 1.10 LANDSAT satellite images of the Washington, D.C. area. The numbers refer to the thematic bands in 
Table 1.1. (Images courtesy of NASA.)
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in this section acoustic imaging, electron microscopy, and synthetic (computer-gen-
erated) imaging. 

Imaging using “sound” finds application in geological exploration, industry, and 
medicine. Geological applications use sound in the low end of the sound spectrum 
(hundreds of Hz) while imaging in other areas use ultrasound (millions of Hz). The 
most important commercial applications of image processing in geology are in min-
eral and oil exploration. For image acquisition over land, one of the main approaches 
is to use a large truck and a large flat steel plate. The plate is pressed on the ground by 

FIGURE 1.16
Spaceborne radar 
image of  
mountainous 
region in  
southeast Tibet. 
(Courtesy of 
NASA.)

ba

FIGURE 1.17  MRI images of a human (a) knee, and (b) spine. (Figure (a) courtesy of Dr. Thom-
as R. Gest, Division of Anatomical Sciences, University of Michigan Medical School, and 
(b) courtesy of Dr. David R. Pickens, Department of Radiology and Radiological Sciences, 
Vanderbilt University Medical Center.)
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the truck, and the truck is vibrated through a frequency spectrum up to 100 Hz. The 
strength and speed of the returning sound waves are determined by the composi-
tion of the Earth below the surface. These are analyzed by computer, and images are 
generated from the resulting analysis.

For marine image acquisition, the energy source consists usually of two air guns 
towed behind a ship. Returning sound waves are detected by hydrophones placed 
in cables that are either towed behind the ship, laid on the bottom of the ocean, 
or hung from buoys (vertical cables). The two air guns are alternately pressurized  
to ~2000 psi and then set off. The constant motion of the ship provides a transversal 
direction of motion that, together with the returning sound waves, is used to gener-
ate a 3-D map of the composition of the Earth below the bottom of the ocean.

Figure 1.19 shows a cross-sectional image of a well-known 3-D model against 
which the performance of seismic imaging algorithms is tested. The arrow points to a 
hydrocarbon (oil and/or gas) trap. This target is brighter than the surrounding layers 
because the change in density in the target region is larger. Seismic interpreters look 
for these “bright spots” to find oil and gas. The layers above also are bright, but their 
brightness does not vary as strongly across the layers. Many seismic reconstruction 
algorithms have difficulty imaging this target because of the faults above it.

Although ultrasound imaging is used routinely in manufacturing, the best known 
applications of this technique are in medicine, especially in obstetrics, where fetuses 
are imaged to determine the health of their development. A byproduct of this 

Gamma X-ray Optical Infrared Radio

FIGURE 1.18 Images of the Crab Pulsar (in the center of each image) covering the electromagnetic spectrum. (Cour-
tesy of NASA.)

FIGURE 1.19
Cross-sectional 
image of a  
seismic model. 
The arrow points 
to a hydrocarbon 
(oil and/or gas) 
trap. (Courtesy of 
Dr. Curtis Ober, 
Sandia National 
Laboratories.)
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1.4	FUNDAMENTAL STEPS IN DIGITAL IMAGE PROCESSING  

It is helpful to divide the material covered in the following chapters into the two 
broad categories defined in Section 1.1: methods whose input and output are images, 
and methods whose inputs may be images, but whose outputs are attributes extract-
ed from those images. This organization is summarized in Fig. 1.23. The diagram 
does not imply that every process is applied to an image. Rather, the intention is to 
convey an idea of all the methodologies that can be applied to images for different 
purposes, and possibly with different objectives. The discussion in this section may 
be viewed as a brief overview of the material in the remainder of the book. 

Image acquisition is the first process in Fig. 1.23. The discussion in Section 1.3 
gave some hints regarding the origin of digital images. This topic will be considered 
in much more detail in Chapter 2, where we also introduce a number of basic digital 
image concepts that are used throughout the book. Acquisition could be as simple as 
being given an image that is already in digital form. Generally, the image acquisition 
stage involves preprocessing, such as scaling.

Image enhancement is the process of manipulating an image so the result is more 
suitable than the original for a specific application. The word specific is important 
here, because it establishes at the outset that enhancement techniques are problem 
oriented. Thus, for example, a method that is quite useful for enhancing X-ray images 
may not be the best approach for enhancing satellite images taken in the infrared 
band of the electromagnetic spectrum.

There is no general “theory” of image enhancement. When an image is processed 
for visual interpretation, the viewer is the ultimate judge of how well a particular 
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method works. Enhancement techniques are so varied, and use so many different 
image processing approaches, that it is difficult to assemble a meaningful body of 
techniques suitable for enhancement in one chapter without extensive background 
development. For this reason, and also because beginners in the field of image pro-
cessing generally find enhancement applications visually appealing, interesting, and 
relatively simple to understand, we will use image enhancement as examples when 
introducing new concepts in parts of Chapter 2 and in Chapters 3 and 4. The mate-
rial in the latter two chapters span many of the methods used traditionally for image 
enhancement. Therefore, using examples from image enhancement to introduce new 
image processing methods developed in these early chapters not only saves having 
an extra chapter in the book dealing with image enhancement but, more importantly, 
is an effective approach for introducing newcomers to the details of processing tech-
niques early in the book. However, as you will see in progressing through the rest 
of the book, the material developed in Chapters 3 and 4 is applicable to a much 
broader class of problems than just image enhancement.

Image restoration is an area that also deals with improving the appearance of 
an image. However, unlike enhancement, which is subjective, image restoration 
is objective, in the sense that restoration techniques tend to be based on mathe-
matical or probabilistic models of image degradation. Enhancement, on the other 
hand, is based on human subjective preferences regarding what constitutes a “good” 
enhancement result.

Wavelets are the foundation for representing images in various degrees of reso-
lution. In particular, this material is used in the book for image data compression 
and for pyramidal representation, in which images are subdivided successively into 
smaller regions. The material in Chapters 4 and 5 is based mostly on the Fourier 
transform. In addition to wavelets, we will also discuss in Chapter 6 a number of 
other transforms that are used routinely in image processing.

Color image processing is an area that has been gaining in importance because of 
the significant increase in the use of digital images over the internet. Chapter 7 cov-
ers a number of fundamental concepts in color models and basic color processing 
in a digital domain. Color is used also as the basis for extracting features of interest 
in an image.

Compression, as the name implies, deals with techniques for reducing the storage 
required to save an image, or the bandwidth required to transmit it. Although stor-
age technology has improved significantly over the past decade, the same cannot be 
said for transmission capacity. This is true particularly in uses of the internet, which 
are characterized by significant pictorial content. Image compression is familiar 
(perhaps inadvertently) to most users of computers in the form of image file exten-
sions, such as the jpg file extension used in the JPEG (Joint Photographic Experts 
Group) image compression standard.

Morphological processing deals with tools for extracting image components that 
are useful in the representation and description of shape. The material in this chap-
ter begins a transition from processes that output images to processes that output 
image attributes, as indicated in Section 1.1.

Segmentation partitions an image into its constituent parts or objects. In gen-
eral, autonomous segmentation is one of the most difficult tasks in digital image 
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processing. A rugged segmentation procedure brings the process a long way toward 
successful solution of imaging problems that require objects to be identified indi-
vidually. On the other hand, weak or erratic segmentation algorithms almost always 
guarantee eventual failure. In general, the more accurate the segmentation, the 
more likely automated object classification is to succeed.

Feature extraction almost always follows the output of a segmentation stage, which 
usually is raw pixel data, constituting either the boundary of a region (i.e., the set 
of pixels separating one image region from another) or all the points in the region 
itself. Feature extraction consists of feature detection and feature description. Fea-
ture detection refers to finding the features in an image, region, or boundary. Feature 
description assigns quantitative attributes to the detected features. For example, we 
might detect corners in a region, and describe those corners by their orientation 
and location; both of these descriptors are quantitative attributes. Feature process-
ing methods discussed in this chapter are subdivided into three principal categories, 
depending on whether they are applicable to boundaries, regions, or whole images. 
Some features are applicable to more than one category. Feature descriptors should 
be as insensitive as possible to variations in parameters such as scale, translation, 
rotation, illumination, and viewpoint. 

Image pattern classification is the process that assigns a label (e.g., “vehicle”) to an 
object based on its feature descriptors. In the last chapter of the book, we will discuss  
methods of image pattern classification ranging from “classical” approaches such as 
minimum-distance, correlation, and Bayes classifiers, to more modern approaches 
implemented using deep neural networks. In particular, we will discuss in detail deep 
convolutional neural networks, which are ideally suited for image processing work.

So far, we have said nothing about the need for prior knowledge or about the 
interaction between the knowledge base and the processing modules in Fig. 1.23. 
Knowledge about a problem domain is coded into an image processing system in the 
form of a knowledge database. This knowledge may be as simple as detailing regions 
of an image where the information of interest is known to be located, thus limiting 
the search that has to be conducted in seeking that information. The knowledge base 
can also be quite complex, such as an interrelated list of all major possible defects 
in a materials inspection problem, or an image database containing high-resolution 
satellite images of a region in connection with change-detection applications. In 
addition to guiding the operation of each processing module, the knowledge base 
also controls the interaction between modules. This distinction is made in Fig. 1.23 
by the use of double-headed arrows between the processing modules and the knowl-
edge base, as opposed to single-headed arrows linking the processing modules.

Although we do not discuss image display explicitly at this point, it is important to 
keep in mind that viewing the results of image processing can take place at the out-
put of any stage in Fig. 1.23. We also note that not all image processing applications 
require the complexity of interactions implied by Fig. 1.23. In fact, not even all those 
modules are needed in many cases. For example, image enhancement for human 
visual interpretation seldom requires use of any of the other stages in Fig. 1.23. In 
general, however, as the complexity of an image processing task increases, so does 
the number of processes required to solve the problem.
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1.5	COMPONENTS OF AN IMAGE PROCESSING SYSTEM  

As recently as the mid-1980s, numerous models of image processing systems being 
sold throughout the world were rather substantial peripheral devices that attached 
to equally substantial host computers. Late in the 1980s and early in the 1990s, the 
market shifted to image processing hardware in the form of single boards designed 
to be compatible with industry standard buses and to fit into engineering work-
station cabinets and personal computers. In the late 1990s and early 2000s, a new 
class of add-on boards, called graphics processing units (GPUs) were introduced for 
work on 3-D applications, such as games and other 3-D graphics applications. It was 
not long before GPUs found their way into image processing applications involving 
large-scale matrix implementations, such as training deep convolutional networks. 
In addition to lowering costs, the market shift from substantial peripheral devices to 
add-on processing boards also served as a catalyst for a significant number of new 
companies specializing in the development of software written specifically for image 
processing. 

The trend continues toward miniaturizing and blending of general-purpose small 
computers with specialized image processing hardware and software. Figure 1.24 
shows the basic components comprising a typical general-purpose system used for 
digital image processing. The function of each component will be discussed in the 
following paragraphs, starting with image sensing.

Two subsystems are required to acquire digital images. The first is a physical sen-
sor that responds to the energy radiated by the object we wish to image. The second, 
called a digitizer, is a device for converting the output of the physical sensing device 
into digital form. For instance, in a digital video camera, the sensors (CCD chips) 
produce an electrical output proportional to light intensity. The digitizer converts 
these outputs to digital data. These topics will be covered in Chapter 2.

Specialized image processing hardware usually consists of the digitizer just men-
tioned, plus hardware that performs other primitive operations, such as an arithme-
tic logic unit (ALU), that performs arithmetic and logical operations in parallel on 
entire images. One example of how an ALU is used is in averaging images as quickly 
as they are digitized, for the purpose of noise reduction. This type of hardware some-
times is called a front-end subsystem, and its most distinguishing characteristic is 
speed. In other words, this unit performs functions that require fast data through-
puts (e.g., digitizing and averaging video images at 30 frames/s) that the typical main 
computer cannot handle. One or more GPUs (see above) also are common in image 
processing systems that perform intensive matrix operations.

The computer in an image processing system is a general-purpose computer and 
can range from a PC to a supercomputer. In dedicated applications, sometimes cus-
tom computers are used to achieve a required level of performance, but our interest 
here is on general-purpose image processing systems. In these systems, almost any 
well-equipped PC-type machine is suitable for off-line image processing tasks.

Software for image processing consists of specialized modules that perform 
specific tasks. A well-designed package also includes the capability for the user to 
write code that, as a minimum, utilizes the specialized modules. More sophisticated 

1.5
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software packages allow the integration of those modules and general-purpose 
software commands from at least one computer language. Commercially available 
image processing software, such as the well-known MATLAB® Image Processing 
Toolbox, is also common in a well-equipped image processing system. 

Mass storage is a must in image processing applications. An image of size 1024 1024×  
pixels, in which the intensity of each pixel is an 8-bit quantity,  requires one megabyte  
of storage space if the image is not compressed. When dealing with image databases 
that contain thousands, or even millions, of images, providing adequate storage in 
an image processing system can be a challenge. Digital storage for image processing 
applications falls into three principal categories: (1) short-term storage for use dur-
ing processing; (2) on-line storage for relatively fast recall; and (3) archival storage, 
characterized by infrequent access. Storage is measured in bytes (eight bits), Kbytes 
(103 bytes), Mbytes (106 bytes), Gbytes (109 bytes), and Tbytes (1012 bytes).

Cloud

Image displays Computer Mass storage

Hardcopy
Specialized
image processing
hardware

Image sensors

Problem
domain

Image processing
software

Network

Cloud

FIGURE 1.24
Components of a 
general-purpose 
image processing 
system. 
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One method of providing short-term storage is computer memory. Another is by 
specialized boards, called frame buffers, that store one or more images and can be 
accessed rapidly, usually at video rates (e.g., at 30 complete images per second). The 
latter method allows virtually instantaneous image zoom, as well as scroll (vertical 
shifts) and pan (horizontal shifts). Frame buffers usually are housed in the special-
ized image processing hardware unit in Fig. 1.24. On-line storage generally takes 
the form of magnetic disks or optical-media storage. The key factor characterizing 
on-line storage is frequent access to the stored data. Finally, archival storage is char-
acterized by massive storage requirements but infrequent need for access. Magnetic 
tapes and optical disks housed in “jukeboxes” are the usual media for archival appli-
cations.

Image displays in use today are mainly color, flat screen monitors. Monitors are 
driven by the outputs of image and graphics display cards that are an integral part of 
the computer system. Seldom are there requirements for image display applications 
that cannot be met by display cards and GPUs available commercially as part of the 
computer system. In some cases, it is necessary to have stereo displays, and these are 
implemented in the form of headgear containing two small displays embedded in 
goggles worn by the user.

Hardcopy devices for recording images include laser printers, film cameras, heat-
sensitive devices, ink-jet units, and digital units, such as optical and CD-ROM disks. 
Film provides the highest possible resolution, but paper is the obvious medium of 
choice for written material. For presentations, images are displayed on film trans-
parencies or in a digital medium if image projection equipment is used. The latter 
approach is gaining acceptance as the standard for image presentations.

Networking and cloud communication are almost default functions in any com-
puter system in use today. Because of the large amount of data inherent in image 
processing applications, the key consideration in image transmission is bandwidth. In 
dedicated networks, this typically is not a problem, but communications with remote 
sites via the internet are not always as efficient. Fortunately, transmission bandwidth 
is improving quickly as a result of optical fiber and other broadband technologies. 
Image data compression continues to play a major role in the transmission of large 
amounts of image data.

Summary, References, and Further Reading  
The main purpose of the material presented in this chapter is to provide a sense of perspective about the origins 
of digital image processing and, more important, about current and future areas of application of this technology. 
Although the coverage of these topics in this chapter was necessarily incomplete due to space limitations, it should 
have left you with a clear impression of the breadth and practical scope of digital image processing. As we proceed 
in the following chapters with the development of image processing theory and applications, numerous examples 
are provided to keep a clear focus on the utility and promise of these techniques. Upon concluding the study of the 
final chapter, a reader of this book will have arrived at a level of understanding that is the foundation for most of 
the work currently underway in this field. 

In past editions, we have provided a long list of journals and books to give readers an idea of the breadth of the 
image processing literature, and where this literature is reported. The list has been updated, and it has become so 
extensive that it is more practical to include it in the book website: www.ImageProcessingPlace.com, in the section 
entitled Publications.
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Preview
This chapter is an introduction to a number of basic concepts in digital image processing that are used 
throughout the book. Section 2.1 summarizes some important aspects of the human visual system, includ-
ing image formation in the eye and its capabilities for brightness adaptation and discrimination. Section 
2.2 discusses light, other components of the electromagnetic spectrum, and their imaging characteristics. 
Section 2.3 discusses imaging sensors and how they are used to generate digital images. Section 2.4 intro-
duces the concepts of uniform image sampling and intensity quantization. Additional topics discussed 
in that section include digital image representation, the effects of varying the number of samples and 
intensity levels in an image, the concepts of spatial and intensity resolution, and the principles of image 
interpolation. Section 2.5 deals with a variety of basic relationships between pixels. Finally, Section 2.6 
is an introduction to the principal mathematical tools we use throughout the book. A second objective 
of that section is to help you begin developing a “feel” for how these tools are used in a variety of basic 
image processing tasks. 

Upon completion of this chapter, readers should:
	 Have an understanding of some important 

functions and limitations of human vision.

	 Be familiar with the electromagnetic energy 
spectrum, including basic properties of light.

	 Know how digital images are generated and 
represented.

	 Understand the basics of image sampling and 
quantization.

	 Be familiar with spatial and intensity resolu-
tion and their effects on image appearance.

	 Have an understanding of basic geometric 
relationships between image pixels.

	 Be familiar with the principal mathematical 
tools used in digital image processing.

	 Be able to apply a variety of introductory dig-
ital image processing techniques.

Those who wish to succeed must ask the right preliminary 
questions.

	 Aristotle
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2.1	ELEMENTS OF VISUAL PERCEPTION  

Although the field of digital image processing is built on a foundation of mathemat-
ics, human intuition and analysis often play a role in the choice of one technique 
versus another, and this choice often is made based on subjective, visual judgments. 
Thus, developing an understanding of basic characteristics of human visual percep-
tion as a first step in our journey through this book is appropriate. In particular, our 
interest is in the elementary mechanics of how images are formed and perceived 
by humans. We are interested in learning the physical limitations of human vision 
in terms of factors that also are used in our work with digital images. Factors such 
as how human and electronic imaging devices compare in terms of resolution and 
ability to adapt to changes in illumination are not only interesting, they are also 
important from a practical point of view.

STRUCTURE OF THE HUMAN EYE

Figure 2.1 shows a simplified cross section of the human eye. The eye is nearly a 
sphere (with a diameter of about 20 mm) enclosed by three membranes: the cornea 
and sclera outer cover; the choroid; and the retina. The cornea is a tough, transparent 
tissue that covers the anterior surface of the eye. Continuous with the cornea, the 
sclera is an opaque membrane that encloses the remainder of the optic globe.

The choroid lies directly below the sclera. This membrane contains a network of 
blood vessels that serve as the major source of nutrition to the eye. Even superficial 
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Conversely, the coordinate indices for a given linear index value a  are given by the 
equations†

	 x M= a mod 	 (2-15)

and

	 y x M= ( )a - 	 (2-16)

Recall that a mod M  means “the remainder of the division of a  by M.” This is a 
formal way of stating that row numbers repeat themselves at the start of every col-
umn. Thus, when a = 0, the remainder of the division of 0 by M is 0, so x = 0. When 
a = 1, the remainder is 1, and so x = 1. You can see that x will continue to be equal 
to a  until a = −M 1. When a = M  (which is at the beginning of the second column), 
the remainder is 0, and thus x = 0 again, and it increases by 1 until the next column 
is reached, when the pattern repeats itself. Similar comments apply to Eq. (2-16). See 
Problem 2.13 for a derivation of the preceding two equations.

SPATIAL AND INTENSITY RESOLUTION

Intuitively, spatial resolution is a measure of the smallest discernible detail in an 
image. Quantitatively, spatial resolution can be stated in several ways, with line 
pairs per unit distance, and dots (pixels) per unit distance being common measures. 
Suppose that we construct a chart with alternating black and white vertical lines, 
each of width W units (W can be less than 1). The width of a line pair is thus 2W, and 
there are W 2 line pairs per unit distance. For example, if the width of a line is 0.1 mm, 
there are 5 line pairs per unit distance (i.e., per mm). A widely used definition of 
image resolution is the largest number of discernible line pairs per unit distance (e.g., 
100 line pairs per mm). Dots per unit distance is a measure of image resolution used 
in the printing and publishing industry. In the U.S., this measure usually is expressed 
as dots per inch (dpi). To give you an idea of quality, newspapers are printed with a 

† When working with modular number systems, it is more accurate to write x M≡ a mod , where the symbol ≡
means congruence. However, our interest here is just on converting from linear to coordinate indexing, so we 
use the more familiar equal sign.
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resolution of 75 dpi, magazines at 133 dpi, glossy brochures at 175 dpi, and the book 
page at which you are presently looking was printed at 2400 dpi. 

To be meaningful, measures of spatial resolution must be stated with respect to 
spatial units. Image size by itself does not tell the complete story. For example, to say 
that an image has a resolution of 1024 1024*  pixels is not a meaningful statement 
without stating the spatial dimensions encompassed by the image. Size by itself is 
helpful only in making comparisons between imaging capabilities. For instance, a 
digital camera with a 20-megapixel CCD imaging chip can be expected to have a 
higher capability to resolve detail than an 8-megapixel camera, assuming that both 
cameras are equipped with comparable lenses and the comparison images are taken 
at the same distance.

Intensity resolution similarly refers to the smallest discernible change in inten-
sity level. We have considerable discretion regarding the number of spatial samples 
(pixels) used to generate a digital image, but this is not true regarding the number 
of intensity levels. Based on hardware considerations, the number of intensity levels 
usually is an integer power of two, as we mentioned when discussing Eq. (2-11). The 
most common number is 8 bits, with 16 bits being used in some applications in which 
enhancement of specific intensity ranges is necessary. Intensity quantization using 
32 bits is rare. Sometimes one finds systems that can digitize the intensity levels of 
an image using 10 or 12 bits, but these are not as common. 

Unlike spatial resolution, which must be based on a per-unit-of-distance basis to 
be meaningful, it is common practice to refer to the number of bits used to quan-
tize intensity as the “intensity resolution.” For example, it is common to say that an 
image whose intensity is quantized into 256 levels has 8 bits of intensity resolution. 
However, keep in mind that discernible changes in intensity are influenced also by 
noise and saturation values, and by the capabilities of human perception to analyze 
and interpret details in the context of an entire scene (see Section 2.1). The following 
two examples illustrate the effects of spatial and intensity resolution on discernible 
detail. Later in this section, we will discuss how these two parameters interact in 
determining perceived image quality.

EXAMPLE 2.2 : Effects of reducing the spatial resolution of a digital image.

Figure 2.23 shows the effects of reducing the spatial resolution of an image. The images in Figs. 2.23(a) 
through (d) have resolutions of 930, 300, 150, and 72 dpi, respectively. Naturally, the lower resolution 
images are smaller than the original image in (a). For example, the original image is of size 2136 2140*  
pixels, but the 72 dpi image is an array of only 165 166*  pixels. In order to facilitate comparisons, all the 
smaller images were zoomed back to the original size (the method used for zooming will be discussed 
later in this section). This is somewhat equivalent to “getting closer” to the smaller images so that we can 
make comparable statements about visible details. 

There are some small visual differences between Figs. 2.23(a) and (b), the most notable being a slight 
distortion in the seconds marker pointing to 60 on the right side of the chronometer. For the most part, 
however, Fig. 2.23(b) is quite acceptable. In fact, 300 dpi is the typical minimum image spatial resolution 
used for book publishing, so one would not expect to see much difference between these two images. 
Figure 2.23(c) begins to show visible degradation (see, for example, the outer edges of the chronometer 
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case and compare the seconds marker with the previous two images). The numbers also show visible 
degradation. Figure 2.23(d) shows degradation that is visible in most features of the image. As we will 
discuss in Section 4.5, when printing at such low resolutions, the printing and publishing industry uses a 
number of techniques (such as locally varying the pixel size) to produce much better results than those 
in Fig. 2.23(d). Also, as we will show later in this section, it is possible to improve on the results of Fig. 
2.23 by the choice of interpolation method used.

EXAMPLE 2.3 :  Effects of varying the number of intensity levels in a digital image.

Figure 2.24(a) is a 256-level grayscale image of a chemotherapy vial (bottom) and a drip bottle. The 
objective of this example is to reduce the number of intensities of this image from 256 to 2 in integer 
powers of 2, while leaving the image resolution at a fixed 783 dpi (the images are of size 2022 1800*  
pixels). Figures 2.24(b) through (d) were obtained by reducing the number of intensity levels to 128, 64, 
and 32, respectively (we will discuss how to reduce the number of levels in Chapter 3). The 128- and 

ba
dc

FIGURE 2.23
Effects of  
reducing spatial 
resolution. The 
images shown 
are at:  
(a) 930 dpi,  
(b) 300 dpi,  
(c) 150 dpi, and 
(d) 72 dpi.
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64-level images are visually identical for all practical purposes. However, the 32-level image in Fig. 2.24(d) 
has a set of almost imperceptible, very fine ridge-like structures in areas of constant intensity. These 
structures are clearly visible in the 16-level image in Fig. 2.24(e). This effect, caused by using an insuf-
ficient number of intensity levels in smooth areas of a digital image, is called false contouring, so named 
because the ridges resemble topographic contours in a map. False contouring generally is quite objec-
tionable in images displayed using 16 or fewer uniformly spaced intensity levels, as the images in Figs. 
2.24(e)-(h) show. 

As a very rough guideline, and assuming integer powers of 2 for convenience, images of size 256 256*  
pixels with 64 intensity levels, and printed on a size format on the order of 5 5*  cm, are about the lowest 
spatial and intensity resolution images that can be expected to be reasonably free of objectionable sam-
pling distortions and false contouring.

ba
dc

FIGURE 2.24
(a) 2022 × 1800, 
256-level image. 
(b)-(d) Image 
displayed in 128, 
64, and 32 inten-
sity levels, while 
keeping the image 
size constant. 
(Original image 
courtesy of the 
National  
Cancer Institute.)
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manifests itself as bright bursts of intensity, whose location is determined by the frequency of the sinu-
soidal interference (we will discuss these concepts in much more detail in Chapters 4 and 5). Typi-
cally, the bursts are easily observable in an image of the magnitude of the Fourier transform, T( , ) .u v  
With reference to the diagram in Fig. 2.44, the corrupted image is f x y( , ), the transform in the leftmost 
box is the Fourier transform, and Fig. 2.45(b) is T( , )u v  displayed as an image. The bright dots shown 
are the bursts of intensity mentioned above. Figure 2.45(c) shows a mask image (called a filter) with 
white and black representing 1 and 0, respectively. For this example, the operation in the second box of 
Fig. 2.44 is to multiply the filter by the transform to remove the bursts associated with the interference. 
Figure 2.45(d) shows the final result, obtained by computing the inverse of the modified transform. The 
interference is no longer visible, and previously unseen image detail is now made quite clear. Observe, 
for example, the fiducial marks (faint crosses) that are used for image registration, as discussed earlier.

When the forward and inverse kernels of a transform are separable and sym-
metric, and f x y( , ) is a square image of size M M× , Eqs. (2-55) and (2-56) can be 
expressed in matrix form:

	 T AFA= 	 (2-63)  

where F is an M M×  matrix containing the elements of f x y( , ) [see Eq. (2-9)], A is 
an M M×  matrix with elements a r i jij = 1( , ), and T is an M M×  transform matrix 
with elements T( , ),u v  for u,v = −0 1 2 1, , , , .… M
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FIGURE 2.45
(a) Image  
corrupted by  
sinusoidal  
interference.  
(b) Magnitude of 
the Fourier  
transform  
showing the 
bursts of energy 
caused by the 
interference 
(the bursts were 
enlarged for 
display purposes). 
(c) Mask used 
to eliminate the 
energy bursts.  
(d) Result of  
computing the 
inverse of the 
modified Fourier 
transform.  
(Original  
image courtesy of 
NASA.) 

DIP4E_Print_Ready.indb   95 4/2/2017   8:32:43 PM



96    Chapter 2  Digital Image Fundamentals

To obtain the inverse transform, we pre- and post-multiply Eq. (2-63) by an 
inverse transformation matrix B:

	 BTB BAFAB= 	 (2-64)

If B A= −1,

	 F BTB= 	 (2-65)

indicating that F or, equivalently, f x y( , ), can be recovered completely from its 
forward transform. If B is not equal to A−1, Eq. (2-65) yields an approximation:

	 F̂ BAFAB= 	 (2-66)

In addition to the Fourier transform, a number of important transforms, including 
the Walsh, Hadamard, discrete cosine, Haar, and slant transforms, can be expressed 
in the form of Eqs. (2-55) and (2-56), or, equivalently, in the form of Eqs. (2-63) and 
(2-65). We will discuss these and other types of image transforms in later chapters. 

PROBABILITY AND RANDOM VARIABLES

Probability is a branch of mathematics that deals with uncertainty. The following 
material is a brief introduction to probability and random variables. Many of these 
concepts are developed further as needed later in the book.

Sample Spaces, Events, and Probability

A random experiment is a process whose outcome cannot be predicted with certainty, 
but whose set of all possible outcomes can be specified. As noted earlier when dis-
cussing sets, the set of all possible outcomes of an experiment is called the sample 
space of the experiment, and is denoted by Æ. A familiar random experiment con-
sists of tossing a single die and observing the numerical value of the face that lands 
facing up. The sample space of this experiment is the set Æ = { , , , , , .1 2 3 4 5 6}

An event is a subset of the sample space. In the single-die experiment, the event 
A = { , , }1 3 5  is the subset of Æ  that correspond to the odd faces of the die. We say 
that an event occurs if the outcome of an experiment is any of the elements of the 
event set.

To make the notion of a random experiment useful, we need a measure (a prob-
ability) that quantifies how likely it is than an event will occur. A probability, P, is a 
function that satisfies the following properties:

1

3

2

. ( )

. , , ,

.

. ( ) .

0 1

1

1 2

≤ ≤P A

A A A

A

P

n

for every event 

If  are d

Æ =
… iisjoint events, then

 P A A A P A P A P An n( ) ( ) ( ) ( ).1 2 1 2´ ´ ´ = + + +

	 (2-67)

These three properties are called the axioms of probability. Axiom 1 says that the 
probability must be a number in the range [0, 1], with 0 indicating that A never 

Recall from our earlier 
discussion on sets that 
two or more sets are 
disjoint if they have no 
elements in common.
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occurs, and 1 indicating that A always occurs. Because Æ  is the set containing all 
possible outcomes, the second axiom indicates that some event from Æ  always 
occurs when the experiment is performed. Axiom 3 states that the probability of the 
union of a sequence of disjoint events is equal to the sum of the probabilities of the 
individual events. 

EXAMPLE 2.12 :  Events and probabilities.

Consider the experiment of tossing a pair of dice, one after the other, and observing the faces that turn 
up, in the order in which the dice were tossed. The elements of Æ  are of the form ( , ),i j  where i and j are 
the values of the up face in the first and second toss, respectively. Thus, set Æ  has 36 elements: 

	 Æ = ( , ), ( , ), , ( , ), ( , ), ( , ), , ( , ), , ( , ), ( , ), ,1 1 1 2 1 6 2 1 2 2 2 6 6 1 6 2… … … … (( , )6 6{ }

If the dice are unbiased, each combination is equally likely to turn up. The probability of each is 1 36 
because there are 36 equally likely outcomes to this experiment. 

Let A denote the event that the first die turns up 1, and B the event that the second die turns up 2:

	 A = { }( , ), ( , ), ( , ), ( , ), ( , ), ( , )1 1 1 2 1 3 1 4 1 5 1 6

and

	 B = { }( , ), ( , ), ( , ), ( , ), ( , ), ( , )1 2 2 2 3 2 4 2 5 2 6 2

Then, P A P B( ) ( )= = =6 36 1 6 because 6 of the 36 possible outcomes are favorable to A and the prob-
ability of each is 1 36 ; and similarly for B.

Events are sets, so we can use the results of our earlier discussion on sets to form more complex 
events involving A and B, and answer questions about their probability of occurrence. For example,

	
A B¨ ¨= { }( , ), ( , ), ( , ), ( , ), ( , ), ( , ) ( , ), ( , ), ( ,1 1 1 2 1 3 1 4 1 5 1 6 1 2 2 2 3 2)), ( , ), ( , ), ( , )

( , )

4 2 5 2 6 2

1 2

{ }
= { }

is the event that the first die comes up 1 and the second comes up 2. This event has one element so its 
probability, P A B( ),¨  is 1 36 . Similarly, the event that a 1 comes up in the first die or a 2 comes up in 
the second is given by A B´ . This event set has 12 elements, so its probability, P A B( ),´  is 12 36 1 3= .

The Sum (Addition) Rule of Probability

Axiom 3 is a special case of the sum (or addition) rule of probability, which states 
that the probability of the union of n events is equal to the sum of the probabilities 
of these events taken one at time, minus the sum of the probabilities of the events 
taken two at a time, plus the sum of the probabilities of the events taken three at a 
time, and so on, up to the sum of the probabilities of all the n events (Ross [2014]).

For two events, the sum rule is

	 P A B P A P B P A B( ) ( ) ( ) ( )´ ¨= + − 	 (2-68)

DIP4E_Print_Ready.indb   97 4/2/2017   8:32:45 PM
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For three events, this expression becomes

P A B C P A P B P C

P A B P A C P B C P A B C

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

´ ´

¨ ¨ ¨ ¨ ¨

= + +
− − − +

	 (2-69)

When the events are disjoint, all terms except the individual probabilities become 
zero, thus reducing the expression to the one given in Axiom 3. The rightmost term 
in Eq. (2-69) is a result of applying Eq. (2-68) to combined events (see Problem 2.44).

A probability of the form P A B( )¨  is called a joint probability and is read “the 
probability of A and B.” When the events are disjoint, the probability of both hap-
pening simultaneously is zero. A probability of the form P A B( )´  is read “the prob-
ability of A or B.” Because this probability involves the union of A and B, which 
pools the elements of both, P A B( )´  is actually the probability of A or B or both.

EXAMPLE 2.13 :  Working with the addition rule of probability.

Two dice are rolled. What is the probability that their sum will be 6 or 8? As before, the sample space 
has 36 elements. The events summing to 6 are A = { }( , ),( , ),( , ),( , ),( , )1 5 5 1 2 4 4 2 3 3  and the events sum-
ming to 8 are B = { }( , ),( , ),( , ),( , ),( , ) .2 6 6 2 3 5 5 3 4 4  Then, P A P B( ) ( ) ,= = 5 36  and P A B( )¨ = 0 because 
both events cannot happen simultaneously in one roll of the dice. Thus, P A B( ) .´ = + =5 36 5 36 5 18

What is the probability that the sum is even or a multiple of 3? Let A be the first event and B the 
second. Of the 36 possible outcomes, 18 sums are even, so P A( ) .= 18 36  Twelve sums are multiples of 
3, so P B( ) .= 12 36  It is possible for a sum to be even and a multiple of 3, so the events are no longer 
disjoint. If you list all possible events, you will find that A and B have 6 elements in common; therefore, 
P A B( ) .¨ = 6 36  Putting it all together, 

	
P P P P( ) ( ) ( ) ( )even OR multiple of 3 even multiple of 3 both= + −

= PP A P B P A B( ) ( ) ( ) .+ − = =¨ 24 36 2 3

When the events are not disjoint, summing the two individual probabilities counts their shared events 
twice (this is the overlap between the two sets in a Venn diagram, as in Fig. 2.35). Subtracting P A B( )¨  
eliminates the double from the total. Another way of arriving at the same conclusion is to recall that the 
union of two sets “pools” the elements of both. The intersection is the total number of elements com-
mon to both sets, thus resulting in duplicates. Because of this overlap when the events are not disjoint, 
P A B( )´  is the probability of A or B or both occurring.

Conditional Probability
The probability of event A, given that event B has occurred, is defined as

	 P A B
P A B

P B
( )

( )
( )

= ¨
	 (2-70)

where P A B( ) is called the conditional probability; it reads “the probability of A 
given B.” As noted above, P A B( )¨  is the joint probability of A and B. 

Recall that the intersec-
tion, ¨, of two or more 
disjoint sets is null.

DIP4E_Print_Ready.indb   98 4/2/2017   8:32:46 PM



133

3 Intensity Transformations and 
Spatial Filtering

Preview
The term spatial domain refers to the image plane itself, and image processing methods in this category 
are based on direct manipulation of pixels in an image. This is in contrast to image processing in a trans-
form domain which, as we will discuss in Chapters 4 and 6, involves first transforming an image into the 
transform domain, doing the processing there, and obtaining the inverse transform to bring the results 
back into the spatial domain. Two principal categories of spatial processing are intensity transforma-
tions and  spatial filtering. Intensity transformations operate on single pixels of an image for tasks such 
as contrast manipulation and image thresholding. Spatial filtering performs operations on the neighbor-
hood of every pixel in an image. Examples of spatial filtering include image smoothing and sharpening. 
In the sections that follow, we discuss a number of “classical” techniques for intensity transformations 
and spatial filtering. We also discuss fuzzy techniques that allow us to incorporate imprecise, knowledge-
based information in the formulation of image processing algorithms. 

Upon completion of this chapter, readers should:
	 Understand the meaning of spatial domain 

processing, and how it differs from transform 
domain processing.

	 Be familiar with the principal techniques used 
for intensity transformations.

	 Understand the physical meaning of image 
histograms and how they can be manipulated 
for image enhancement.

	 Understand the mechanics of spatial filtering, 
and how spatial filters are formed.

	 Understand the principles of spatial convolu-
tion and correlation.

	 Be familiar with the principal types of spatial 
filters, and how they are applied.

	 Be aware of the relationships between spatial 
filters, and the fundamental role of lowpass 
filters. 

	 Understand the principles of fuzzy logic and 
how these principles apply to digital image 
processing.

It makes all the difference whether one sees darkness through 
the light or brightness through the shadows.

David Lindsay
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134    Chapter 3  Intensity Transformations and Spatial Filtering

3.1	BACKGROUND 

All the image processing techniques discussed in this chapter are implemented in 
the spatial domain, which we know from the discussion in Section 2.4 is the plane 
containing the pixels of an image. Spatial domain techniques operate directly on the 
pixels of an image, as opposed, for example, to the frequency domain (the topic of 
Chapter 4) in which operations are performed on the Fourier transform of an image, 
rather than on the image itself. As you will learn in progressing through the book, 
some image processing tasks are easier or more meaningful to implement in the 
spatial domain, while others are best suited for other approaches. 

THE BASICS OF INTENSITY TRANSFORMATIONS AND SPATIAL  
FILTERING

The spatial domain processes we discuss in this chapter are based on the expression

	 g x y T f x y( , ) ( , )= [ ] 	 (3-1)

where f x y( , ) is an input image, g x y( , ) is the output image, and T is an operator on f 
defined over a neighborhood of point ( , )x y . The operator can be applied to the pix-
els of a single image (our principal focus in this chapter) or to the pixels of a set of 
images, such as performing the elementwise sum of a sequence of images for noise 
reduction, as discussed in Section 2.6. Figure 3.1 shows the basic implementation of 
Eq. (3-1) on a single image. The point ( , )x y0 0  shown is an arbitrary location in the 
image, and the small region shown is a neighborhood of ( , ),x y0 0  as explained in Sec-
tion 2.6. Typically, the neighborhood is rectangular, centered on ( , )x y0 0 , and much 
smaller in size than the image.

The process that Fig. 3.1 illustrates consists of moving the center of the neighbor-
hood from pixel to pixel, and applying the operator T to the pixels in the neighbor-
hood to yield an output value at that location. Thus, for any specific location ( , ),x y0 0  

3.1

FIGURE 3.1
A 3 3×   
neighborhood 
about a point 
( , )x y0 0  in an image. 
The neighborhood 
is moved from 
pixel to pixel in the 
image to generate 
an output image.  
Recall from  
Chapter 2 that the 
value of a pixel at 
location ( , )x y0 0  is
f x y( , ),0 0  the value 
of the image at that 
location.

Origin

0 0

3 3 neighborhood 

of point ( , )x y

×

Image f

y 

x

x0

y0

0 0Pixel [its value is ( , )]f x y
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3.2  Some Basic Intensity Transformation Functions    139

interval [ , ]0 255  and showing the spectrum in the same 8-bit display. The level of 
detail visible in this image as compared to an unmodified display of the spectrum 
is evident from these two images. Most of the Fourier spectra in image processing 
publications, including this book, have been scaled in this manner.

POWER-LAW (GAMMA) TRANSFORMATIONS

Power-law transformations have the form

	 s cr= g 	 (3-5)

where c and g are positive constants. Sometimes Eq. (3-5) is written as s c r= +( )e g  
to account for offsets (that is, a measurable output when the input is zero). However, 
offsets typically are an issue of display calibration, and as a result they are normally 
ignored in Eq. (3-5). Figure 3.6 shows plots of s as a function of r for various values 
of g. As with log transformations, power-law curves with fractional values of g map 
a narrow range of dark input values into a wider range of output values, with the 
opposite being true for higher values of input levels. Note also in Fig. 3.6 that a fam-
ily of transformations can be obtained simply by varying g. Curves generated with 
values of g > 1 have exactly the opposite effect as those generated with values of 
g < 1. When c = =g 1 Eq. (3-5) reduces to the identity transformation.

The response of many devices used for image capture, printing, and display obey 
a power law. By convention, the exponent in a power-law equation is referred to as 
gamma [hence our use of this symbol in Eq. (3-5)]. The process used to correct these 
power-law response phenomena is called gamma correction or gamma encoding. 
For example, cathode ray tube (CRT) devices have an intensity-to-voltage response 
that is a power function, with exponents varying from approximately 1.8 to 2.5. As 
the curve for g = 2 5.  in Fig. 3.6 shows, such display systems would tend to produce 
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g � 0.20
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FIGURE 3.6
Plots of the  
gamma equation 
s cr= g  for various 
values of g (c = 1 
in all cases). Each 
curve was scaled  
independently so 
that all curves 
would fit in the 
same graph. Our  
interest here is 
on the shapes of 
the curves, not 
on their relative 
values.

DIP4E_Print_Ready.indb   139 4/2/2017   8:33:33 PM



140    Chapter 3  Intensity Transformations and Spatial Filtering

images that are darker than intended. Figure 3.7 illustrates this effect. Figure 3.7(a) is 
an image of a human retina displayed in a monitor with a gamma of 2.5. As expected, 
the output of the monitor appears darker than the input, as Fig. 3.7(b) shows.

In this case, gamma correction consists of using the transformation s r r= =1 2 5 0 4. .  
to preprocess the image before inputting it into the monitor. Figure 3.7(c) is the result. 
When input into the same monitor, the gamma-corrected image produces an output 
that is close in appearance to the original image, as Fig. 3.7(d) shows. A similar analysis 
as above would apply to other imaging devices, such as scanners and printers, the dif-
ference being the device-dependent value of gamma (Poynton [1996]).

EXAMPLE 3.1 : Contrast enhancement using power-law intensity transformations.

In addition to gamma correction, power-law transformations are useful for general-purpose contrast 
manipulation. Figure 3.8(a) shows a magnetic resonance image (MRI) of a human upper thoracic spine 
with a fracture dislocation. The fracture is visible in the region highlighted by the circle. Because the 
image is predominantly dark, an expansion of intensity levels is desirable. This can be accomplished 
using a power-law transformation with a fractional exponent. The other images shown in the figure were 
obtained by processing Fig. 3.8(a) with the power-law transformation function of Eq. (3-5). The values 
of gamma corresponding to images (b) through (d) are 0.6, 0.4, and 0.3, respectively (c = 1 in all cases). 

Sometimes, a higher 
gamma makes the  
displayed image look 
better to viewers than 
the original because of 
an increase in contrast. 
However, the objective 
of gamma correction is to 
produce a faithful display 
of an input image.
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FIGURE 3.7
(a) Image of a 
human retina.  
(b) Image as as 
it appears on a 
monitor with a 
gamma setting  
of 2.5 (note the  
darkness).  
(c) Gamma-cor-
rected image.  
(d) Corrected 
image, as it 
appears on the 
same monitor 
(compare with the 
original image). 
(Image (a) 
courtesy of the 
National Eye 
Institute, NIH)

Original image as viewed on a monitor with
a gamma of 2.5

Original image Gamma Correction

Gamma-corrected image Gamma-corrected image as viewed on the
same monitor
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where v  is a dummy variable of integration. It follows from the preceding two equa-
tions that G z s T r( ) ( )= =  and, therefore, that z must satisfy the condition

	 z G s G T r= = [ ]− −1 1( ) ( ) 	 (3-19)

The transformation function T r( ) can be obtained using Eq. (3-17) after p rr ( ) has  
been  estimated using the input image. Similarly, function G z( ) can be obtained from 
Eq. (3-18) because p zz( ) is given.

Equations (3-17) through (3-19) imply that an image whose intensity levels have 
a specified PDF can be obtained using the following procedure:

1.	 Obtain p rr ( ) from the input image to use in Eq. (3-17).
2.	 Use the specified PDF, p zz( ), in Eq. (3-18) to obtain the function G z( ).
3.	 Compute the inverse transformation z G s= −1( ); this is a mapping from s to z, 

the latter being the values that have the specified PDF.
4.	 Obtain the output image by first equalizing the input image using Eq. (3-17); the 
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FIGURE 3.22
(a) Image from 
Phoenix Lander. 
(b) Result of  
histogram  
equalization.  
(c) Histogram of 
image (a).  
(d) Histogram of 
image (b).  
(Original image 
courtesy of 
NASA.)
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is important to note that a rather modest change in the original histogram was all that was required to 
obtain a significant improvement in appearance.

Figure 3.26(d) shows the histogram of Fig. 3.26(c). The most distinguishing feature of this histogram 
is how its low end has shifted right toward the lighter region of the gray scale (but not excessively so), as 
desired. As you will see in the following section, we can do an even better job of enhancing Fig. 3.24(a) 
by using exact histogram specification.

EXACT HISTOGRAM MATCHING (SPECIFICATION)
The discrete histogram equalization and specification methods discussed in the pre-
ceding two sections generate images with histograms whose shapes generally do not 
resemble the shape of the specified histograms. You have seen already that these 
methods can produce effective results. However, there are applications that can 
benefit from a histogram processing technique capable of generating images whose 
histograms truly match specified shapes. Examples include normalizing large image 
data sets used for testing and validation in the pharmaceutical industry, establishing 
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FIGURE 3.25
(a) Histogram 
equalization 
transformation 
obtained using 
the histogram 
in Fig. 3.24(b). 
(b) Histogram 
equalized image. 
(c) Histogram of 
equalized image.
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164    Chapter 3  Intensity Transformations and Spatial Filtering

a set of “golden images” for calibrating imaging systems, and establishing a norm for 
consistent medical image analysis and interpretation by humans. Also, as you will 
see later, being able to generate images with specified histograms simplifies experi-
mentation when seeking histogram shapes that will produce a desired result.

The reason why discrete histogram equalization and specification do not produce 
exact specified histogram shapes is simple: they have no provisions for redistribut-
ing the intensities of an image to match a specified shape. In histogram equalization, 
changes in the number of pixels having a specific intensity occur as a result of round-
ing (see Example 3.5). Histogram specification also introduces changes as a result of 
matching values in the look-up table (see Example 3.7). However, the real impact 
on intensity values by these two methods results from shifting the histogram bins 
along the intensity scale. For example, the key difference between the histograms in 
Figs. 3.24 through 3.26 is the location of the histogram bins. For the histogram of the 
output image to have an exact specified shape, we have to find a way to change and 
redistribute the intensities of the pixels of the input image to create that shape. The 
following discussion shows how to do this.

0 63 127 191 255
0

0.02

0.04

0.06

0.08

0.12

0.10

0 63 127 191 255
0

0.004

0.008

0.012

0.016

0.020

0

63

127

191

255

0 63 127 191 255

(1)

(2)

ks

qz

qz

z

( )zp z

( )z qp z

ba
dc

FIGURE 3.26
Histogram  
specification.  
(a) Specified histo-
gram.  
(b) Transformation 
G zq( ), labeled (1), 
and G sk

−1( ),  
labeled (2).  
(c) Result of  
histogram  
specification.  
(d) Histogram of 
image (c).
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Foundation

The following discussion is based on an approach developed by Coltuc, Bolon, and 
Chassery [2006] for implementing exact histogram specification. Consider a speci-
fied histogram that we wish an image to have:

	 H h h h h L= −{ }( ), ( ), ( ), , ( )0 1 2 1… 	 (3-24)

where L is the number of discrete intensity levels, and h j( ) is the number of pixels 
with intensity level j. This histogram is assumed to be both unnormalized and valid, 
in the sense that the sum of its components equals the total number of pixels in the 
image (which is always an integer):

	 h j MN
j

L

( ) =
=

−

∑
0

1

	 (3-25)

As usual, M and N are the number of rows and columns in the image, respectively. 
Given a digital image and a histogram satisfying the preceding conditions, the 

procedure used for exact histogram specification consists of three basic steps:

(a)	 Order the image pixels according to a predefined criterion.
(b)	 Split the ordered pixels into L groups, such that group j has h j( ) pixels.
(c)	 Assign intensity value j to all pixels in group j.

Observe that we are both redistributing and changing the intensity of pixels of the 
output image to populate the bins in the specified histogram. Therefore, the output 
image is guaranteed to have that histogram, provided that Eq. (3-25) is satisfied.† 
The usefulness of the result depends on the ordering scheme used in Step (a).

Ordering: Consider a strict ordering relation on all MN pixels of an image so that

	 f x y f x y f x yM N M N( , ) ( , ) ( , ), ,0 0 1 1 1 1 1 1  ⋅ ⋅ ⋅ − − −-
	 (3-26)

This equation represents a string of MN pixels ordered by a strict relation , with 
the pair ( , )x yi i  denoting the coordinates of the ith pixel in the sequence. Keep in 
mind that  may yield an ordering of pixels whose coordinates are not in any par-
ticular spatial sequence.

Recall from Section 2.6 that an ordering is based on the concept of preceding, and 
recall also that “preceding” is more general than just a numerical order. In a strict 
ordering, an element of a set (in this case the set of pixels in a digital image) cannot 
precede itself. In addition, if element a precedes element b, and element b precedes 
c in the ordered sequence, then this implies that a precedes c. In the present context, 

† Because MN and L are fixed, and histogram bins must contain an integer number of pixels, a specified histo-
gram may have to be adjusted sometimes in order to satisfy Eq. (3-25) (see Problem 3.16). In other words, there 
are instances in which the histogram matched by the method will have to be an altered version of an original 
specification (see Problem 3.18). Generally, the differences have negligible influence on the final result.

Note that we are not  
using subscripts on the  
histogram elements, 
because we are working 
with a single type of 
histogram. This simplifies 
the notation  
considerably.

We will give a more 
detailed set of steps later 
in this section.

See Section 2.6 regarding 
ordering.
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EXAMPLE 3.16 :  Smoothing performance as a function of kernel and image size.

The amount of relative blurring produced by a smoothing kernel of a given size depends directly on 
image size. To illustrate, Fig. 3.46(a) shows the same test pattern used earlier, but of size 4096 4096×  
pixels, four times larger in each dimension than before. Figure 3.46(b) shows the result of filtering this 
image with the same Gaussian kernel and padding used in Fig. 3.45(b). By comparison, the former 
image shows considerably less blurring for the same size filter. In fact, Fig. 3.46(b) looks more like the 
image in Fig. 3.42(d), which was filtered using a 43 43×  Gaussian kernel. In order to obtain results that 
are comparable to Fig. 3.45(b) we have to increase the size and standard deviation of the Gaussian 
kernel by four, the same factor as the increase in image dimensions. This gives a kernel of (odd) size 

ba c

FIGURE 3.46 (a) Test pattern of size 4096 4096×  pixels. (b) Result of filtering the test pattern with the same Gaussian 
kernel used in Fig. 3.45. (c) Result of filtering the pattern using a Gaussian kernel of size 745 745×  elements, with 
K = 1 and s = 124. Mirror padding was used throughout. 

ba c

FIGURE 3.45 Result of filtering the test pattern in Fig. 3.42(a) using (a) zero padding, (b) mirror padding, and (c) rep-
licate padding. A Gaussian kernel of size 187 187× , with K = 1 and s = 31 was used in all three cases.
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214    Chapter 3  Intensity Transformations and Spatial Filtering

increases as a function of distance from the center, as you can see by noting that the rings get narrower 
the further they are from the center. This property makes a zone plate an ideal image for illustrating the 
behavior of the four filter types just discussed. 

Figure 3.60(a) shows a 1-D, 128-element spatial lowpass filter function designed using MATLAB 
[compare with Fig. 3.38(b)]. As discussed earlier, we can use this 1-D function to construct a 2-D, separa-
ble lowpass filter kernel based on Eq. (3-51), or we can rotate it about its center to generate a 2-D, isotro-
pic kernel. The kernel in Fig. 3.60(b) was obtained using the latter approach. Figures 3.61(a) and (b) are 
the results of filtering the image in Fig. 3.59 with the separable and isotropic kernels, respectively. Both 
filters passed the low frequencies of the zone plate while attenuating the high frequencies significantly. 
Observe, however, that the separable filter kernel produced a “squarish” (non-radially symmetric) result 
in the passed frequencies. This is a consequence of filtering the image in perpendicular directions with 
a separable kernel that is not isotropic. Using the isotropic kernel yielded a result that is uniform in all 
radial directions. This is as expected, because both the filter and the image are isotropic. 

Figure 3.62 shows the results of filtering the zone plate with the four filters described in Table 3.7. We 
used the 2-D lowpass kernel in Fig. 3.60(b) as the basis for the highpass filter, and similar lowpass ker-
nels for the bandreject filter. Figure 3.62(a) is the same as Fig. 3.61(b), which we repeat for convenience. 
Figure 3.62(b) is the highpass-filtered result. Note how effectively the low frequencies were filtered out. 
As is true of highpass-filtered images, the black areas were caused by negative values being clipped at 0 
by the display. Figure 3.62(c) shows the same image scaled using Eqs. (2-31) and (2-32). Here we see 
clearly that only high frequencies were passed by the filter. Because the highpass kernel was constructed 
using the same lowpass kernel that we used to generate Fig. 3.62(a), it is evident by comparing the two 
results that the highpass filter passed the frequencies that were attenuated by the lowpass filter.

FIGURE 3.59
A zone plate 
image of size 
597 597×  pixels.

0

0.04

0.06

0.12

-0.02
0 32 64 96 128

ba

FIGURE 3.60
(a) A 1-D spatial 
lowpass filter 
function. (b) 2-D 
kernel obtained 
by rotating the 
1-D profile about 
its center.
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ba

FIGURE 3.61
(a) Zone plate  
image filtered 
with a separable 
lowpass kernel. 
(b) Image filtered 
with the isotropic 
lowpass kernel in 
Fig. 3.60(b).

ba c
ed f

FIGURE 3.62
Spatial filtering of the zone plate image. (a) Lowpass result; this is the same as Fig. 3.61(b). (b) Highpass result. 
(c) Image (b) with intensities scaled. (d) Bandreject result. (e) Bandpass result. (f) Image (e) with intensities scaled. 
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for j R= 1 2, , , ,…  where mA kj k
z( ) is the membership function of fuzzy set Aj k  evalu-

ated at the value of the kth input, and l j  is called the strength (or firing) level of the 
jth rule. With reference to our discussion earlier, l j  is simply the value used to clip 
the output function of the jth rule (see Step 3 in the summary related to Fig. 3.72).

The strength level of the ELSE rule is defined so that it increases as the strength 
of the THEN rules weaken, and vice versa. An ELSE rule may be viewed as per-
forming a NOT operation on the results of the other rules. We know from Eq. (3-77) 
that m m mNOT( )( ) ( ) ( ).A A Az z z= = −1  Using this idea in combining (ANDing) the 
strengths of the THEN rules gives the following strength level for the ELSE rule:

	 l lE j j R= − ={ }min ; , , ,1 1 2 … 	 (3-96)

We see that if any of the THEN rules fires at “full strength” (its responses is 1), then 
the strength level of the ELSE rule will be 0. As the responses of the THEN rules 
weaken, the strength of the ELSE rule increases. The value of lE  is used to clip 
fuzzy set BE , in exactly the same manner that the other output fuzzy sets are clipped. 
The only difference is that the clipping value for the ELSE rule is determined by 
the strength levels of the other rules, rather than by the results of implication (see 
Fig. 3.72). The resulting, clipped fuzzy set BE  is used in the aggregation step, together 
with the other clipped output fuzzy sets.

When dealing with ORs in the antecedents, we replace the ANDs in Eq. (3-94) 
by ORs and the min in Eq. (3-95) by a max; Eq. (3-96) does not change. Although 
more complex antecedents and consequents than the ones discussed here could be 
developed, formulations using only ANDs or ORs are quite general and are used 
in a broad spectrum of image processing applications. The references at the end of 
this chapter contain additional (but used less frequently) definitions of fuzzy logical 
operators, and discuss other methods for implication (including multiple outputs) 
and defuzzification. In the next two sections, we will show how to apply fuzzy con-
cepts to image processing.

USING FUZZY SETS FOR INTENSITY TRANSFORMATIONS

One of the principal applications of intensity transformations is contrast enhance-
ment. We can state the process of enhancing the contrast of a grayscale image using 
the following rules:

IF a pixel is dark, THEN make it darker.

IF a pixel is gray, THEN make it gray.

IF a pixel is bright, THEN make it brighter.

Keeping in mind that these are fuzzy terms, we can express the concepts of dark, 
gray, and bright by the membership functions in Fig. 3.73(a). 

In terms of the output, we consider darker as being degrees of a dark intensity 
value (100% black being the limiting shade of dark), brighter, as being degrees of 

We will illustrate how 
ELSE rules are used 
when we discuss fuzzy 
filtering later in this 
section.
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a bright shade (100% white being the limiting value), and gray as being degrees 
of an intensity in the middle of the gray scale. By “degrees” we mean the amount 
of a specific intensity. For example, 80% black is a dark gray. When interpreted as 
constant intensities whose strength is modified, the output membership functions 
are singletons (membership functions that are constant), as Fig. 3.73(b) shows. The 
degrees of an intensity in the range [0, 1] occur when the singletons are clipped by 
the strength of the response from their corresponding rules, as in the fourth column 
of Fig. 3.72 (we are working here with only one input, not two, as in the figure). 
Because we are dealing with constants in the output membership functions, it fol-
lows from Eq. (3-93) that the output, v0 ,  due to any input, z0 , is given by

	 v
v v v

0
0 0 0

0

=
+ +

+
m m m

m m

dark d gray g bright b

dark gray

z z z

z

( ) ( ) ( )

( )

× × ×
(( ) ( )z zbright0 0+ m

	 (3-97)

where “×” indicates scalar multiplication. The summations in the numerator and 
denominator in this expression are simpler than in Eq. (3-93) because the output 
membership functions are constants modified (clipped) by the fuzzified values.

Fuzzy image processing is computationally intensive because the entire process 
of fuzzification, processing the antecedents of all rules, implication, aggregation, and 
defuzzification must be applied to every pixel in the input image. Thus, using single-
tons as in Eq. (3-97) reduces computational requirements significantly by simplify-
ing implication, aggregation, and defuzzification. These savings can be important in 
applications that require high processing speeds.

EXAMPLE 3.25 :  Fuzzy, rule-based contrast modification.

Figure 3.74(a) shows an image whose predominant intensities span a narrow range of the gray scale [see 
the image histogram in Fig. 3.75(a)], and thus has the appearance of low contrast. As a basis for com-
parison, Fig. 3.74(b) is the result of histogram equalization. As the histogram of this image shows [see 
Fig. 3.75(b)], expanding the entire gray scale does increase contrast, but also spreads intensities on the 
high and low end that give the image an “overexposed” appearance. For example, the details in Profes-
sor Einstein’s forehead and hair are mostly lost. Figure 3.74(c) shows the result of using the rule-based 
contrast modification approach discussed above. Figure 3.75(c) shows the input membership functions 

ba

FIGURE 3.73
(a) Input and  
(b) output  
membership 
functions for 
fuzzy, rule-based 
contrast  
enhancement. 
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0 z
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mgray(z)
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used, superimposed on the histogram of the original image. The output singletons were selected at 
vd = 0  (black), vg = 127  (mid gray), and vb = 255 (white). 

Comparing Figs. 3.74(b) and (c), we see in the latter a considerable improvement in tonality. Note, for 
example, the level of detail in the forehead and hair, as compared to the same regions in Fig. 3.74(b). The 
reason for the improvement can be explained easily by studying the histogram of Fig. 3.74(c), shown in 
Fig. 3.75(d). Unlike the histogram of the equalized image, this histogram has kept the same basic char-
acteristics of the histogram of the original image. However, the dark levels (tall peaks in the low end of 
the histogram) were moved left, thus darkening the levels. The opposite was true for bright levels. The 
mid grays were spread slightly, but much less than in histogram equalization. 

ba c

FIGURE 3.74
(a) Low-contrast 
image. (b) Result 
of histogram 
equalization.  
(c) Result of using 
fuzzy, rule-based 
contrast  
enhancement.
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dc

FIGURE 3.75
(a) Histogram of 
Fig. 3.74(a). 
(b) Histogram of 
Fig. 3.74(b).  
(c) Input  
membership  
functions  
superimposed  
on (a).  
(d) Histogram of 
Fig. 3.74(c).
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0 63 127 191 255

0 63 127 191 255

0 63 127 191 255

mdark(z) mbright(z)

mgray(z)
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3.61	 Because the term z0  is a constant in both mred  
and m3, show that Eq. (3-88) can be written as 
Q zred mat3 0( ) min ( ), ( ) .v v= { }m m

3.62 *	What would be the effect of increasing the neigh-
borhood size in the fuzzy filtering approach dis-
cussed at the end of Section 3.9? Explain. (You 
may use an example to support your answer).

3.63	 You are employed to design a fuzzy, rule-based filter-
ing system for reducing the effects of impulse noise 
on a noisy image with intensity values in the interval 
[ , ].0 1L −  As in the filtering approach discussed at 

the end of Section 3.9, use only the differences d2 , 
d4 , d6 , and d8 in a 3 3×  neighborhood in order to 
simplify the problem. Let z5  denote the intensity at 
the center of the neighborhood. The corresponding 
output intensity values should be z z5 5

 = + v, where 
v  is the output of your fuzzy system. That is, the 
output of your fuzzy system is a correction factor 
used to reduce the effect of a noise spike that may 
be present at the center of the 3 3×  neighborhood. 
Assume that the noise spikes occur sufficiently apart 
so that you need not be concerned with multiple 
noise spikes being present in the same neighbor-
hood. The spikes can be dark or light. Use triangular 
membership functions throughout.

(a) *	Give a fuzzy system for this problem.

(b) *	Specify the IF-THEN and ELSE rules.

(c)	 Specify the membership functions graphically, 
as in Fig. 3.77.

(d)	 Show a graphical representation of the rule set, 
as in Fig. 3.78.

(e)	 Give a summary diagram of your fuzzy system 
similar to the one in Fig. 3.72.

Projects  
MATLAB solutions to the projects marked with an asterisk (*) are in the DIP4E Student Support Package (consult 
the book website: www.ImageProcessingPlace.com).

3.1 *	 Write a function g = imPad4e(f,r,c,padtype,loc) 
for padding image f with r rows above and below 
the image, and c columns to the left and right. If 
padtype = 'zeros', or is omitted from the argument, 
the function should implement zero padding. If 
padtype = 'replicate', replicate padding, as defined 
in Section 3.5, should be used. If loc is specified 
as loc = 'post', the function should behave as above, 
except that r rows are placed only below the image 
and c columns are placed only to the right of it.

3.2	 Intensity transformation of grayscale images.

(a)	 Write a function [g,map] = intXform4e(f,mode,-
param) for transforming the intensities of an 
input 8-bit grayscale image f. The intensities 
of f (and output image g) are assumed to be in 
the range [0, 1] (use function intScaling4e from 
Chapter 2 in the body of intXform4e to make 
the conversion to [0, 1] automatic). The type 

of transformation performed is specified in 
parameter mode, a character string with val-
ues: 'negative', 'log', 'gamma', or 'external'. The 
first two specifications implement Eqs. (3-3) 
and (3-4), (with c = 1 0. ). The third specifi-
cation implements Eq. (3-5), in which case 
param is a scalar equal to the value of g (use 
c = 1 0. ). Specifying mode as 'external' means 
that the user is specifying the transformation 
function (e.g., for histogram equalization), 
whose values must be in the range [0, 1] and 
be provided as a 1-D array in param. On the 
output, map is the transformation function 
computed by intXform4e (or provided by the 
user if 'external' was specified for mode).

(b)	 Read and display the image spillway-dark.tif. 
Apply a log transformation function to it. 
Display the result.
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4 Filtering in the Frequency 
Domain

Preview
After a brief historical introduction to the Fourier transform and its importance in image processing, we 
start from basic principles of function sampling, and proceed step-by-step to derive the one- and two-
dimensional discrete Fourier transforms. Together with convolution, the Fourier transform is a staple of 
frequency-domain processing. During this development, we also touch upon several important aspects 
of sampling, such as aliasing, whose treatment requires an understanding of the frequency domain and 
thus are best covered in this chapter. This material is followed by a formulation of filtering in the fre-
quency domain, paralleling the spatial filtering techniques discussed in Chapter 3. We conclude the 
chapter with a derivation of the equations underlying the fast Fourier transform (FFT), and discuss its 
computational advantages. These advantages make frequency-domain filtering practical and, in many 
instances, superior to filtering in the spatial domain.

Upon completion of this chapter, readers should:
	 Understand the meaning of frequency domain 

filtering, and how it differs from filtering in the 
spatial domain.

	 Be familiar with the concepts of sampling,  func- 
tion reconstruction, and aliasing.

	 Understand convolution in the frequency 
domain, and how it is related to filtering.

	 Know how to obtain frequency domain filter 
functions from spatial kernels, and vice versa.

	 Be able to construct filter transfer functions 
directly in the frequency domain.

	 Understand why image padding is important.

	 Know the steps required to perform filtering 
in the frequency domain.

	 Understand when frequency domain filtering 
is superior to filtering in the spatial domain.

	 Be familiar with other filtering techniques in 
the frequency domain, such as unsharp mask-
ing and homomorphic filtering.

	 Understand the origin and mechanics of the 
fast Fourier transform, and how to use it effec- 
tively in image processing. 

Filter: A device or material for suppressing or minimizing waves or 
oscillations of certain frequencies.

Frequency: The number of times that a periodic function repeats 
the same sequence of values during a unit variation of the  
independent variable.

Webster’s New Collegiate Dictionary
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250    Chapter 4  Filtering in the Frequency Domain

4.1	BACKGROUND  

We begin the discussion with a brief outline of the origins of the Fourier transform 
and its impact on countless branches of mathematics, science, and engineering.

A BRIEF HISTORY OF THE FOURIER SERIES AND TRANSFORM

The French mathematician Jean Baptiste Joseph Fourier was born in 1768 in the 
town of Auxerre, about midway between Paris and Dijon. The contribution for 
which he is most remembered was outlined in a memoir in 1807, and later pub-
lished in 1822 in his book, La Théorie Analitique de la Chaleur (The Analytic Theory 
of Heat). This book was translated into English 55 years later by Freeman (see 
Freeman [1878]). Basically, Fourier’s contribution in this field states that any peri-
odic function can be expressed as the sum of sines and/or cosines of different fre-
quencies, each multiplied by a different coefficient (we now call this sum a Fourier 
series). It does not matter how complicated the function is; if it is periodic and satis-
fies some mild mathematical conditions, it can be represented by such a sum. This 
is taken for granted now but, at the time it first appeared, the concept that compli-
cated functions could be represented as a sum of simple sines and cosines was not 
at all intuitive (see Fig. 4.1). Thus, it is not surprising that Fourier’s ideas were met 
initially with skepticism.

Functions that are not periodic (but whose area under the curve is finite) can be 
expressed as the integral of sines and/or cosines multiplied by a weighting function. 
The formulation in this case is the Fourier transform, and its utility is even greater 
than the Fourier series in many theoretical and applied disciplines. Both representa-
tions share the important characteristic that a function, expressed in either a Fourier 
series or transform, can be reconstructed (recovered) completely via an inverse pro-
cess, with no loss of information. This is one of the most important characteristics of 
these representations because it allows us to work in the Fourier domain (generally 
called the frequency domain) and then return to the original domain of the function 
without losing any information. Ultimately, it is the utility of the Fourier series and 
transform in solving practical problems that makes them widely studied and used as 
fundamental tools. 

The initial application of Fourier’s ideas was in the field of heat diffusion, where 
they allowed formulation of differential equations representing heat flow in such 
a way that solutions could be obtained for the first time. During the past century, 
and especially in the past 60 years, entire industries and academic disciplines have 
flourished as a result of Fourier’s initial ideas. The advent of digital computers and 
the “discovery” of a fast Fourier transform (FFT) algorithm in the early 1960s revo-
lutionized the field of signal processing. These two core technologies allowed for the 
first time practical processing of a host of signals of exceptional importance, ranging 
from medical monitors and scanners to modern electronic communications.

As you learned in Section 3.4, it takes on the order of MNmn operations (multi-
plications and additions) to filter an M N×  image with a kernel of size m n×  ele-
ments. If the kernel is separable, the number of operations is reduced to MN m n( ).+  
In Section 4.11, you will learn that it takes on the order of 2 2MN MNlog  operations 
to perform the equivalent filtering process in the frequency domain, where the 2 in 
front arises from the fact that we have to compute a forward and an inverse FFT. 

4.1
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4.1  Background    251

To get an idea of the relative computational advantages of filtering in the frequency  
versus the spatial domain, consider square images and kernels, of sizes M M×  and 
m m× , respectively. The computational advantage (as a function of kernel size) of 
filtering one such image with the FFT as opposed to using a nonseparable kernel is 
defined as

	

C m
M m

M M
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n( )
log

log

=

=

2 2

2
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2

2

2
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4

	 (4-1)

If the kernel is separable, the advantage becomes
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2

	 (4-2)

In either case, when C m( ) > 1 the advantage (in terms of fewer computations) 
belongs to the FFT approach; otherwise the advantage favors spatial filtering.

FIGURE 4.1
The function at 
the bottom is the 
sum of the four 
functions above it. 
Fourier’s idea in 
1807 that periodic 
functions could be 
represented as a 
weighted sum of 
sines and cosines 
was met with 
skepticism. 
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Figure 4.2(a) shows a plot of C mn( ) as a function of m for an image of intermedi-
ate size ( ).M = 2048  The inset table shows a more detailed look for smaller kernel 
sizes. As you can see, the FFT has the advantage for kernels of sizes 7 7×  and larger. 
The advantage grows rapidly as a function of m, being over 200 for m = 101, and 
close to 1000 for m = 201. To give you a feel for the meaning of this advantage, if 
filtering a bank of images of size 2048 2048×  takes 1 minute with the FFT, it would 
take on the order of 17 hours to filter the same set of images with a nonseparable 
kernel of size 201 201×  elements. This is a significant difference, and is a clear indica-
tor of the importance of frequency-domain processing using the FFT.

In the case of separable kernels, the computational advantage is not as dramatic, 
but it is still meaningful. The “cross over” point now is around m = 27, and when 
m = 101 the difference between frequency- and spatial-domain filtering is still man-
ageable. However, you can see that with m = 201 the advantage of using the FFT 
approaches a factor of 10, which begins to be significant. Note in both graphs that 
the FFT is an overwhelming favorite for large spatial kernels. 

Our focus in the sections that follow is on the Fourier transform and its properties. 
As we progress through this chapter, it will become evident that Fourier techniques 
are useful in a broad range of image processing applications. We conclude the chap-
ter with a discussion of the FFT.

ABOUT THE EXAMPLES IN THIS CHAPTER

As in Chapter 3, most of the image filtering examples in this chapter deal with image 
enhancement. For example, smoothing and sharpening are traditionally associated 
with image enhancement, as are techniques for contrast manipulation. By its very 
nature, beginners in digital image processing find enhancement to be interesting 
and relatively simple to understand. Therefore, using examples from image enhance-
ment in this chapter not only saves having an extra chapter in the book but, more 
importantly, is an effective tool for introducing newcomers to filtering techniques in 
the frequency domain. We will use frequency domain processing methods for other 
applications in Chapters 5, 7, 8, 10, and 12.

The computational 
advantages given by Eqs. 
(4-1) and (4-2) do not 
take into account the fact 
that the FFT performs 
operations between 
complex numbers, and 
other secondary (but 
small in comparison) 
computations discussed 
later in the chapter. Thus, 
comparisons should be 
interpreted only as  
guidelines,
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FIGURE 4.2
(a) Computational 
advantage of the 
FFT over non-
separable spatial 
kernels.  
(b) Advantage over 
separable kernels. 
The numbers for 
C m( ) in the inset 
tables are not to be 
multiplied by the 
factors of 10 shown 
for the curves.
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1

2
T

> mmax 	 (4-65)

and

	
1

2
Z

> nmax 	 (4-66)

Stated another way, we say that no information is lost if a 2-D, band-limited, con-
tinuous function is represented by samples acquired at rates greater than twice the 
highest frequency content of the function in both the m- and n-directions.

Figure 4.16 shows the 2-D equivalents of Figs. 4.6(b) and (d). A 2-D ideal fil-
ter transfer function has the form illustrated in Fig. 4.14(a) (but in the frequency 
domain). The dashed portion of Fig. 4.16(a) shows the location of the filter function 
to achieve the necessary isolation of a single period of the transform for recon-
struction of a band-limited function from its samples, as in Fig. 4.8. From Fig 4.10, 
we know that if the function is under-sampled, the periods overlap, and it becomes 
impossible to isolate a single period, as Fig. 4.16(b) shows. Aliasing would result 
under such conditions.

ALIASING IN IMAGES

In this section, we extend the concept of aliasing to images, and discuss in detail sev-
eral aspects of aliasing related to image sampling and resampling.

Extensions from 1-D Aliasing

As in the 1-D case, a continuous function f t z( , ) of two continuous variables, t and z, 
can be band-limited in general only if it extends infinitely in both coordinate direc-
tions. The very act of limiting the spatial duration of the function (e.g., by multiply-
ing it by a box function) introduces corrupting frequency components extending to 
infinity in the frequency domain, as explained in Section 4.3 (see also Problem 4.15). 
Because we cannot sample a function infinitely, aliasing is always present in digital 
images, just as it is present in sampled 1-D functions. There are two principal mani-
festations of aliasing in images: spatial aliasing and temporal aliasing. Spatial aliasing 
is caused by under-sampling, as discussed in Section 4.3, and tends to be more visible 

m m

v

vmax

v

mmax

Footprint of a
2-D ideal lowpass
(box) filter

ba

FIGURE 4.16
Two-dimensional 
Fourier  
transforms of (a) an 
over-sampled, and 
(b) an under-sam-
pled, band-limited 
function. 
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280    Chapter 4  Filtering in the Frequency Domain

(and objectionable) in images with repetitive patterns. Temporal aliasing is related 
to time intervals between images of a sequence of dynamic images. One of the most 
common examples of temporal aliasing is the “wagon wheel” effect, in which wheels 
with spokes in a sequence of images (for example, in a movie) appear to be rotating 
backwards. This is caused by the frame rate being too low with respect to the speed 
of wheel rotation in the sequence, and is similar to the phenomenon described in 
Fig. 4.11, in which under sampling produced a signal that appeared to be of much 
lower frequency than the original. 

Our focus in this chapter is on spatial aliasing. The key concerns with spatial alias-
ing in images are the introduction of artifacts such as jaggedness in line features, spu-
rious highlights, and the appearance of frequency patterns not present in the original 
image. Just as we used Fig. 4.9 to explain aliasing in 1-D functions, we can develop 
an intuitive grasp of the nature of aliasing in images using some simple graphics. The 
sampling grid in the center section of Fig. 4.17 is a 2-D representation of the impulse 
train in Fig. 4.15. In the grid, the little white squares correspond to the location of the 
impulses (where the image is sampled) and black represents the separation between 
samples. Superimposing the sampling grid on an image is analogous to multiplying 
the image by an impulse train, so the same sampling concepts we discussed in con-
nection with the impulse train in Fig. 4.15 are applicable here. The focus now is to 
analyze graphically the interaction between sampling rate (the separation of the 
sampling points in the grid) and the frequency of the 2-D signals being sampled.

Figure 4.17 shows a sampling grid partially overlapping three 2-D signals (regions 
of an image) of low, mid, and high spatial frequencies (relative to the separation 
between sampling cells in the grid). Note that the level of spatial “detail” in the 
regions is proportional to frequency (i.e., higher-frequency signals contain more 
bars). The sections of the regions inside the sampling grip are rough manifestations 
of how they would appear after sampling. As expected, all three digitized regions 

Sampling grid

Low frequency

Mid frequency

High frequency

FIGURE 4.17
Various aliasing 
effects resulting 
from the  
interaction  
between the 
frequency of 2-D 
signals and the 
sampling rate 
used to digitize 
them. The regions 
outside the 
sampling grid are 
continuous and 
free of aliasing.
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4.7  The Basics of Filtering in the Frequency Domain    307

between frequency content and rate of change of intensity levels in an image, can 
lead to some very useful results. We will show in Section 4.8 the effects of modifying 
various frequency ranges in the transform of Fig. 4.28(a). 

FREQUENCY DOMAIN FILTERING FUNDAMENTALS

Filtering in the frequency domain consists of modifying the Fourier transform of an 
image, then computing the inverse transform to obtain the spatial domain represen-
tation of the processed result. Thus, given (a padded) digital image, f x y( , ), of size 
P Q×  pixels, the basic filtering equation in which we are interested has the form:

	 g x y H F( , ) ( , ) ( , )= [ ]{ }−Real � 1 u v u v 	 (4-104)

where �−1  is the IDFT, F( , )u v  is the DFT of the input image, f x y( , ), H( , )u v  is a 
filter transfer function (which we often call just a filter or filter function), and g x y( , ) 
is the filtered (output) image. Functions F, H, and g are arrays of size P Q× , the same 
as the padded input image. The product H F( , ) ( , )u v u v  is formed using elementwise 
multiplication, as defined in Section 2.6. The filter transfer function modifies the 
transform of the input image to yield the processed output, g x y( , ). The task of speci-
fying H( , )u v  is simplified considerably by using functions that are symmetric about 
their center, which requires that F( , )u v  be centered also. As explained in Section 4.6, 
this is accomplished by multiplying the input image by ( )− +1 x y  prior to computing 
its transform.†

† Some software implementations of the 2-D DFT (e.g., MATLAB) do not center the transform. This implies 
that filter functions must be arranged to correspond to the same data format as the uncentered transform (i.e., 
with the origin at the top left). The net result is that filter transfer functions are more difficult to generate and 
display. We use centering in our discussions to aid in visualization, which is crucial in developing a clear under-
standing of filtering concepts. Either method can be used in practice, provided that consistency is maintained. 

If H is real and  
symmetric and f is real 
(as is typically the case), 
then the IDFT in Eq. 
(4-104) should yield 
real quantities in theory. 
In practice, the inverse 
often contains para-
sitic complex terms from 
roundoff error and other 
computational inaccura-
cies. Thus, it is customary 
to take the real part of 
the IDFT to form g.

ba

FIGURE 4.28 (a) SEM image of a damaged integrated circuit. (b) Fourier spectrum of (a).  
(Original image courtesy of Dr. J. M. Hudak, Brockhouse Institute for Materials Research, 
McMaster University, Hamilton, Ontario, Canada.) 
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FIGURE 4.30 Top row: Frequency domain filter transfer functions of (a) a lowpass filter, (b) a highpass filter, and (c) 
an offset highpass filter. Bottom row: Corresponding filtered images obtained using Eq. (4-104). The offset in (c) is 
a = 0 85. , and the height of H( , )u v  is 1. Compare (f) with Fig. 4.28(a). 

ba c

FIGURE 4.31 (a) A simple image. (b) Result of blurring with a Gaussian lowpass filter without padding. (c) Result of 
lowpass filtering with zero padding. Compare the vertical edges in (b) and (c). 
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4.9  Image Sharpening Using Highpass Filters    337

encompasses a very small neighborhood, while the formulation in Eqs. (4-125) and (4-126) encompasses 
the entire image.

UNSHARP MASKING, HIGH-BOOST FILTERING, AND HIGH- 
FREQUENCY-EMPHASIS FILTERING

In this section, we discuss frequency domain formulations of the unsharp masking 
and high-boost filtering image sharpening techniques introduced in Section 3.6.3. 
Using frequency domain methods, the mask defined in Eq. (3.6-8) is given by 

	 g x y f x y f x ymask LP( , ) ( , ) ( , )= − 	 (4-128)

with

	 f x y H FLP LP( , ) ( , ) ( , )= [ ]−� 1 u v u v 	 (4-129)

where HLP( , )u v  is a lowpass filter transfer function, and F( , )u v  is the DFT of f x y( , ). 
Here, f x yLP( , ) is a smoothed image analogous to f x y( , ) in Eq. (3-78). Then, as in 
Eq. (3-79),

	 g x y f x y kg x y( , ) ( , ) ( , )= + mask 	 (4-130)

This expression defines unsharp masking when k = 1 and high-boost filtering when 
k > 1. Using the preceding results, we can express Eq. (4-130) entirely in terms of 
frequency domain computations involving a lowpass filter:

	 g x y k H F( , ) ( , ) ( , )= + −[ ]{ }−� 1 1 1Q RLP u v u v 	 (4-131)

ba

FIGURE 4.56
(a) Original, 
blurry image.  
(b) Image 
enhanced using 
the Laplacian in 
the frequency  
domain.  
Compare with 
Fig. 3.52(d). 
(Original image 
courtesy of 
NASA.)
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338    Chapter 4  Filtering in the Frequency Domain

We can express this result in terms of a highpass filter using Eq. (4-118):

	 g x y kH FP( , ) ( , ) ( , )= +[ ]{ }−� 1 1 H u v u v 	 (4-132)

The expression contained within the square brackets is called a high-frequency-
emphasis filter transfer function. As noted earlier, highpass filters set the dc term 
to zero, thus reducing the average intensity in the filtered image to 0. The high-fre-
quency-emphasis filter does not have this problem because of the 1 that is added to 
the highpass filter transfer function. Constant k gives control over the proportion of 
high frequencies that influences the final result. A slightly more general formulation 
of high-frequency-emphasis filtering is the expression

	 g x y k k H F( , ) ( , ) ( , )= +[ ]{ }−� 1
1 2 HP u v u v 	 (4-133)

where k1 0≥  offsets the value the transfer function so as not to zero-out the dc term 
[see Fig. 4.30(c)], and k2 0>  controls the contribution of high frequencies.

EXAMPLE 4.22 :  Image enhancement using high-frequency-emphasis filtering.

Figure 4.57(a) shows a 503 720× -pixel  chest X-ray image with a narrow range of intensity levels. The 
objective of this example is to enhance the image using high-frequency-emphasis filtering. X-rays can-
not be focused in the same manner that optical lenses can, and the resulting images generally tend to be 
slightly blurred. Because the intensities in this particular image are biased toward the dark end of the 

ba
dc

FIGURE 4.57
(a) A chest X-ray.
(b) Result of  
filtering with a 
GHPF function.  
(c) Result of 
high-frequency-
emphasis filtering 
using the same 
GHPF. (d) Result 
of performing  
histogram  
equalization on (c). 
(Original image 
courtesy of Dr. 
Thomas R. Gest, 
Division of  
Anatomical  
Sciences,  
University of 
Michigan Medical 
School.)
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348    Chapter 4  Filtering in the Frequency Domain

EXAMPLE 4.25 :  Using notch filtering to remove periodic interference.

Figure 4.65(a) shows an image of part of the rings surrounding the planet Saturn. This image was cap-
tured by Cassini, the first spacecraft to enter the planet’s orbit. The nearly sinusoidal pattern visible in 
the image was caused by an AC signal superimposed on the camera video signal just prior to digitizing 
the image. This was an unexpected problem that corrupted some images from the mission. Fortunately, 
this type of interference is fairly easy to correct by postprocessing. One approach is to use notch filtering. 

Figure 4.65(b) shows the DFT spectrum. Careful analysis of the vertical axis reveals a series of 
small bursts of energy near the origin which correspond to the nearly sinusoidal interference. A simple 
approach is to use a narrow notch rectangle filter starting with the lowest frequency burst, and extending 
for the remainder of the vertical axis. Figure 4.65(c) shows the transfer function of such a filter (white 
represents 1 and black 0). Figure 4.65(d) shows the result of processing the corrupted image with this 
filter. This result is a significant improvement over the original image.

To obtain and image of just the interference pattern, we isolated the frequencies in the vertical axis 
using a notch pass transfer function, obtained by subtracting the notch reject function from 1 [see 
Fig. 4.66(a)]. Then, as Fig. 4.66(b) shows, the IDFT of the filtered image is the spatial interference pattern.

ba
dc

FIGURE 4.65
(a) Image of  
Saturn rings 
showing nearly 
periodic  
interference.  
(b) Spectrum. 
(The bursts of 
energy in the  
vertical axis 
near the origin 
correspond to 
the interference 
pattern).  
(c) A vertical 
notch reject filter 
transfer function.  
(d) Result of 
filtering.  
(The thin black 
border in (c) is 
not part of the 
data.) (Original 
image courtesy 
of Dr. Robert A. 
West, NASA/
JPL.) 
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(b)	  Do you think the result would have been dif-
ferent if the order of the filtering process had 
been reversed?

4.62	 Consider the sequence of images shown below. 
The image on the top left is a segment of an X-ray 
image of a commercial printed circuit board. The 
images following it are, respectively, the results of 
subjecting the image to 1, 10, and 100 passes of a 
Gaussian highpass filter with D0 30= . The images 
are of size 330 334×  pixels, with each pixel being 
represented by 8 bits of gray. The images were 
scaled for display, but this has no effect on the 
problem statement.

(Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

(a)	 It appears from the images that changes will 
cease to take place after a finite number of 
passes. Show whether or not this is the case. 
You may ignore computational round-off 
errors. Let cmin denote the smallest positive 
number representable in the machine in 
which the computations are conducted. 

(b)	 If you determined in (a) that changes would 
cease after a finite number of iterations, 
determine the minimum value of that num-
ber.

(Hint: Study the solution to Problem 4.53.)

4.63	 As illustrated in Fig. 4.57, combining high-fre-
quency emphasis and histogram equalization is 

an effective method for achieving edge sharpen-
ing and contrast enhancement.

(a) *	Show whether or not it matters which pro-
cess is applied first.

(b)	 If the order does matter, give a rationale for 
using one or the other method first.

4.64	 Use a Butterworth highpass filter to construct a 
homomorphic filter transfer function that has the 
same general shape as the function in Fig. 4.59.

4.65	 Suppose that you are given a set of images gener-
ated by an experiment dealing with the analysis of 
stellar events. Each image contains a set of bright, 
widely scattered dots corresponding to stars in 
a sparsely occupied region of the universe. The 
problem is that the stars are barely visible as a 
result of superimposed illumination from atmo-
spheric dispersion. If these images are modeled as 
the product of a constant illumination component 
with a set of impulses, give an enhancement pro-
cedure based on homomorphic filtering designed 
to bring out the image components due to the 
stars themselves.

4.66	 How would you generate an image of only the 
interference pattern visible in Fig. 4.64(a)?

4.67 *	 Show the validity of Eqs. (4-171) and (4-172). 
(Hint: Use proof by induction.)

4.68	 A skilled medical technician is assigned the job of 
inspecting a set of images generated by an elec-
tron microscope experiment. In order to simplify 
the inspection task, the technician decides to use 
digital image enhancement and, to this end, exam-
ines a set of representative images and finds the 
following problems: (1) bright, isolated dots that 
are of no interest; (2) lack of sharpness; (3) not 
enough contrast in some images; and (4) shifts 
in the average intensity to values other than A0 ,  
which is the average value required to perform 
correctly certain intensity measurements. The 
technician wants to correct these problems and 
then display in white all intensities in a band 
between intensities I1  and I2 , while keeping nor-
mal tonality in the remaining intensities. Propose 
a sequence of processing steps that the technician 
can follow to achieve the desired goal. You may 
use techniques from both Chapters 3 and 4.
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362    Chapter 4  Filtering in the Frequency Domain

Projects 
MATLAB solutions to the projects marked with an asterisk (*) are in the DIP4E Student Support Package (consult 
the book website: www.ImageProcessingPlace.com). 

4.1	 Write a function g = minusOne4e(f) that multiplies f 
by ( )− +1 x y  to produce g. Array f can be 1-D (row 
or column) or 2-D. The input image must be float-
ing point, so your function should perform a vali-
dation check for this.

4.2	 Implementation and testing of the 2-D FFT and 
its inverse using a 1-D FFT algorithm.

(a) *	Obtain a routine that computes the 1-D FFT 
in the language you are using for projects. For 
example, excellent FFT implementations in C 
are available from www.fftw.org. If you are 
working in MATLAB, use function fft. Use 
the 1-D FFT routine to implement a function 
F = dft2D4e(f) that computes the 2-D forward 
FFT of image f, as explained in Section 4.11.

(b)	 Write a function f = idft2D4e(F) that computes 
the inverse FFT of an input transform F. 
(Hint: Work with the conjugate of F so that 
you can use the forward FFT function from 
(a) to compute the inverse, as explained in 
Section 4.11.)

(c)	 Read the image rose512.tif and scale it to the 
range [ , ]0 1  using the default settings of func-
tion intScaling4e. Denote the result by f. Test 
your functions by (1) computing F, the for-
ward FFT of f, and (2) obtaining g, the real 
part of the inverse FFT of F. Display f, g, and 
the difference, d = f – g, of the two. Display-
the maximum and minimum values of d. The 
displays of f and g should look identical, and 
d should appear as a black image.

(d) *	Compute the centered transform and display 
the spectrum of F as S = log(1 + abs(F)). Scale 
S using the 'full' option in function intScaling4e 
before displaying it.

4.3	 Lowpass filter transfer functions.

(a) *	Write a function H = lpFilterTF4e(type,P,Q,param) 
to generate a P  Q lowpass filter transfer 
function, H, with the following properties. If 
type = 'ideal', param should be a scalar equal 
to the cut-off frequency D0  in Eq. (4-111). If 
type = 'gaussian', param should be a scalar equal 
to the standard deviation D0  in Eq. (4-116). 

If type = 'butterworth', param should be a 1 2×  
array (vector) containing the cutoff frequen-
cy and filter order, [ , ],D n0  in Eq. (4-117).

(b) *	Generate a lowpass ideal filter transfer func-
tion of size 512 512×  with D0 96= . Display 
your result as an image.

(c)	 Generate a lowpass Gaussian filter transfer 
function of size 512 512×  with D0 96= . Dis-
play your result as an image.

(d)	 Generate a lowpass Butterworth filter 
transfer function of size 512 512× . Choose 
D0 96=  and n = 2. Display your result as an 
image.

4.4	 Highpass filter transfer functions.

(a) *	Write a function H = hpFilterTF4e(type,P,Q,param) 
to generate a P  Q highpass filter transfer 
function, H, with the following properties. If 
type = 'ideal', param should be a scalar equal 
to the cut-off frequency D0  in Eq. (4-119). 
If type = 'gaussian', param should be a scalar 
equal to the standard deviation D0  in Eq. 
(4-120). If type = 'butterworth', param should be 
a 1 2×  array (vector) the cutoff frequency 
and filter order, [ , ],D n0  in Eq. (4-121).

(b) *	Generate an ideal highpass filter transfer 
function of size 512 512×  with D0 96= . Dis-
play your result as an image.

(c)	 Generate a highpass Gaussian filter transfer 
function of size 512 512×  with D0 96= . Dis-
play your result as an image.

(d)	 Generate a highpass Butterworth filter 
transfer function of size 512 512× . Choose 
D0 96=  and n = 2.

4.5	 Frequency domain filtering package.

(a) *	Write a function, g = dftFiltering4e(f,H,padmode 
scaling) to filter image f with a given filter 
transfer function H. Your function should 
implement the seven steps in the filtering 
algorithm discussed in Section 4.7. If padmode 
= 'replicate' or is not included in the argument, 
then replicate padding should be used. If pad-
mode = 'zeros', zero padding should be used. 
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5 Image Restoration 
and Reconstruction

Preview
As in image enhancement, the principal goal of restoration techniques is to improve an image in some 
predefined sense. Although there are areas of overlap, image enhancement is largely a subjective pro-
cess, while image restoration is for the most part an objective process. Restoration attempts to recover 
an image that has been degraded by using a priori knowledge of the degradation phenomenon. Thus, 
restoration techniques are oriented toward modeling the degradation and applying the inverse process 
in order to recover the original image. In this chapter, we consider linear, space invariant restoration 
models that are applicable in a variety of restoration situations. We also discuss fundamental tech-
niques of image reconstruction from projections, and their application to computed tomography (CT), 
one of the most important commercial applications of image processing, especially in health care.

Upon completion of this chapter, readers should:
	 Be familiar with the characteristics of various 

noise models used in image processing, and 
how to estimate from image data the param-
eters that define those models.

	 Be familiar with linear, nonlinear, and adap-
tive spatial filters used to restore (denoise) 
images that have been degraded only by noise.

	 Know how to apply notch filtering in the fre-
quency domain for removing periodic noise 
in an image.

	 Understand the foundation of linear, space 
invariant system concepts, and how they can 

be applied in formulating image restoration 
solutions in the frequency domain.

	 Be familiar with direct inverse filtering and its 
limitations.

	 Understand minimum mean-square-error (Wie-
ner) filtering and its advantages over direct 
inverse filtering.

	 Understand constrained, least-squares filter-
ing.

	 Be familiar with the fundamentals of image 
reconstruction from projections, and their 
application to computed tomography.

Things which we see are not themselves what we see . . .  
It remains completely unknown to us what the objects may be 
by themselves and apart from the receptivity of our senses. 
We know only but our manner of perceiving them.

Immanuel Kant
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366    Chapter 5  Image Restoration and Reconstruction

5.1	A MODEL OF THE IMAGE DEGRADATION/RESTORATION  
PROCESS  

In this chapter, we model image degradation as an operator �  that, together with an 
additive noise term, operates on an input image f x y( , ) to produce a degraded image 
g x y( , ) (see Fig. 5.1). Given g x y( , ), some knowledge about �,  and some knowledge 
about the additive noise term h( , ),x y  the objective of restoration is to obtain an 
estimate ˆ( , )f x y  of the original image. We want the estimate to be as close as possible 
to the original image and, in general, the more we know about �  and h, the closer 
ˆ( , )f x y  will be to f x y( , ). 

We will show in Section 5.5 that, if �  is a linear, position-invariant operator, then 
the degraded image is given in the spatial domain by

	 g x y h f x y x y( , ) ( )( , ) ( , )= + h 	 (5-1)

where h x y( , ) is the spatial representation of the degradation function. As in Chapters 
3 and 4, the symbol “” indicates convolution. It follows from the convolution theorem 
that the equivalent of Eq. (5-1) in the frequency domain is

	 G H F N( , ) ( , ) ( , ) ( , )u v u v u v u v= + 	 (5-2)

where the terms in capital letters are the Fourier transforms of the corresponding 
terms in Eq. (5-1). These two equations are the foundation for most of the restora-
tion material in this chapter.

In the following three sections, we work only with degradations caused by noise. 
Beginning in Section 5.5 we look at several methods for image restoration in the 
presence of both �  and h.

5.2	NOISE MODELS  

The principal sources of noise in digital images arise during image acquisition and/or 
transmission. The performance of imaging sensors is affected by a variety of environ-
mental factors during image acquisition, and by the quality of the sensing elements 
themselves. For instance, in acquiring images with a CCD camera, light levels and 
sensor temperature are major factors affecting the amount of noise in the resulting 
image. Images are corrupted during transmission principally by interference in the 
transmission channel. For example, an image transmitted using a wireless network 
might be corrupted by lightning or other atmospheric disturbance. 

5.1

5.2

Degradation

DEGRADATION RESTORATION

Restoration
filter(s)

f(x, y)

g(x, y)

f(x, y)ˆ

Noise
h(x, y)

��

FIGURE 5.1
A model of the 
image  
degradation/ 
restoration  
process. 
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ba

FIGURE 5.5
(a) Image  
corrupted by  
additive  
sinusoidal noise. 
(b) Spectrum 
showing two  
conjugate  
impulses caused 
by the sine wave.  
(Original  
image courtesy of 
NASA.) 

of noise components directly from the image, but this is possible only in simplis-
tic cases. Automated analysis is possible in situations in which the noise spikes are 
either exceptionally pronounced, or when knowledge is available about the general 
location of the frequency components of the interference (see Section 5.4).

The parameters of noise PDFs may be known partially from sensor specifications, 
but it is often necessary to estimate them for a particular imaging arrangement. If 
the imaging system is available, one simple way to study the characteristics of system 
noise is to capture a set of “flat” images. For example, in the case of an optical sen-
sor, this is as simple as imaging a solid gray board that is illuminated uniformly. The 
resulting images typically are good indicators of system noise.

When only images already generated by a sensor are available, it is often possible 
to estimate the parameters of the PDF from small patches of reasonably constant 
background intensity. For example, the vertical strips shown in Fig. 5.6 were cropped 
from the Gaussian, Rayleigh, and uniform images in Fig. 5.4. The histograms shown 
were calculated using image data from these small strips. The histograms in Fig. 5.4 
that correspond to the histograms in Fig. 5.6 are the ones in the middle of the group 
of three in Figs. 5.4(d), (e), and (k).We see that the shapes of these histograms cor-
respond quite closely to the shapes of the corresponding histograms in Fig. 5.6. Their 
heights are different due to scaling, but the shapes are unmistakably similar.

The simplest use of the data from the image strips is for calculating the mean and 
variance of intensity levels. Consider a strip (subimage) denoted by S, and let p zS i( ),
i L= −0 1 2 1, , , , ,…  denote the probability estimates (normalized histogram values) 
of the intensities of the pixels in S, where L is the number of possible intensities in 
the entire image (e.g., 256 for an 8-bit image). As in Sections 2.6 and 3.3, we estimate 
the mean and variance of the pixel values in S as follows:

	 z z p zi S i
i

L

=
=

−

∑ ( )
0

1

	 (5-19)

and
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FIGURE 5.16
(a) Image cor-
rupted by sinusoi-
dal interference.  
(b) Spectrum  
showing the 
bursts of energy 
caused by the 
interference. (The 
bursts were  
enlarged for 
display purposes.) 
(c) Notch filter 
(the radius of the 
circles is 2 pixels) 
used to eliminate 
the energy bursts. 
(The thin borders 
are not part of the 
data.)  
(d) Result of  
notch reject  
filtering.  
(Original  
image courtesy of 
NASA.) 

FIGURE 5.17
Sinusoidal  
pattern extracted 
from the DFT  
of Fig. 5.16(a) 
using a notch pass 
filter.

which, as you know from Chapter 4, are responsible for the intensity differences between smooth areas. 
Figure 5.18(c) shows the filter transfer function we used, and Fig. 5.18(d) shows the filtered result. Most 
of the fine scan lines were eliminated or significantly attenuated. In order to get an image of the noise 
pattern, we proceed as before by converting the reject filter into a pass filter, and then filtering the input 
image with it. Figure 5.19 shows the result.
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FIGURE 5.19
Noise pattern  
extracted from 
Fig. 5.18(a) by 
notch pass  
filtering.

ba
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FIGURE 5.18
(a) Satellite image 
of Florida and the 
Gulf of Mexico. 
(Note horizontal 
sensor scan lines.) 
(b) Spectrum of 
(a). (c) Notch  
reject filter  
transfer  
function. (The 
thin black border 
is not part of the 
data.) (d) Filtered 
image. (Original 
image courtesy of 
NOAA.)  

DIP4E_Print_Ready.indb   392 4/2/2017   8:38:10 PM



392    Chapter 5  Image Restoration and Reconstruction

FIGURE 5.19
Noise pattern  
extracted from 
Fig. 5.18(a) by 
notch pass  
filtering.

ba
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FIGURE 5.18
(a) Satellite image 
of Florida and the 
Gulf of Mexico. 
(Note horizontal 
sensor scan lines.) 
(b) Spectrum of 
(a). (c) Notch  
reject filter  
transfer  
function. (The 
thin black border 
is not part of the 
data.) (d) Filtered 
image. (Original 
image courtesy of 
NOAA.)  
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FIGURE 5.29 (a) 8-bit image corrupted by motion blur and additive noise. (b) Result of inverse filtering. (c) Result of 
Wiener filtering. (d)–(f) Same sequence, but with noise variance one order of magnitude less. (g)–(i) Same sequence, 
but noise variance reduced by five orders of magnitude from (a). Note in (h) how the deblurred image is quite vis-
ible through a “curtain” of noise.  
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terms of digital images, this means duplicating the same 1-D signal across the image, 
perpendicularly to the direction of the beam. For example, Fig. 5.32(c) was created 
by duplicating the 1-D signal in all columns of the reconstructed image. For obvious 
reasons, the approach just described is called backprojection.

Next, suppose that we rotate the position of the source-detector pair by 90°, as 
in Fig. 5.32(d). Repeating the procedure explained in the previous paragraph yields 
a backprojection image in the vertical direction, as Fig. 5.32(e) shows. We continue 
the reconstruction by adding this result to the previous backprojection, resulting in 
Fig. 5.32(f). Now, we begin to suspect that the object of interest is contained in the 
square shown, whose amplitude is twice the amplitude of the individual backprojec-
tions because the signals were added. We should be able to learn more about the 
shape of the object in question by taking more views in the manner just described, 
as Fig. 5.33 shows. As the number of projections increases, the amplitude strength 
of non-intersecting backprojections decreases relative to the strength of regions in 
which multiple backprojections intersect. The net effect is that brighter regions will 
dominate the result, and backprojections with few or no intersections will fade into 
the background as the image is scaled for display.

Figure 5.33(f), which was formed from 32 backprojections, illustrates this concept. 
Note, however, that while this reconstructed image is a reasonably good approxi-
mation to the shape of the original object, the image is blurred by a “halo” effect, 
the formation of which can be seen in progressive stages in Fig. 5.33. For example, 
the halo in Fig. 5.33(e) appears as a “star” whose intensity is lower than that of the 
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FIGURE 5.32
(a) Flat region 
with a single 
object. (b) Parallel 
beam, detector 
strip, and profile of 
sensed 1-D  
absorption signal. 
(c) Result of back-
projecting the 
absorption profile. 
(d) Beam and 
detectors rotated 
by 90°.  
(e) Backprojection. 
(f) The sum of (c) 
and (e), inten-
sity-scaled. The 
intensity where the 
backprojections 
intersect is twice 
the intensity of the 
individual back-
projections. 

Absorption profile (signal)

Ray Detector strip

B
ea

m
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418    Chapter 5  Image Restoration and Reconstruction

object, but higher than the background. As the number of views increases, the shape 
of the halo becomes circular, as in Fig. 5.33(f). Blurring in CT reconstruction is an 
important issue, whose solution is addressed later in this section. Finally, we con-
clude from the discussion of Figs. 5.32 and 5.33 that backprojections 180° apart are 
mirror images of each other, so we have to consider only angle increments halfway 
around a circle in order to generate all the backprojections required for reconstruc-
tion.

EXAMPLE 5.14 :  Backprojections of a planar region containing two objects.

Figure 5.34 illustrates reconstruction using backprojections on a region that contains two objects with 
different absorption properties (the larger object has higher absorption). Figure 5.34(b) shows the result 
of using one backprojection. We note three principal features in this figure, from bottom to top: a thin 
horizontal gray band corresponding to the unoccluded portion of the small object, a brighter (more 
absorption) band above it corresponding to the area shared by both objects, and an upper band corre-
sponding to the rest of the elliptical object. Figures 5.34(c) and (d) show reconstruction using two pro-
jections 90° apart and four projections 45° apart, respectively. The explanation of these figures is similar 
to the discussion of Figs. 5.33(c) through (e). Figures 5.34(e) and (f) show more accurate reconstructions 
using 32 and 64 backprojections, respectively. The last two results are quite close visually, and they both 
show the blurring problem mentioned earlier.

PRINCIPLES OF X-RAY COMPUTED TOMOGRAPHY (CT)

As with the Fourier transform discussed in the last chapter, the basic mathematical 
concepts required for CT were in place many years before the availability of digital 
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FIGURE 5.33
(a) Same as  
Fig. 5.32(a).  
(b)-(e) Recon-
struction using 1,  
2, 3, and 4 back-
projections 45° 
apart.  
(f) Reconstruction 
with 32 backpro-
jections 5.625° 
apart (note the 
blurring).
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Projects  
MATLAB solutions to the projects marked with an asterisk (*) are in the DIP4E Student Support Package (consult 
the book website: www.ImageProcessingPlace.com). 

5.1	 Read the image book-cover-gaussian.tif. You are 
told that this image has been corrupted by addi-
tive Gaussian noise. Find estimates of the mean 
and standard deviation of the noise. (Hint: Take 
a look at Fig. 5.6 and review project function 
centralMoments4e.)

5.2	 Obtain functions for generating 2-D arrays of uni-
form and Gaussian random numbers in the lan-
guage you are using for your projects. If you are 
using MATLAB, functions rand and randn are the 
noise generators of choice for this purpose. Read 
the image testpattern512.tif, scale it to the range 
[0, 1] using the default mode of project function 
intScaling4e, and do the following.

(a) *	Fix the mean at 0.25 and add three levels of 
Gaussian noise to the image by varying the 
standard deviation. The three levels should 
be such that the noise appears (1) mild (you 
can tell the noise is there, but it is barely per-
ceivable; (2) intermediate (the noise is defi-
nitely present, but all the image features are 
still clearly visible); and (3) heavy (the noise 
is objectionable, causing some of the image 
features to be obscured by the noise); (4) 
extra heavy (the noise dominates the image; 
most of the smaller and light features in the 

image are obscured by noise). For compari-
sons of your results to be meaningful, you 
should scale the image to the full range [0, 1], 
using the 'full' and 'floating' options in func-
tion intScaling4e. Show all four results and list 
the values of standard deviation you used.  
Explain why image details begin to disap-
pear as the noise level increases significantly.

(b)	 Repeat the four levels of noise outlined in 
(a) using uniform noise. Note that the param-
eters to specify are a and b in Eq. (5-13). Try 
to make your images appear as close as pos-
sible to their Gaussian counterparts. Explain 
why image details begin to disappear as the 
noise level increases significantly. Note any 
significant differences between correspond-
ing images in (a) and (b).

(c)	 You will find that the images in (b) have high-
er contrast than their Gaussian counterparts 
in (a). Explain why.

5.3	 Working with salt-and-pepper noise.

(a) *	Explain how you can modify a generator of 
uniform random numbers to produce salt-
and-pepper noise with specified probabilities 
Ps  for salt pixels and Pp for pepper pixels. 

5.46	 Show that the Radon transform [Eq. (5-102)] of 
the Gaussian shape f x y A x y( , ) exp( )= − −2 2  is 
given by g A( , ) exp( ).r u p r= − 2  (Hint: Refer to 
Example 5.15, where we used symmetry to sim-
plify integration.)

5.47	 Do the following:

(a) *	Show that the Radon transform [Eq. (5-102)] 
of the unit impulse d( , )x y  is a straight ver-
tical line passing through the origin of the 
ru-plane .

(b)	 Show that the radon transform of the 
impulse d( , )x x y y− −0 0  is a sinusoidal curve 
in the ru-plane.

5.48	 Prove the validity of the following properties of 
the Radon transform [Eq. (5-102)]:

(a) *	Linearity: The Radon transform is a linear 
operator. (See Section 2.6 regarding linear-
ity.)

(b)	 Translation property: The radon transform of 
f x x y y( , )− −0 0  is g x y( cos sin , ).r u u u− −0 0

(c) *	Convolution property: The Radon transform 
of the convolution of two functions is equal 
to the convolution of the Radon transforms 
of the two functions.

5.49	 Provide the steps that lead from Eq. (5-113) to   
Eq. (5-114). [Hint: G G( , ) ( , ).]v u v u+ = −180°

5.50 *	Prove the validity of Eq. (5-125).

5.51	 Prove the validity of Eq. (5-127).
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6 Wavelet and Other Image 
Transforms

Preview
The discrete Fourier transform of Chapter 4 is a member of an important class of linear transforms that 
include the Hartley, sine, cosine, Walsh-Hadamard, Slant, Haar, and wavelet transforms. These trans-
forms, which are the subject of this chapter, decompose functions into weighted sums of orthogonal or 
biorthogonal basis functions, and can be studied using the tools of linear algebra and functional analysis. 
When approached from this point of view, images are vectors in the vector space of all images. Basis 
functions determine the nature and usefulness of image transforms. Transforms are the coefficients of 
linear expansions. And for a given image and transform (or set of basis functions), both the orthogo-
nality of the basis functions and the coefficients of the resulting transform are computed using inner 
products. All of an image’s transforms are equivalent in the sense that they contain the same informa-
tion and total energy. They are reversible and differ only in the way that the information and energy is 
distributed among the transform’s coefficients.

Upon competion of this chapter, readers should:
	 Understand image transforms in the context 

of series expansions.

	 Be familiar with a variety of important image 
transforms and transform basis functions.

	 Know the difference between orthogonal and 
biorthogonal basis functions.

	 Be able to construct the transformation 
matrices of the discrete Fourier, Hartley, 
sine, cosine, Walsh-Hadamard, Slant, and 
Haar transforms.

	 Be able to compute traditional image trans-
forms, like the Fourier and Haar transforms, 
using elementary matrix operations.

	 Understand the time-frequency plane and its 
relationship to wavelet transforms.

	 Be able to compute 1-D and 2-D fast wavelet 
transforms (FWTs) using filter banks.

	 Understand wavelet packet representations.

	 Be familiar with the use of discrete orthogo-
nal transforms in image processing.

Do not conform any longer to the pattern of this world, but be  
transformed by the renewing of your mind.

Romans 12:2 
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452    Chapter 6  Wavelet and Other Image Transforms

6.1	PRELIMINARIES  

In linear algebra and functional analysis, a vector space (or more formally an abstract 
vector space) is a set of mathematical objects or entities, called vectors, that can be 
added together and multiplied by scalars. An inner product space is an abstract vec-
tor space over a field of numbers, together with an inner product function that maps 
two vectors of the vector space to a scalar of the number field such that 

(a)	 u v v u, , *=
(b)	 u v w u w v w+ +, , ,=
(c)	 a au v u v, ,=
(d)	 v v v v v, ,Ú 0 0 0 and  if and only if = =

where u, v, and w are vectors, a  is a scalar, and p  denotes the inner product opera-
tion. A simple example of a vector space is the set of directed line segments in two 
dimensions, where the line segments are represented mathematically as 2 1×  col-
umn vectors, and the addition of vectors is the arithmetic equivalent of combining 
the line segments in a head to tail manner. An example of an inner product space is 
the set of real numbers R combined with inner product function u v uv, ,=  where 
the “vectors” are real numbers, the inner product function is multiplication, and axi-
oms (a) through (d) above correspond to the commutative, distributive, associative, 
and “positivity of even powers” properties of multiplication, respectively.

Three inner product spaces are of particular interest in this chapter: 

1.	 Euclidean space RN over real number field R with dot or scalar inner product

	 u v u v, = = + =− −
=
∑T

N N i i
i

N

u v u v u v u v0 0 1 1 1 1
0

1

+ +
−

… 	 (6-1)

where u and v are N × 1 column vectors.
2.	 Unitary space CN over complex number field C with inner product function

	 u v u v v u, ,* * *= = =
=

−

∑T
i i

i

N

u v
0

1

	 (6-2)

where * denotes the complex conjugate operation, and u and v are complex-
valued N × 1 column vectors.

3.	 Inner product space C([a, b]), where the vectors are continuous functions on the 
interval a x b≤ ≤  and the inner product function is the integral inner product

	 f x g x f x g x dx
a

b

( ), ( ) ( ) ( )*= 2 	 (6-3)

In all three inner product spaces, the norm or length of vector z, denoted as z , is

	 z z z= , 	 (6-4)

6.1

Consult the Tutorials sec-
tion of the book website 
for a brief tutorial on 
vectors and matrices.

In Chapter 2, the inner 
product of two column  
vectors, u and v, is 
denoted u i v [see 
Eq. (2-50)]. In this 
chapter, u v,  is used to 
denote inner products 
within any inner product 
space satisfying condi-
tions (a)–(d), including 
the Euclidean inner 
product space and real-
valued column vectors of 
Chapter 2. 

Euclidean space RN is an 
infinite set containing all 
real N-tuples.

A complex vector space 
with an inner product is 
called a complex inner 
product space or unitary 
space.

The notation C[a, b} 
is also used in the 
literature.

Equations (6-4) through 
(6-15) are valid for all 
inner product spaces, 
including those defined 
by Eqs. (6-1) to (6-3).
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and the angle between two nonzero vectors z and w is

	 u = cos
,−1 z w

z w
	 (6-5)

If the norm of z is 1, z is said to be normalized. If z w, = 0 in Eq. (6-5), u = 90°  and 
z and w are said to be orthogonal. A natural consequence of these definitions is that 
a set of nonzero vectors w0, w1, w2, ... is mutually or pairwise orthogonal if and only if

	 w w k lk l, = 0   for ≠ 	 (6-6)

They are an orthogonal basis of the inner product space that they are said to span. If 
the basis vectors are normalized, they are an orthonormal basis and

	 w w
k l

k lk l kl, = =
=





d
0

1

   for 

   for 

≠
	 (6-7)

Similarly, a set of vectors w0, w1, w2, ...  and a complementary set of dual vectors 
w w w0 1 2
' ' '

p, , ,  are said to be biorthogonal and a biorthogonal basis of the vector 
space that they span if

	 H Iw w k lk l
'

, = 0   for ≠ 	 (6-8)

They are a biorthonormal basis if and only if

	 H Iw w
k l

k lk l kl
'

, = =
≠
=





d
0

1

for 

for 
	 (6-9)

As a mechanism for concisely describing an infinite set of vectors, the basis of 
an inner product space is one of the most useful concepts in linear algebra. The 
following derivation, which relies on the orthogonality of basis vectors, is founda-
tional to the matrix-based transforms of the next section. Let W w w w= { }0 1 2, , , …  
be an orthogonal basis of inner product space V, and let z V∈ . Vector z can then be 
expressed as the following linear combination of basis vectors

	 z w w w= + + +a a a0 0 1 1 2 2 … 	 (6-10)

whose inner product with basis vector wi is

	
w z w w w w

w w w w w w
i i

i i i i i

, ,

, , ,

= + + +
= + + + +

a a a

a a a

0 0 1 1 2 2

0 0 1 1

…
… …

	 (6-11)

Since the wi are mutually orthogonal, the inner products on the right side of 
Eq. (6-11) are 0 unless the subscripts of the vectors whose inner products are being 

While you must always 
take the context into 
account, we generally 
use the word “vector” 
for vectors in an abstract 
sense. A vector can be 
an N * 1  matrix (i.e., 
column vector) or a 
continuous function.

Recall from linear 
algebra that a basis of a 
vector space is a set of 
linearly independent vec-
tors for which any vector 
in the space can be writ-
ten uniquely as a linear 
combination of basis 
vectors. The linear com-
binations are the span 
of the basis vectors. A 
set of vectors is linearly 
independent if no vector 
in the set can be written 
as a linear combination 
of the others.

While you must always 
take to the context into 
account, we often use 
the phrase “orthogonal 
basis” or “orthogonal 
transform” to refer to 
any basis or transform 
that is orthogonal, ortho-
normal, biorthogonal, or 
biorthonormal.
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FIGURE 6.15  (a) Original image of the 688 688×  test pattern from Fig. 4.41(a). (b) Discrete Fourier transform (DFT) 
of the test pattern in (a) after padding to size 1376 1376× . The blue overlay is an ideal lowpass filter (ILPF) with 
a radius of 60. (c) Result of Fourier filtering. (d)–(f) Discrete Hartley transform, discrete cosine transform (DCT), 
and discrete sine transform (DST) of the test pattern in (a) after padding. The blue overlay is the same ILPF in (b), 
but appears bigger in (e) and (f) because of the higher frequency resolution of the DCT and DST. (g)–(i) Results of 
filtering for the Hartley, cosine, and sine transforms, respectively.
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from its nearest neighboring approximations, and complementary functions, called 
wavelets, are used to encode the differences between adjacent approximations. The 
discrete wavelet transform (DWT) uses those wavelets, together with a single scaling 
function, to represent a function or image as a linear combination of the wavelets 
and scaling function. Thus, the wavelets and scaling function serve as an othonormal 
or biorthonormal basis of the DWT expansion. The Daubechies and Biorthogonal 
B-splines of Figs. 6.3(f) and (g) and the Haar basis functions of the previous section 
are but three of the many bases that can be used in DWTs.

In this section, we present a mathematical framework for the interpretation and 
application of discrete wavelet transforms. We use the discrete wavelet transform 
with respect to Haar basis functions to illustrate the concepts introduced. As you 
proceed through the material, remember that the discrete wavelet transform of a 
function with respect to Haar basis functions is not the Haar transform of the func-
tion (although the two are intimately related).

SCALING FUNCTIONS

Consider the set of basis functions composed of all integer translations and binary 
scalings of the real, square-integrable father scaling function w( )x —that is, the set of 
scaled and translated functions E Fw j k x j k, ( ) | , H Z  where 

	 w wj k
j jx x k, ( ) ( )= 2 22

- 	 (6-121)

In this equation, integer translation k determines the position of w j k x, ( ) along the 
x-axis and scale j determines its shape—i.e., its width and amplitude. If we restrict j 
to some value, say j = j0, then E Fw j k k

0 , | H Z  is the basis of the function space spanned 
by the w j k x, ( ) for j = j0 and k = …, −1, 0, 1, 2, …, denoted Vj0

. Increasing j0 increases 
the number of representable functions in Vj0

, allowing functions with smaller varia-
tions and finer detail to be included in the space. As is demonstrated in Fig. 6.19 with 
Haar scaling functions, this is a consequence of the fact that as j0 increases, the scal-
ing functions used to represent the functions in Vj0

 become narrower and separated 
by smaller changes in x.

EXAMPLE 6.15 :   The Haar scaling function.

Consider the unit-height, unit-width scaling function

	 w( )x
x

=




1 0 1

0

≤ <
otherwise

	 (6-122)

and note it is the Haar basis function h x0 ( ) from Eq.  (6-115). Figure 6.19 shows a few of the pulse-
shaped scaling functions that can be generated by substituting Eq. (6-122) into Eq. (6-121). Note when 
the scale is 1 [i.e., when j = 1 as in Figs. 6.19(d) and (e)], the scaling functions are half as wide as when 
the scale is 0  (i.e., when j = 0 as in Figs. 6.19(a) and (b)]. Moreover, for a given interval on x, there are 

The discrete wavelet 
transform, like all 
transforms considered in 
this chapter, generates 
linear expansions of 
functions with respect to 
sets of orthonormal or 
biorthonormal expansion 
functions.

The coefficients of a 1-D 
full-scale DWT with 
respect to Haar wavelets 
and a 1-D Haar trans-
form are the same.

Z is the set of integers.

Recall from Section 6.1 
that the span of a basis is 
the set of functions that 
can be represented as 
linear combinations of 
the basis functions.

DIP4E_Print_Ready.indb   493 4/2/2017   8:40:03 PM



520    Chapter 6  Wavelet and Other Image Transforms

The cost function just described is both computationally simple and easily adapted to tree optimi-
zation routines. The optimization algorithm must use the function to minimize the “cost” of the leaf 
nodes in the decomposition tree. Minimal energy leaf nodes should be favored because they have more 
near-zero values, which leads to greater compression. Because the cost function of Eq. (6-163) is a local 
measure that uses only the information available at the node under consideration, an efficient algorithm 
for finding minimal energy solutions is easily constructed as follows:

For each node of the analysis tree, beginning with the root and proceeding level by level to the leaves:

1.	 Compute both the energy of the node, denoted EP (for parent energy), and the energy of its four 
offspring—denoted as EA, EH, EV, and ED. For two-dimensional wavelet packet decompositions, 
the parent is a two-dimensional array of approximation or detail coefficients; the offspring are the 
filtered approximation, horizontal, vertical, and diagonal details.

2.	 If the combined energy of the offspring is less than the energy of the parent (that is, EA + EH + EV 
+ ED < EP), include the offspring in the analysis tree. If the combined energy of the offspring is 
greater than or equal to that of the parent, prune the offspring, keeping only the parent. It is a leaf 
of the optimized analysis tree.

The preceding algorithm can be used to (1) prune wavelet packet trees or (2) design procedures for com-
puting optimal trees from scratch. In the latter case, nonessential siblings—descendants of nodes that 

ba

FIGURE 6.39  (a) A scanned fingerprint and (b) its three-scale, full wavelet packet decomposition. Although the 64 
subimages of the packet decomposition appear to be square (e.g., note the approximation subimage), this is merely 
an aberration of the program used to produce the result. (Original image courtesy of the National Institute of Stan-
dards and Technology.)
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526    Chapter 6  Wavelet and Other Image Transforms

ysis tree, labeling all nodes with the names of 
the proper scaling and wavelet spaces.

(b)	 Draw and label the decomposition’s fre-
quency spectrum.

6.48	 Using the Haar wavelet, determine the minimum 
entropy packet decomposition for the function   
for f x( ) .= 0 25 for n  =  0,  1,  …,  15. Employ the 
nonnormalized Shannon entropy

	 E f x f x f x
x

( ) ( )ln ( )[ ] =  ∑ 2 2

as the minimization criterion. Draw the opti-
mal tree, labeling the nodes with the computed 
entropy values.

Projects  
MATLAB solutions to the projects marked with an asterisk (*) are in the DIP4E Student Support Package (consult 
the book website: www.ImageProcessingPlace.com).

6.1 *	 Write a function a = tmat4e(xform,n) to generate 
transformation matrices of size n x n. Input string 
xform should select between the Fourier, Hartley, 
cosine, and sine transforms. Test your function by 
generating the transformation matrices of size 
8 8×  for each of the supported transforms and 
comparing the results to those in Figs. 6.7, 6.8, 6.10, 
and 6.13.

6.2	 Write a pair of functions t = transform4e(f,xform) and  
f = invTransform4e(t,xform) to compute the forward 
and inverse 1- and 2-D transforms of discrete func-
tion f. If input f is two dimensional, it can assumed 
to be a square matrix for simplicity. Input xform 
should select a transformation in accordance with 
tmat4e of Problem 6.1. If input f is a row or column 
vector, compute a 1-D transform; if f is a matrix, 
compute a 2-D transform.

(a)	 Use transform4e to check your answers to 
Problem 6.29.

(b)	 Use invTransform4e to verify that all four trans-
forms are reversible.

6.3	 Write a function thp = idealFilter4e(f,xform,type,r) to 
filter 2-D input function f using an ideal highpass 

or lowpass filter with a cutoff frequency of radius r.  
As in Projects 6.1 and 6.2, input xform should select 
the transform employed. Use input type to specify 
either highpass or lowpass filtering.

(a)	 Download the image characterTestPattern688.tif 
and use your function to duplicate the results 
of Example 6.12.

(b)	 Use function idealFilter4e to highpass filter the 
downloaded image from (a) using the sup-
ported transforms. Use a cutoff frequency of 
radius 60 and compare your results to that of 
Fig. 4.53(a).

6.4	 Write a function i = basisImage4e(xform,n) to gen-
erate and display the basis images of 2-D trans-
form xform. Input xform should select between the 
transforms supported by tmat4e from Project 6.1. 
Organize and display the n x n basis images in an n 
x n array as demonstrated in Fig. 6.6(a). Use your 
function to generate and display the basis images 
of the Fourier, Hartley, sine, and cosine trans-
forms of size 4 4×  (i.e, with n set to 4). (Note: You 
should display the real and imaginary parts of the 
Fourier basis images separately.)
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7 Color Image Processing

Preview
Using color in image processing is motivated by two principal factors. First, color is a powerful descrip-
tor that often simplifies object identification and extraction from a scene. Second, humans can discern 
thousands of color shades, compared to only about two dozen shades of gray. The latter factor is par-
ticularly important in manual image analysis. Color image processing is divided into two major areas: 
pseudo- and full-color processing. In the first category, the issue is one of assigning color(s) to a par-
ticular grayscale intensity or range of intensities. In the second, images typically are acquired using a 
full-color sensor, such as a digital camera, or color scanner. Until just a few years ago, most digital color 
image processing was done at the pseudo- or reduced-color level. However, because color sensors and 
processing hardware have become available at reasonable prices, full-color image processing techniques 
are now used in a broad range of applications. In the discussions that follow, it will become evident that 
some of the grayscale methods covered in previous chapters are applicable also to color images.

Upon completion of this chapter, readers should:
	 Understand the fundamentals of color and 

the color spectrum.

	 Be familiar with several of the color models 
used in digital image processing. 

	 Know how to apply basic techniques in pseudo- 
color image processing, including intensity slic-
ing and intensity-to-color transformations.

	 Be familiar with how to determine if a gray-
scale method is extendible to color images.

	 Understand the basics of working with full-
color images, including color transformations, 
color complements, and tone/color corrections.

	 Be familiar with the role of noise in color 
image processing.

	 Know how to perform spatial filtering on col-
or images. 

	 Understand the advantages of using color in 
image segmentation. 

It is only after years of preparation that the young artist should 
touch color—not color used descriptively, that is, but as a means of 
personal expression. Henri Matisse

For a long time I limited myself to one color—as a form of discipline.
Pablo Picasso
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530    Chapter 7  Color Image Processing

7.1	 COLOR FUNDAMENTALS  

Although the process employed by the human brain in perceiving and interpreting 
color is a physiopsychological phenomenon that is not fully understood, the physical 
nature of color can be expressed on a formal basis supported by experimental and 
theoretical results.

In 1666, Sir Isaac Newton discovered that when a beam of sunlight passes through 
a glass prism, the emerging light is not white, but consists instead of a continuous 
spectrum of colors ranging from violet at one end to red at the other. As Fig. 7.1 
shows, the color spectrum may be divided into six broad regions: violet, blue, green, 
yellow, orange, and red. When viewed in full color (see Fig. 7.2), no color in the spec-
trum ends abruptly; rather, each color blends smoothly into the next.

Basically, the colors that humans and some other animals perceive in an object 
are determined by the nature of the light reflected from the object. As illustrated in 
Fig. 7.2, visible light is composed of a relatively narrow band of frequencies in the 
electromagnetic spectrum. A body that reflects light that is balanced in all visible 
wavelengths appears white to the observer. However, a body that favors reflectance 
in a limited range of the visible spectrum exhibits some shades of color. For example, 
green objects reflect light with wavelengths primarily in the 500 to 570 nm range, 
while absorbing most of the energy at other wavelengths.

Characterization of light is central to the science of color. If the light is achro-
matic (void of color), its only attribute is its intensity, or amount. Achromatic light 
is what you see on movie films made before the 1930s. As defined in Chapter 2, and 
used numerous times since, the term gray (or intensity) level refers to a scalar mea-
sure of intensity that ranges from black, to grays, and finally to white.

Chromatic light spans the electromagnetic spectrum from approximately 400 
to 700 nm. Three basic quantities used to describe the quality of a chromatic light 
source are: radiance, luminance, and brightness. Radiance is the total amount of 
energy that flows from the light source, and it is usually measured in watts (W). 
Luminance, measured in lumens (lm), is a measure of the amount of energy that 
an observer perceives from a light source. For example, light emitted from a source 
operating in the far infrared region of the spectrum could have significant energy 
(radiance), but an observer would hardly perceive it; its luminance would be almost 
zero. Finally, brightness is a subjective descriptor that is practically impossible to 
measure. It embodies the achromatic notion of intensity, and is one of the key fac-
tors in describing color sensation.

7.1

FIGURE 7.1
Color spectrum 
seen by passing 
white light through 
a prism.  
(Courtesy of the 
General Electric 
Co., Lighting  
Division.)
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7.1  Color Fundamentals    531

As noted in Section  2.1, cones are the sensors in the eye responsible for color 
vision. Detailed experimental evidence has established that the 6 to 7 million cones in 
the human eye can be divided into three principal sensing categories, corresponding 
roughly to red, green, and blue. Approximately 65% of all cones are sensitive to red 
light, 33% are sensitive to green light, and only about 2% are sensitive to blue. How-
ever, the blue cones are the most sensitive. Figure 7.3 shows average experimental 
curves detailing the absorption of light by the red, green, and blue cones in the eye. 
Because of these absorption characteristics, the human eye sees colors as variable 
combinations of the so-called primary colors: red (R), green (G), and blue (B). 

For the purpose of standardization, the CIE (Commission Internationale de 
l’Eclairage—the International Commission on Illumination) designated in 1931 the 
following specific wavelength values to the three primary colors: blue  nm,= 435 8.  
green  nm,= 546 1.  and red  nm.= 700  This standard was set before results such as 
those in Fig. 7.3 became available in 1965. Thus, the CIE standards correspond only 
approximately with experimental data. It is important to keep in mind that defining 
three specific primary color wavelengths for the purpose of standardization does 

FIGURE 7.2
Wavelengths compris-
ing the visible range 
of the electromagnetic 
spectrum. (Courtesy of 
the General Electric 
Co., Lighting Division.)

FIGURE 7.3
Absorption of 
light by the red, 
green, and blue 
cones in the 
human eye as a 
function of  
wavelength.
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538    Chapter 7  Color Image Processing

numbers representable by the number bits in the images. If, as above, the primary 
images are 8-bit images, the limits of the cube along each axis becomes [ , ].0 255  
Then, for example, white would be at point [ , , ]255 255 255  in the cube.

EXAMPLE 7.1 :  Generating a cross-section of the RGB color cube and its thee hidden planes.

The cube in Fig. 7.8 is a solid, composed of the ( )28 3 colors mentioned in the preceding paragraph. A 
useful way to view these colors is to generate color planes (faces or cross sections of the cube). This is 
done by fixing one of the three colors and allowing the other two to vary. For instance, a cross-sectional 
plane through the center of the cube and parallel to the GB-plane in Fig. 7.8 is the plane (127, G, B) for 
G B, , , , , .= 0 1 2 255…  Figure 7.9(a) shows that an image of this cross-sectional plane is generated by feed-
ing the three individual component images into a color monitor. In the component images, 0 represents 
black and 255 represents white. Observe that each component image into the monitor is a grayscale 
image. The monitor does the job of combining the intensities of these images to generate an RGB image. 
Figure 7.9(b) shows the three hidden surface planes of the cube in Fig. 7.8, generated in a similar manner.

Acquiring a color image is the process shown in Fig. 7.9(a) in reverse. A color image can be acquired 
by using three filters, sensitive to red, green, and blue, respectively. When we view a color scene with a 
monochrome camera equipped with one of these filters, the result is a monochrome image whose inten-
sity is proportional to the response of that filter. Repeating this process with each filter produces three 
monochrome images that are the RGB component images of the color scene. In practice, RGB color 
image sensors usually integrate this process into a single device. Clearly, displaying these three RGB 
component images as in Fig. 7.9(a) would yield an RGB color rendition of the original color scene.	

THE CMY AND CMYK COLOR MODELS
As indicated in Section 7.1, cyan, magenta, and yellow are the secondary colors of 
light or, alternatively, they are the primary colors of pigments. For example, when 
a surface coated with cyan pigment is illuminated with white light, no red light is 
reflected from the surface. That is, cyan subtracts red light from reflected white light, 
which itself is composed of equal amounts of red, green, and blue light.

Most devices that deposit colored pigments on paper, such as color printers and 
copiers, require CMY data input or perform an RGB to CMY conversion internally. 
This conversion is performed using the simple operation

FIGURE 7.8
A 24-bit RGB 
color cube.
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7.3  Pseudocolor Image Processing    557

the fourth is in the near infrared (IR) band (see Table 1.1 and Fig. 1.10). The latter band is responsive 
to the biomass content of a scene, and we want to use this fact to create a composite RGB color image 
in which vegetation is emphasized and the other components of the scene are displayed in more muted 
tones. 

Figure 7.25(e) is an RGB composite obtained by replacing the red image by infrared. As you see, veg-
etation shows as a bright red, and the other components of the scene, which had a weaker response in 
the near-infrared band, show in pale shades of blue-green. Figure 7.25(f) is a similar image, but with the 
green replaced by infrared. Here, vegetation shows in a bright green color, and the other components of 
the scene show in purplish color shades, indicating that their major components are in the red and blue 
bands. Although the last two images do not introduce any new physical information, these images are 
much easier to interpret visually once it is known that the dominant component of the images are pixels 
of areas heavily populated by vegetation.

The type of processing just illustrated uses the physical characteristics of a single band in a multi-
spectral image to emphasize areas of interest. The same approach can help visualize events of interest 

ba c
ed f  

FIGURE 7.25 (a)–(d) Red (R), green (G), blue (B), and near-infrared (IR) components of a LANDSAT multispectral 
image of the Washington, D.C. area. (e) RGB color composite image obtained using the IR, G, and B component 
images. (f) RGB color composite image obtained using the R, IR, and B component images. (Original multispectral 
images courtesy of NASA.)
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7.7  Using Color in Image Segmentation    579

when compared to a spherical or elliptical enclosure. Note that the preceding discus-
sion is a generalization of the color-slicing method introduced in Section 7.5.

EXAMPLE 7.15 :  Color segmentation in RGB color space.

The rectangular region shown Fig. 7.42(a) contains samples of reddish colors we wish to segment out 
of the color image. This is the same problem we considered in Example 7.14 using hue, but now we 
approach the problem using RGB color vectors. The approach followed was to compute the mean vec-
tor a using the color points contained within the rectangle in Fig.  7.42(a), and then to compute the 
standard deviation of the red, green, and blue values of those samples. A box was centered at a, and its 
dimensions along each of the RGB axes were selected as 1.25 times the standard deviation of the data 
along the corresponding axis. For example, let sR  denote the standard deviation of the red components 

b
a

FIGURE 7.42
Segmentation in 
RGB space.  
(a) Original image 
with colors of 
interest shown 
enclosed by a 
rectangle.  
(b) Result of 
segmentation 
in RGB vector 
space. Compare 
with Fig. 7.40(h).
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7.24 *	 Given an image in the RGB, CMY, or CMYK 
color system, how would you implement the col-
or equivalent of gray-scale histogram matching 
(specification) from Section 3.3?

7.25	 Consider the following 500 500×  RGB image, in 
which the squares are fully saturated red, green, 
and blue, and each of the colors is at maximum 
intensity. An HSI image is generated from this 
image. Answer the following questions.

Green Red

Blue Green

(a)	 Describe the appearance of each HSI com-
ponent image.

(b) *	The saturation component of the HSI image 
is smoothed using an averaging kernel of 
size 125 125× . Describe the appearance of 
the result. (You may ignore image border 
effects in the filtering operation.)

(c)	 Repeat (b) for the hue image.

7.26	 Answer the following.

(a) *	Refer to the discussion in Section 7.7 about 
segmentation in the RGB color space. Give 
a procedure (in flow chart form) for deter-

mining whether a color vector (point) z is 
inside a cube with sides W, centered at an 
average color vector a. Distance computa-
tions are not allowed.

(b)	 If the box is aligned with the axes this pro-
cess also can be implemented on an image-
by-image basis. Show how you would do it.

7.27	 Show that Eq. (7-49) reduces to Eq. (7-48) when 
C I= , the identity matrix.

7.28	 Sketch the surface in RGB space for the points 
that satisfy the equation

	 D D
Tz,a z a C z a( ) = ( ) ( )



 =−− −1

0

1
2

where D0  is a positive constant. Assume that 
a 0= , and that

	 C =
















8 0 0

0 1 0

0 0 1

7.29	 Refer to the discussion on color edge detection 
in Section 7.7. One might think that a logical 
approach for defining the gradient of an RGB 
image at any point ( , )x y  would be to compute 
the gradient vector (see Section 3.6) of each com-
ponent image and then form a gradient vector for 
the color image by summing the three individual 
gradient vectors. Unfortunately, this method can 
at times yield erroneous results. Specifically, it is 
possible for a color image with clearly defined 
edges to have a zero gradient if this method were 
used. Give an example of such an image. (Hint: 
To simplify your analysis, set one of the color 
planes to a constant value.)

Projects  
MATLAB solutions to the projects marked with an asterisk (*) are in the DIP4E Student Support Package (consult 
the book web site: www.ImageProcessingPlace.com).

7.1	 RGB color cube.

(a) *	(a) Write a function g = rgbcube4e(vz,vy,vz) to 
generate and display the RGB color cube in 
Fig. 7.8 (see Fig. 7.7 for axis-color definitions). 
The inputs are the three coordinates of your 
viewing position with reference to the origin 

of the cube. You should be able to view the 
cube from any 3-D viewpoint, and be able to 
extract any of its face images. Output g is an 
image of the cube displayed by this function. 
(Hint: Consider using MATLAB function 
patch to generate the cube, and the pair of 
functions getframe and frame2im to capture g.)
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8 Image Compression and 
Watermarking

Preview
Image compression, the art and science of reducing the amount of data required to represent an image, 
is one of the most useful and commercially successful technologies in the field of digital image process-
ing. The number of images that are compressed and decompressed daily is staggering, and the compres-
sions and decompressions themselves are virtually invisible to the user. Everyone who owns a digital 
camera, surfs the web, or streams the latest Hollywood movies over the Internet benefits from the algo-
rithms and standards that will be discussed in this chapter. The material, which is largely introductory in 
nature, is applicable to both still-image and video applications. We will introduce both theory and prac-
tice, examining the most frequently used compression techniques, and describing the industry standards 
that make them useful. The chapter concludes with an introduction to digital image watermarking, the 
process of inserting visible and invisible data (such as copyright information) into images.

Upon competion of this chapter, students should:
	 Be able to measure the amount of informa-

tion in a digital image.

	 Understand the main sources of data redun-
dancy in digital images.

	 Know the difference between lossy and error-
free compression, and the amount of com-
pression that is possible with each.

	 Be familiar with the popular image compres-
sion standards, such as JPEG and JPEG-2000, 
that are in use today.

	 Understand the principal image compression 
methods, and how and why they work.

	 Be able to compress and decompress grayscale, 
color, and video imagery.

	 Know the difference between visible, invisible, 
robust, fragile, public, private, restricted-key,  
and unrestricted-key watermarks.

	 Understand the basics of watermark insertion 
and extraction in both the spatial and trans-
form domain.

But life is short and information endless ... Abbreviation is a  
necessary evil and the abbreviator’s business is to make the best of 
a job which, although bad, is still better than nothing.

Aldous Huxley
The Titanic will protect itself.

Robert Ballard
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596    Chapter 8  Image Compression and Watermarking

8.1	FUNDAMENTALS  

The term data compression refers to the process of reducing the amount of data 
required to represent a given quantity of information. In this definition, data and 
information are not the same; data are the means by which information is conveyed. 
Because various amounts of data can be used to represent the same amount of infor-
mation, representations that contain irrelevant or repeated information are said to 
contain redundant data. If we let b and ′b  denote the number of bits (or information- 
carrying units) in two representations of the same information, the relative data 
redundancy, R, of the representation with b bits is

	 R
C

= 1
1

- 	 (8-1)

where C, commonly called the compression ratio, is defined as

	 C
b
b

=
′

	 (8-2)

If C = 10 (sometimes written 10:1), for instance, the larger representation has 10 
bits of data for every 1 bit of data in the smaller representation. The corresponding 
relative data redundancy of the larger representation is 0.9 (R = 0.9), indicating that 
90% of its data is redundant.

In the context of digital image compression, b in Eq. (8-2) usually is the number of 
bits needed to represent an image as a 2-D array of intensity values. The 2-D inten-
sity arrays introduced in Section 2.4 are the preferred formats for human viewing 
and interpretation—and the standard by which all other representations are judged. 
When it comes to compact image representation, however, these formats are far 
from optimal. Two-dimensional intensity arrays suffer from three principal types of 
data redundancies that can be identified and exploited:

1.	 Coding redundancy. A code is a system of symbols (letters, numbers, bits, and 
the like) used to represent a body of information or set of events. Each piece of 
information or event is assigned a sequence of code symbols, called a code word. 
The number of symbols in each code word is its length. The 8-bit codes that are 
used to represent the intensities in most 2-D intensity arrays contain more bits 
than are needed to represent the intensities.

2.	 Spatial and temporal redundancy. Because the pixels of most 2-D intensity 
arrays are correlated spatially (i.e., each pixel is similar to or dependent upon 
neighboring pixels), information is unnecessarily replicated in the representa-
tions of the correlated pixels. In a video sequence, temporally correlated pixels 
(i.e., those similar to or dependent upon pixels in nearby frames) also duplicate 
information.

3.	 Irrelevant information. Most 2-D intensity arrays contain information that is 
ignored by the human visual system and/or extraneous to the intended use of 
the image. It is redundant in the sense that it is not used.

8.1
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quantization. This terminology is consistent with normal use of the word, which gen-
erally means the mapping of a broad range of input values to a limited number of 
output values (see Section 2.4). Because information is lost, quantization is an irre-
versible operation.

MEASURING IMAGE INFORMATION

In the previous sections, we introduced several ways to reduce the amount of data 
used to represent an image. The question that naturally arises is: How few bits are 
actually needed to represent the information in an image? That is, is there a mini-
mum amount of data that is sufficient to describe an image without losing infor-
mation? Information theory provides the mathematical framework to answer this 
and related questions. Its fundamental premise is that the generation of information 
can be modeled as a probabilistic process which can be measured in a manner that 
agrees with intuition. In accordance with this supposition, a random event E with 
probability P(E) is said to contain

	 I E
P E

P E( ) log
( )

log ( )= =
1

- 	 (8-5)

units of information. If P(E) = 1 (that is , the event always occurs), I(E) = 0 and no 
information is attributed to it. Because no uncertainty is associated with the event, 
no information would be transferred by communicating that the event has occurred 
[it always occurs if P(E) = 1].

The base of the logarithm in Eq. (8-5) determines the unit used to measure infor-
mation. If the base m logarithm is used, the measurement is said to be in m-ary units. 
If the base 2 is selected, the unit of information is the bit. Note that if P(E) = ½, 
I E( ) log= - 2 ½ or 1 bit. That is, 1 bit is the amount of information conveyed when 
one of two possible equally likely events occurs. A simple example is flipping a coin 
and communicating the result.

Consult the book web-
site for a brief review of 
information and prob-
ability theory.

.

ba

FIGURE 8.3
(a) Histogram 
of the image in 
Fig. 8.1(c) and 
(b) a histogram 
equalized version 
of the image.
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602    Chapter 8  Image Compression and Watermarking

Given a source of statistically independent random events from a discrete set of 
possible events a a aJ1 1, , ,p{ }  with associated probabilities P a P a P aJ( ), ( ), , ( ) ,1 1 p{ }  
the average information per source output, called the entropy of the source, is

	 H P a P aj j
j

J

=
=
∑- ( ) log ( )

1

	 (8-6)

The aj in this equation are called source symbols. Because they are statistically inde-
pendent, the source itself is called a zero-memory source.

If an image is considered to be the output of an imaginary zero-memory “inten-
sity source,” we can use the histogram of the observed image to estimate the symbol 
probabilities of the source. Then, the intensity source’s entropy becomes

	 H p r p rr k r k
k

L

=
=

∑-

-

( ) log ( )2
0

1

	 (8-7)

where variables L, rk, and p rr k( ) are as defined earlier and in Section 3.3. Because 
the base 2 logarithm is used, Eq. (8-7) is the average information per intensity out-
put of the imaginary intensity source in bits. It is not possible to code the intensity 
values of the imaginary source (and thus the sample image) with fewer than H  bits/
pixel.

EXAMPLE 8.2 :   Image entropy estimates.

The entropy of the image in Fig. 8.1(a) can be estimated by substituting the intensity probabilities from 
Table 8.1 into Eq. (8-7):

	

H = [ ]- + + +

=

0 25 0 25 0 47 0 47 0 25 0 25 0 03 0 032 2 2 2. log . . log . . log . . log .

-- - + - + - + -0 25 2 0 47 1 09 0 25 2 0 03 5 06

1 6614

. ( ) . ( . ) . ( ) . ( . )

.
[ ]

≈  bits/ppixel

In a similar manner, the entropies of the images in Fig. 8.1(b) and (c) can be shown to be 8 bits/pixel and 
1.566 bits/pixel, respectively. Note that the image in Fig. 8.1(a) appears to have the most visual informa-
tion, but has almost the lowest computed entropy—1.66 bits/pixel. The image in Fig. 8.1(b) has almost 
five times the entropy of the image in (a), but appears to have about the same (or less) visual informa-
tion. The image in Fig. 8.1(c), which seems to have little or no information, has almost the same entropy 
as the image in (a). The obvious conclusion is that the amount of entropy, and thus information in an 
image, is far from intuitive.

Shannon’s First Theorem

Recall that the variable-length code in Example 8.1 was able to represent the inten-
sities of the image in Fig. 8.1(a) using only 1.81 bits/pixel. Although this is higher 
than the 1.6614 bits/pixel entropy estimate from Example 8.2, Shannon’s first theo-
rem, also called the noiseless coding theorem (Shannon [1948]), assures us that the 

Equation (8-6) is for 
zero-memory sources 
with J source symbols. 
Equation (8-7) uses 
probablitiy estimates 
for the L - 1  intensity 
values in an image.
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image in Fig. 8.1(a) can be represented with as few as 1.6614 bits/pixel. To prove 
it in a general way, Shannon looked at representing groups of consecutive source 
symbols with a single code word (rather than one code word per source symbol), 
and showed that

	 lim ,

n

nL

n
H

→









 =



avg 	 (8-8)

where Lavg, n is the average number of code symbols required to represent all n-sym-
bol groups. In the proof, he defined the nth extension of a zero-memory source to 
be the hypothetical source that produces n-symbol blocks† using the symbols of the 
original source, and computed Lavg, n by applying Eq. (8-4) to the code words used 
to represent the n-symbol blocks. Equation (8-8) tells us that L nnavg,  can be made 
arbitrarily close to H by encoding infinitely long extensions of the single-symbol 
source. That is, it is possible to represent the output of a zero-memory source with 
an average of H information units per source symbol.

If we now return to the idea that an image is a “sample” of the intensity source 
that produced it, a block of n source symbols corresponds to a group of n adjacent 
pixels. To construct a variable-length code for n-pixel blocks, the relative frequencies 
of the blocks must be computed. But the nth extension of a hypothetical intensity 
source with 256 intensity values has 256n possible n-pixel blocks. Even in the simple 
case of n  =  2, a 65,536 element histogram and up to 65,536 variable-length code 
words must be generated. For n = 3, as many as 16,777,216 code words are needed. 
So even for small values of n, computational complexity limits the usefulness of the 
extension coding approach in practice.

Finally, we note that although Eq. (8-7) provides a lower bound on the compres-
sion that can be achieved when directly coding statistically independent pixels, it 
breaks down when the pixels of an image are correlated. Blocks of correlated pixels 
can be coded with fewer average bits per pixel than the equation predicts. Rather 
than using source extensions, less correlated descriptors (such as intensity run-
lengths) are normally selected and coded without extension. This was the approach 
used to compress Fig.  8.1(b) in the section on spatial and temporal redundancy. 
When the output of a source of information depends on a finite number of preced-
ing outputs, the source is called a Markov source or finite memory source.

FIDELITY CRITERIA

It was noted earlier that the removal of “irrelevant visual” information involves a 
loss of real or quantitative image information. Because information is lost, a means 
of quantifying the nature of the loss is needed. Two types of criteria can be used for 
such an assessment: (1) objective fidelity criteria, and (2) subjective fidelity criteria.

† The output of the nth extension is an n-tuple of symbols from the underlying single-symbol source. It was con-
sidered a block random variable in which the probability of each n-tuple is the product of the probabilities of 
its individual symbols. The entropy of the nth extension is then n times the entropy of the single-symbol source 
from which it is derived.
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In the third and final stage of the encoding process, the symbol coder of Fig. 8.5 
generates a fixed-length or variable-length code to represent the quantizer output, 
and maps the output in accordance with the code. In many cases, a variable-length 
code is used. The shortest code words are assigned to the most frequently occur-
ring quantizer output values, thus minimizing coding redundancy. This operation is 
reversible. Upon its completion, the input image has been processed for the removal 
of each of the three redundancies described in the previous sections.

The Decoding or Decompression Process

The decoder of Fig.  8.5 contains only two components: a symbol decoder and an 
inverse mapper. They perform, in reverse order, the inverse operations of the encod-
er’s symbol encoder and mapper. Because quantization results in irreversible infor-
mation loss, an inverse quantizer block is not included in the general decoder model. 
In video applications, decoded output frames are maintained in an internal frame 
store (not shown) and used to reinsert the temporal redundancy that was removed 
at the encoder.

IMAGE FORMATS, CONTAINERS, AND COMPRESSION STANDARDS

In the context of digital imaging, an image file format is a standard way to organize 
and store image data. It defines how the data is arranged and the type of compres-
sion (if any) that is used. An image container is similar to a file format, but han-
dles multiple types of image data. Image compression standards, on the other hand, 
define procedures for compressing and decompressing images—that is, for reducing 
the amount of data needed to represent an image. These standards are the underpin-
ning of the widespread acceptance of image compression technology.

Figure 8.6 lists the most important image compression standards, file formats, and 
containers in use today, grouped by the type of image handled. The entries in blue 
are international standards sanctioned by the International Standards Organization 
(ISO), the International Electrotechnical Commission (IEC), and/or the International 
Telecommunications Union (ITU-T)—a United Nations (UN) organization that was 
once called the Consultative Committee of the International Telephone and Telegraph 
(CCITT). Two video compression standards, VC-1 by the Society of Motion Pictures 
and Television Engineers (SMPTE) and AVS by the Chinese Ministry of Information 
Industry (MII), are also included. Note that they are shown in black, which is used 
in Fig. 8.6 to denote entries that are not sanctioned by an international standards 
organization.

Tables 8.3 through 8.5 summarize the standards, formats, and containers listed 
in Fig. 8.6. Responsible organizations, targeted applications, and key compression 
methods are identified. The compression methods themselves are the subject of Sec-
tions 8.2 through 8.11, where we will describe the principal lossy and error-free com-
pression methods in use today. The focus of these sections is on methods that have 
proven useful in mainstream binary, continuous-tone still-image, and video com-
pression standards. The standards themselves are used to demonstrate the methods 
presented. In Tables 8.3 through 8.5, forward references to the relevant sections in 
which the compression methods are described are enclosed in square brackets.
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which when truncated to its 3 0+  least significant bits becomes 001. The concatena-
tion of the results from Steps 1 and 2 then yields 1110001. Note that this is the entry 
in column 4 of Table 8.6 for n = 8. Finally, we note that like the Huffman codes of the 
last section, the Golomb codes of Table 8.6 are variable-length, instantaneous, and 
uniquely decodable block codes.

8.4	ARITHMETIC CODING  

Unlike the variable-length codes of the previous two sections, arithmetic coding gen-
erates nonblock codes. In arithmetic coding, which can be traced to the work of Elias 
(Abramson [1963]), a one-to-one correspondence between source symbols and code 
words does not exist. Instead, an entire sequence of source symbols (or message) is 
assigned a single arithmetic code word. The code word itself defines an interval of 
real numbers between 0 and 1. As the number of symbols in the message increases, 
the interval used to represent it becomes smaller, and the number of information 
units (say, bits) required to represent the interval becomes larger. Each symbol of 
the message reduces the size of the interval in accordance with its probability of 
occurrence. Because the technique does not require, as does Huffman’s approach, 
that each source symbol translate into an integral number of code symbols (that is, 
that the symbols be coded one at a time), it achieves (but only in theory) the bound 
established by Shannon’s first theorem of Section 8.1.

Figure  8.12 illustrates the basic arithmetic coding process. Here, a five-symbol 
sequence or message, a1a2a3a3a4, from a four-symbol source is coded. At the start of 
the coding process, the message is assumed to occupy the entire half-open interval 
[0, 1). As Table 8.7 shows, this interval is subdivided initially into four regions based 
on the probabilities of each source symbol. Symbol a1, for example, is associated with 
subinterval [0, 0.2). Because it is the first symbol of the message being coded, the 
message interval is initially narrowed to [0, 0.2). Thus, in Fig. 8.12, [0, 0.2) is expanded 
to the full height of the figure, and its end points labeled by the values of the nar-
rowed range. The narrowed range is then subdivided in accordance with the original 

8.4

With reference to 
Tables 8.3–8.5, arithmetic 
coding is used in

•	 JBIG1 
•	 JBIG2 
•	 JPEG-2000 
•	 H.264 
•	 MPEG-4 AVC

and other compression 
standards.

Source Symbol Probability Initial Subinterval

a1 0.2 [0.0, 0.2)

a2 0.2 [0.2, 0.4)

a3 0.4 [0.4, 0.8)

a4 0.2 [0.8, 1.0)

TABLE 8.7
Arithmetic coding 
example.
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EXAMPLE 8.10 :  CCITT compression example.

Figure 8.16(a) is a 300 dpi scan of a 7 9 25* .  inch book page displayed at about 1 3 scale. Note that about 
half of the page contains text, around 9% is occupied by a halftone image, and the rest is white space. 
A section of the page is enlarged in Fig. 8.16(b). Keep in mind that we are dealing with a binary image; 
the illusion of gray tones is created, as was described in Section 4.5, by the halftoning process used in 
printing. If the binary pixels of the image in Fig. 8.16(a) are stored in groups of 8 pixels per byte, the 
1952 2697×  bit scanned image, commonly called a document, requires 658,068 bytes. An uncompressed 
PDF file of the document (created in Photoshop) requires 663,445 bytes. CCITT Group 3 compression 
reduces the file to 123,497 bytes, resulting in a compression ratio C = 5 37. . CCITT Group 4 compression 
reduces the file to 110,456 bytes, increasing the compression ratio to about 6.

8.7	SYMBOL-BASED CODING  

In symbol- or token-based coding, an image is represented as a collection of fre-
quently occurring subimages, called symbols. Each such symbol is stored in a sym-
bol dictionary and the image is coded as a set of triplets ( , , ),( , , ), ,x y t x y t1 1 1 2 2 2 p{ }  
where each ( , )x yi i  pair specifies the location of a symbol in the image and token 
ti is the address of the symbol or subimage in the dictionary. That is, each triplet 
represents an instance of a dictionary symbol in the image. Storing repeated sym-
bols only once can compress images significantly, particularly in document storage 
and retrieval applications where the symbols are often character bitmaps that are 
repeated many times.

8.7

With reference to 
Tables 8.3–8.5, symbol-
based coding is used in

•	 JBIG2

compression.

ba

FIGURE 8.16
A binary scan of 
a book page: (a) 
scaled to show 
the general page 
content;  
(b) scaled to show 
the binary pixels 
used in dithering.
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Consider the simple bilevel image in Fig.  8.17(a). It contains the single word, 
banana, which is composed of three unique symbols: a b, three a’s, and two n’s. 
Assuming that the b is the first symbol identified in the coding process, its 9 7*  bit-
map is stored in location 0 of the symbol dictionary. As Fig. 8.17(b) shows, the token 
identifying the b bitmap is 0. Thus, the first triplet in the encoded image’s represen-
tation [see Fig. 8.17(c)] is (0, 2, 0), indicating that the upper-left corner (an arbitrary 
convention) of the rectangular bitmap representing the b symbol is to be placed 
at location (0, 2) in the decoded image. After the bitmaps for the a and n symbols 
have been identified and added to the dictionary, the remainder of the image can 
be encoded with five additional triplets. As long as the six triplets required to locate 
the symbols in the image, together with the three bitmaps required to define them, 
are smaller than the original image, compression occurs. In this case, the starting 
image has  9 51 1* *  or 459 bits and, assuming that each triplet is composed of three 
bytes, the compressed representation has ( ) ( ) ( ) ( )6 3 8 9 7 6 7 6 6* * + * * *+ +[ ] or 
285 bits; the resulting compression ratio C = 1 61. . To decode the symbol-based rep-
resentation in Fig. 8.17(c), you simply read the bitmaps of the symbols specified in 
the triplets from the symbol dictionary and place them at the spatial coordinates 
specified in each triplet.

Symbol-based compression was proposed in the early 1970s (Ascher and Nagy 
[1974]), but has become practical only recently. Advances in symbol-matching algo-
rithms (see Chapter 13) and increased CPU computer processing speeds have made 
it possible to both select dictionary symbols and to find where they occur in an 
image in a timely manner. And like many other compression methods, symbol-based 
decoding is significantly faster than encoding. Finally, we note that both the symbol 
bitmaps that are stored in the dictionary and the triplets used to reference them 
themselves can be encoded to further improve compression performance. If, as in 
Fig. 8.17, only exact symbol matches are allowed, the resulting compression is loss-
less; if small differences are permitted, some level of reconstruction error will be 
present.

JBIG2 COMPRESSION

JBIG2 is an international standard for bilevel image compression. By segmenting 
an image into overlapping and/or non-overlapping regions of text, halftone, and 
generic content, compression techniques that are specifically optimized for each 
type of content are employed:

ba c

FIGURE 8.17
(a) A bi-level 
document, (b) 
symbol dictionary, 
and (c) the trip-
lets used to locate 
the symbols in the 
document.

Token Symbol Triplet

0

1

2

(0, 2, 0)
(3,10, 1)
(3, 18, 2)
(3, 26, 1)
(3, 34, 2)
(3, 42, 1)
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EXAMPLE 8.22 :  Video compression example.

We conclude our discussion of motion compensated predictive coding with an example illustrating the 
kind of compression that is possible with modern video compression methods. Figure 8.37 shows fifteen 
frames of a 1 minute HD ( )1280 720×  full-color NASA video, parts of which have been used throughout 
this section. Although the images shown are monochrome, the video is a sequence of 1,829 full-color 
frames. Note that there are a variety of scenes, a great deal of motion, and multiple fade effects. For 
example, the video opens with a 150 frame fade-in from black, which includes frames 21 and 44 in 
Fig. 8.37, and concludes with a fade sequence containing frames 1595, 1609, and 1652 in Fig. 8.37, fol-
lowed by a final fade to black. There are also several abrupt scene changes, like the change involving 
frames 1303 and 1304 in Fig. 8.37.

An H.264 compressed version of the NASA video stored as a Quicktime file (see Table 8.5) requires 
44.56 MB of storage, plus another 1.39 MB for the associated audio. The video quality is excellent. About 
5 GB of data would be needed to store the video frames as uncompressed full-color images. It should 
be noted that the video contains sequences involving both rotation and scale change (e.g., the sequence 
including frames 959, 1023, and 1088 in Fig.  8.37). The discussion in this section, however, has been 
limited to translation alone. (See the book website for the NASA video segment used in this example.)

LOSSY PREDICTIVE CODING

In this section, we add a quantizer to the lossless predictive coding model introduced 
earlier, and examine the trade-off between reconstruction accuracy and compres-
sion performance within the context of spatial predictors. As Fig. 8.38 shows, the 
quantizer, which replaces the nearest integer function of the error-free encoder, is 
inserted between the symbol encoder and the point at which the prediction error is 
formed. It maps the prediction error into a limited range of outputs, denoted e n( ), 
which establish the amount of compression and distortion that occurs.

FIGURE 8.36
A typical motion 
compensated 
video encoder.
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FIGURE 8.37  Fifteen frames from an 1829-frame, 1-minute NASA video. The original video is in HD full color. 
(Courtesy of NASA.)

Frame 0021 Frame 0044 Frame 0201

Frame 0266 Frame 0424 Frame 0801

Frame 0959 Frame 1023 Frame 1088

Frame 1224 Frame 1303 Frame 1304

Frame 1595 Frame 1609 Frame 1652
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FIGURE 8.46  Four JPEG-2000 approximations of Fig. 8.9(a). Each row contains a result after compression and recon-
struction, the scaled difference between the result and the original image, and a zoomed portion of the recon-
structed image. (Compare the results in rows 1 and 2 with the JPEG results in Fig. 8.29.).
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A visual comparison of the error images in rows 1 and 2 of Fig. 8.46 with the corresponding images 
in Figs. 8.29(b) and (e) reveals a noticeable decrease of error in the JPEG-2000 results—3.86 and 5.77 
intensity levels, as opposed to 5.4 and 10.7 intensity levels for the JPEG results. The computed errors 
favor the wavelet-based results at both compression levels. Besides decreasing reconstruction error, 
wavelet coding dramatically increases (in a subjective sense) image quality. Note that the blocking arti-
fact that dominated the JPEG results [see Figs. 8.29(c) and (f)] is not present in Fig. 8.46. Finally, we 
note that the compression achieved in rows 3 and 4 of Fig. 8.46 is not practical with JPEG. JPEG-2000 
provides useable images that are compressed by more than 100:1, with the most objectionable degrada-
tion being increased image blur.

8.12	DIGITAL IMAGE WATERMARKING  

The methods and standards of Sections 8.2 through 8.11 make the distribution of 
images (in photographs or videos) on digital media and over the Internet practi-
cal. Unfortunately, the images so distributed can be copied repeatedly and without 
error, putting the rights of their owners at risk. Even when encrypted for distribution, 
images are unprotected after decryption. One way to discourage illegal duplication 
is to insert one or more items of information, collectively called a watermark, into 
potentially vulnerable images in such a way that the watermarks are inseparable 
from the images themselves. As integral parts of the watermarked images, they pro-
tect the rights of their owners in a variety of ways, including:

1.	 Copyright identification. Watermarks can provide information that serves as 
proof of ownership when the rights of the owner have been infringed.

2.	 User identification or fingerprinting. The identity of legal users can be encoded 
in watermarks and used to identify sources of illegal copies.

3.	Authenticity determination. The presence of a watermark can guarantee that an 
image has not been altered, assuming the watermark is designed to be destroyed 
by any modification of the image.

4.	Automated monitoring. Watermarks can be monitored by systems that track 
when and where images are used (e.g., programs that search the Web for images 
placed on Web pages). Monitoring is useful for royalty collection and/or the 
location of illegal users.

5.	 Copy protection. Watermarks can specify rules of image usage and copying (e.g., 
to DVD players).

In this section, we provide a brief overview of digital image watermarking, which is 
the process of inserting data into an image in such a way that it can be used to make 
an assertion about the image. The methods described have little in common with 
the compression techniques presented in the previous sections (although they do 
involve the coding of information). In fact, watermarking and compression are in 
some ways opposites. While the objective in compression is to reduce the amount of 
data used to represent images, the goal in watermarking is to add information and 
data (i.e., watermarks) to them. As will be seen in the remainder of the section, the 
watermarks themselves can be either visible or invisible.

8.12
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A visible watermark is an opaque or semi-transparent subimage or image that is 
placed on top of another image (i.e., the image being watermarked) so that it is obvi-
ous to the viewer. Television networks often place visible watermarks (fashioned 
after their logos) in the upper or lower right-hand corner of the television screen. As 
the following example illustrates, visible watermarking typically is performed in the 
spatial domain.

EXAMPLE 8.29 :  A simple visible watermark.

The image in Fig. 8.47(b) is the lower right-hand quadrant of the image in Fig. 8.9(a) with a scaled ver-
sion of the watermark in Fig. 8.47(a) overlaid on top of it. Letting fw  denote the watermarked image, we 
can express it as a linear combination of the unmarked image f and watermark w  using

	 f fw w= ( ) +1 − a a 	 (8-68)

where constant a  controls the relative visibility of the watermark and the underlying image. If a  is 1, 
the watermark is opaque and the underlying image is completely obscured. As a  approaches 0, more of 
the underlying image and less of the watermark is seen. In general, 0 1< ≤a ; in Fig. 8.47(b), a = 0 3. . Fig-
ure 8.47(c) is the computed difference (scaled in intensity) between the watermarked image in (b) and 
the unmarked image in Fig. 8.9(a). Intensity 128 represents a difference of 0. Note that the underlying 
image is clearly visible through the “semi-transparent” watermark. This is evident in both Fig. 8.47(b) 
and the difference image in Fig. 8.47(c).

Unlike the visible watermark of the previous example, invisible watermarks can-
not be seen with the naked eye. They are imperceptible but can be recovered with an 
appropriate decoding algorithm. Invisibility is assured by inserting them as visually 
redundant information [information that the human visual system ignores or cannot 

b
a

c

FIGURE 8.47
A simple visible 
watermark:  
(a) watermark;  
(b) the water-
marked image; 
and  
(c) the  
difference 
between the 
watermarked 
image and the 
original (non-
watermarked) 
image.

Digital Image
Processing
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8.29 *	 Derive the Lloyd-Max decision and reconstruc-
tion levels for L = 4 and the uniform probability 
density function

	 p s A
A s A( ) =

≤ ≤





1
2
0

−

otherwise

8.30	 A radiologist from a well-known research hospital 
recently attended a medical conference at which 
a system that could transmit 4096 096× 4  12-bit 
digitized X-ray images over standard T1 (1.544 
Mb/s) phone lines was exhibited. The system 
transmitted the images in a compressed format 
using a progressive technique in which a reason-
ably good approximation of the X-ray was first 
reconstructed at the viewing station, then refined 
gradually to produce an error-free display. The 
transmission of the data needed to generate the 
first approximation took approximately 5 or 6 s.  
Refinements were made every 5 or 6 s (on the 
average) for the next 1 min, with the first and last 
refinements having the most and least significant 
impact on the reconstructed X-ray, respectively. 
The physician was favorably impressed with the 
system, because she could begin her diagnosis by 
using the first approximation of the X-ray and 
complete it as the error-free reconstruction of 
the X-ray was being generated. Upon returning 
to her office, she submitted a purchase request 
to the hospital administrator. Unfortunately, the 
hospital was on a relatively tight budget, which 
recently had been stretched by the hiring of an 
aspiring young electrical engineering graduate. To 

appease the radiologist, the administrator gave 
the young engineer the task of designing such a 
system. (He thought it might be cheaper to design 
and build a similar system in-house. The hospital 
currently owned some of the elements of such 
a system, but the transmission of the raw X-ray 
data took more than 2 min.) The administrator 
asked the engineer to have an initial block dia-
gram by the afternoon staff meeting. With little 
time and only a copy of Digital Image Processing 
from his recent school days in hand, the engineer 
was able to devise a system conceptually to sat-
isfy the transmission and associated compression 
requirements. Construct a conceptual block dia-
gram of such a system, specifying the compression 
techniques you would recommend.

8.31	 Show that the lifting-based wavelet transform 
defined by Eq.  (8-61) is equivalent to the tradi-
tional FWT filter bank implementation using the 
coefficients in Table  6.1. Define the filter coeffi-
cients in terms of a, b,  g, d, and K.

8.32	 Compute the quantization step sizes of the sub-
bands for a JPEG-2000 encoded image in which 
derived quantization is used and 8 bits are allot-
ted to the mantissa and exponent of the 2LL sub-
band.

8.33	 How would you add a visible watermark to an 
image in the frequency domain?

8.34 *	 Design an invisible watermarking system based 
on the discrete Fourier transform.

8.35	 Design an invisible watermarking system based 
on the discrete wavelet transform.

Projects  
MATLAB solutions to the projects marked with an asterisk (*) are in the DIP4E Student Support Package (consult 
the book website: www.ImageProcessingPlace.com).

8.1	 Write a function e = entropy4e(f,n) to compute the 
amount of information in bits of matrix f, where 
n is the number of possible values for each ele-
ment of f. (If matrix f is an 8-bit image, n would  
be 256.) Assume f to be the output of a zero-mem-
ory source so that Eq.  (8-7) can be used. Make 
sure your function can handle negative pixel val-
ues. Use your function to compute the entropy of 
the image lena.tif from the book website.

8.2 *	 Write a function cr = compressionRatio4e(f,fc) to 
compute the compression ratio of image f and 
compressed image fc. If f or fc is a string, assume 
that it is the name of a file; otherwise, f or fc is 
an image variable. (Hint: Do not use MATLAB’s 
whos function, since it reports an extra 124 bytes 
for every field in a structure. Instead, add up the 
memory of every field.)

(a)	 Use your function to compute the com-
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9 Morphological Image 
Processing

Preview
The word morphology commonly denotes a branch of biology that deals with the form and structure of 
animals and plants. We use the same word here in the context of mathematical morphology as a tool for 
extracting image components that are useful in the representation and description of region shape, such 
as boundaries, skeletons, and the convex hull. We are interested also in morphological techniques for 
pre- or postprocessing, such as morphological filtering, thinning, and pruning.

In the following sections, we will develop a number of fundamental concepts in mathematical mor-
phology, and illustrate how they are applied in image processing. The material in this chapter begins a 
transition from methods whose inputs and outputs are images, to methods whose outputs are image 
attributes, for tasks such as object extraction and description. Morphology is one of several tools devel-
oped in the remainder of the book—such as segmentation, feature extraction, and object recognition—
that form the foundation of techniques for extracting “meaning” from an image. The material in the 
following sections of this chapter deals with methods for processing both binary and grayscale images. 

Upon completion of this chapter, readers should:
	 Understand basic concepts of mathematical 

morphology, and how to apply them to digital 
image processing.

	 Be familiar with the tools used for binary 
image morphology, including erosion, dilation, 
opening, closing, and how to combine them to 
generate more complex tools.

	 Be able to develop algorithms based on bi-
nary image morphology for performing tasks 

such as morphological smoothing, edge de-
tection, extracting connected components, 
and skeletonizing.

	 Be familiar with how binary image morphol-
ogy can be extended to grayscale images.

	 Be able to develop algorithms for grayscale 
image processing for tasks such as textural 
segmentation, granulometry, computing gray-
scale image gradients, and others.

In form and feature, face and limb, 
I grew so like my brother 
That folks got taking me for him 
And each for one another.

Henry Sambrook Leigh, Carols of Cockayne, The Twins
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694    Chapter 9  Morphological Image Processing

9.1	PRELIMINARIES  

The language of mathematical morphology is set theory. As such, morphology offers 
a unified and powerful approach to numerous image processing problems. When 
working with images, sets in mathematical morphology represent objects in those 
images. In binary images, the sets in question are members of the 2-D integer space 
Z2 , where each element of a set is a tuple (2-D vector) whose coordinates are the 
coordinates of an object (typically foreground) pixel in the image. Grayscale digital 
images can be represented as sets whose components are in Z3. In this case, two 
components of each element of the set refer to the coordinates of a pixel, and the 
third corresponds to its discrete intensity value. Sets in higher dimensional spaces 
can contain other image attributes, such as color and time-varying components.

Morphological operations are defined in terms of sets. In image processing, we use 
morphology with two types of sets of pixels: objects and structuring elements (SE’s). 
Typically, objects are defined as sets of foreground pixels. Structuring elements can 
be specified in terms of both foreground and background pixels. In addition, struc-
turing elements sometimes contain so-called “don’t care” elements, denoted by ×, 
signifying that the value of that particular element in the SE does not matter. In this 
sense, the value can be ignored, or it can be made to fit a desired value in the evalu-
ation of an expression; for example, it might take on the value of a pixel in an image 
in applications in which value matching is the objective. 

Because the images with which we work are rectangular arrays, and sets in general 
are of arbitrary shape, applications of morphology in image processing require that 
sets be embedded in rectangular arrays. In forming such arrays, we assign a back-
ground value to all pixels that are not members of object sets. The top row in Fig. 9.1 
shows an example. On the left are sets in the graphical format you are accustomed 
to seeing in book figures. In the center, the sets have been embedded in a rectangular 
background (white) to form a graphical image.† On the right, we show a digital image 
(notice the grid) which is the format we use for digital image processing. 

Structuring elements are defined in the same manner, and the second row in Fig. 9.1 
shows an example. There is an important difference between the way we represent 
digital images and digital structuring elements. Observe on the top right that there is 
a border of background pixels surrounding the objects, while there is none in the SE. 
As you will learn shortly, structuring elements are used in a form similar to spatial 
convolution kernels (see Fig. 3.34), and the image border just described is similar 
to the padding we discussed in Section 3.4 and 3.5. The operations are different in 
morphology, but the padding and sliding operations are the same as in convolution. 

In addition to the set definitions given in Section 2.6, the concept of set reflection 
and translation are used extensively in morphology in connection with structuring 
elements. The reflection of a set (structuring element) B about its origin, denoted by 
ˆ ,B  is defined as

† Sets are shown as drawings of objects (e.g. squares and triangles) of arbitrary shape. A graphical image contains 
sets that have been embedded into a background to form a rectangular array. When we intend for a drawing to 
be interpreted as a digital image (or structuring element), we include a grid in illustrations that might otherwise 
be ambiguous. Objects in all drawings are shaded, and the background is shown in white. When working with 
actual binary images, we say that objects are foreground pixels. All other pixels are background. 

9.1

Before proceeding, you 
will find it helpful to 
review the discussion in 
Section 2.4 dealing with 
representing images, the 
discussion on  
connectivity in Section 
2.5, and the discussion on 
sets in Section 2.6. 
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	 ˆ ,B b b B= = − ∈{ }w w for 	 (9-1)

That is, if B is a set of points in 2-D, then B̂ is the set of points in B whose ( , )x y  
coordinates have been replaced by ( , ).− −x y  Figure 9.2 shows several examples of 
digital sets (structuring elements) and their reflection. The dot denotes the origin of 
the SE. Note that reflection consists simply of rotating an SE by 180° about its origin, 
and that all elements, including the background and don’t care elements, are rotated. 

The translation of a set B by point z z z= ( )1 2, , denoted B
z( ) , is defined as

	 B c c b z b B
z( ) = = + ∈{ }, for 	 (9-2)

That is, if B is a set of pixels in 2-D, then B
z( )  is the set of pixels in B whose ( , )x y  

coordinates have been replaced by x z y z+ +( )1 2, . This construct is used to trans-
late (slide) a structuring element over an image, and each location perform a set 

Reflection is the same 
operation we performed 
with kernels prior to 
spatial convolution, as 
explained in Section 3.4.

FIGURE 9.1  Top row. Left: Objects represented as graphical sets. Center: Objects embedded in a background to form 
a graphical image. Right: Object and background are digitized to form a digital image (note the grid). Second row: 
Example of a structuring element represented as a set, a graphical image, and finally as a digital SE. 

Objects representeed
as sets Objects represented as

a graphical image Digital image

Structuring element
represented as a set

Structuring element 
represented as a graphical image

Digital 
structuring element

FIGURE 9.2
Structuring  
elements and their 
reflections about the 
origin (the ×’s  are 
don’t care elements, 
and the dots denote 
the origin). Reflec-
tion is rotation by 
180°  of an SE about 
its origin.

× ×

× ××

×

B̂B

×
×

B

×
×

B̂

B B̂

B̂B
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704    Chapter 9  Morphological Image Processing

Closing has a similar geometric interpretation, except that now we translate B 
outside A. The closing is then the complement of the union of all translations of B 
that do not overlap A. Figure 9.9 illustrates this concept. Note that the boundary of 
the closing is determined by the furthest points B could reach without going inside 
any part of A. Based on this interpretation, we can write the closing of A by B as

 	 A B B B A
z z

c
 = ( ) ( ) = ∅{ }



¨∪ 	 (9-13)

EXAMPLE 9.3 :  Morphological opening and closing.

Figure 9.10 shows in more detail the process and properties of opening and closing. Unlike Figs. 9.8 
and 9.9, whose main objectives are overall geometrical interpretations, this figure shows the individual 
processes and also pays more attention to the relationship between the scale of the final results and the 
size of the structuring elements. 

Figure 9.10(a) shows an image containing a single object (set) A, and a disk structuring element. 
Figure 9.10(b) shows various positions of the structuring element during erosion. This process resulted 
in the disjoint set in Fig. 9.10(c). Note how the bridge between the two main sections was eliminated. 
Its width was thin in relation to the diameter of the structuring element, which could not be completely 
contained in this part of the set, thus violating the definition of erosion. The same was true of the two 
rightmost members of the object. Protruding elements where the disk did not fit were eliminated. Figure 
9.10(d) shows the process of dilating the eroded set, and Fig. 9.10(e) shows the final result of opening. 
Morphological opening removes regions that cannot contain the structuring element, smoothes object 
contours, breaks thin connections, and removes thin protrusions. 

Figures 9.10(f) through (i) show the results of closing A with the same structuring element. As with 
opening, closing also smoothes the contours of objects. However, unlike opening, closing tends to join 
narrow breaks, fills long thin gulfs, and fills objects smaller than the structuring element. In this example, 
the principal result of closing was that it filled the small gulf on the left of set A.

ba
dc

FIGURE 9.9
(a) Image I,  
composed of set 
(object) A, and 
background.  
(b) Structuring  
element B. 
(c) Translations of B 
such that B does not 
overlap any part  
of A. (A is shown 
dark for clarity.)  
(d) Closing of A 
by B.

B

A B�

Background

A

Image, I
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710    Chapter 9  Morphological Image Processing

match. When the SE is centered on the bottom, right corner pixel, the role of the 
don’t care elements is reversed, again resulting in a correct match. The other border 
pixels between the two corners were similarly detected by considering all don’t care 
elements as foreground. Thus, using don’t care elements increases the flexibility of 
structuring elements to perform multiple roles. 

9.5	SOME BASIC MORPHOLOGICAL ALGORITHMS  

With the preceding discussion as a foundation, we are now ready to consider some 
practical uses of morphology. When dealing with binary images, one of the principal 
applications of morphology is in extracting image components that are useful in the 

9.5

ba c  
FIGURE 9.13 Same solution as in Fig. 9.12, but using Eq. (9-17) with a single structuring element. 

C

D

E

Image, I

Background

Border of
background pixels

B
Origin of D

Background

Image, I B

Image, I

B

Image, I B

Image, I

B

Image, I B

Image, I

B

Image, I B

ba c
ed f
hg i  

FIGURE 9.14
Three examples 
of using a single 
structuring  
element and 
Eq. (9-17) to 
detect specific 
features. First 
row: detection 
of single-pixel 
holes. Second 
row: detection of 
an upper-right 
corner. Third row: 
detection of  
multiple features. 
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X0 X1 X2

X6 X8

BA I cI

8X I�

cA

ba c
ed f
hg i

FIGURE 9.17
Hole filling. 
(a) Set A (shown 
shaded) contained 
in image I.  
(b) Complement 
of I.  
(c) Structuring  
element B. Only 
the foreground 
elements are  
used in  
computations 
(d) Initial point  
inside hole, set 
to 1.  
(e)–(h) Various 
steps of Eq. (9-19). 
(i) Final result 
[union of (a) and 
(h)].

EXTRACTION OF CONNECTED COMPONENTS

Being able to extract connected components from a binary image is central to many 
automated image analysis applications. Let A be a set of foreground pixels consist-
ing of one or more connected components, and form an image X0 (of the same size 
as I, the image containing A) whose elements are 0’s (background values), except 
at each location known to correspond to a point in each connected component in A, 

Connectivity and  
connected components 
are discussed in  
Section 2.5.

ba

FIGURE 9.18
 (a) Binary image. 
The white dots 
inside the regions 
(shown enlarged 
for clarity) are the 
starting points for 
the hole-filling 
algorithm.  
(b) Result of  
filling all holes.
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9.6  Morphological Reconstruction    725

9.6	MORPHOLOGICAL RECONSTRUCTION  

The morphological concepts discussed thus far involve a single image and one or 
more structuring elements. In this section, we discuss a powerful morphological 
transformation called morphological reconstruction that involves two images and 
a structuring element. One image, the marker, which we denote by F, contains the 
starting points for reconstruction. The other image, the mask, denoted by G, con-
strains (conditions) the reconstruction. The structuring element is used to define 
connectivity.† For 2-D applications, connectivity typically is defined as 8-connectivity, 
which is implied by a structuring element of size 3 3×  whose elements are all 1’s.

GEODESIC DILATION AND EROSION

Central to morphological reconstruction are the concepts of geodesic dilation and 
geodesic erosion. Let F denote the marker image and G the mask image. We assume 
in this discussion that both are binary images and that F G8 . The geodesic dila-
tion of size 1 of the marker image with respect to the mask, denoted by D FG

1( ) ( ), is 
defined as

	 D F F B GG
1( ) ( ) = ( ){ ¨ 	 (9-38)

where, as usual, ¨  denotes the set intersection (here ¨  may be interpreted as a logi-
cal AND because we are dealing with binary quantities). The geodesic dilation of 
size n of F with respect to G is defined as

	 D F D D FG
n

G G
n( ) ( ) −( )( ) = ( )( )1 1 	 (9-39)

where n ≥ 1 is an integer, and D F FG
0( ) ( ) = . In this recursive expression, the set inter-

section indicated in Eq. (9-38) is performed at each step.‡ Note that the intersec-
tion operation guarantees that mask G will limit the growth (dilation) of marker F. 
Figure 9.28 shows a simple example of a geodesic dilation of size 1. The steps in the 
figure are a direct implementation of Eq. (9-38). Note that the marker F consists of 
just one point from the object in G. The idea is to grow (dilate) this point succes-
sively, masking of the result at each step by G. Continuing with this process would 
yield a result whose shape is influenced by the structure of G. In this simple case, 
the reconstruction would eventually result in an image identical to G (see Fig. 9.30).

The geodesic erosion of size 1 of marker F with respect to mask G is defined as

	 E F F B GG
1( ) ( ) = ( )| ´ 	 (9-40)

†  In much of the literature on morphological reconstruction, the structuring element is tacitly assumed to be 
isotropic and typically is called an elementary isotropic structuring element. In the context of this chapter, an 
example of such an SE is a 3 3×  array of 1’s with the origin at the center.
‡  Although it is more intuitive to develop morphological reconstruction methods using recursive formulations 
(as we do here), their practical implementation typically is based on more computationally efficient algorithms 
(see, for example, Vincent [1993] and Soille [2003]). 

9.6

See Section 2.5 regarding 
connectivity.
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Marker, F

Mask, G

Marker dilated by B

B

�

Geodesic dilation, D (1)(F)
G

(This is the dilated marker 
image masked by G.)

FIGURE 9.28
Illustration of a 
geodesic  
dilation of  
size 1. Note that 
the marker image 
contains a point 
from the object  
in G. If continued, 
subsequent dila-
tions and maskings 
would eventually 
result in the object 
contained in G. 

where ´  denotes set union (or logical OR operation). The geodesic erosion of size n 
of F with respect to G is defined as

	 E F E E FG
n

G G
n( ) ( ) −( )( ) = ( )( )1 1 	 (9-41)

where n ≥ 1 is an integer and E F FG
0( ) ( ) = . The set union in Eq. (9-40) is performed 

at each step, and guarantees that geodesic erosion of an image remains greater than 
or equal to its mask image. As you might have expected from the forms in Eqs. (9-38) 
and (9-40), geodesic dilation and erosion are duals with respect to set complementa-
tion (see Problem 9.42). Figure 9.29 shows an example of a geodesic erosion of size 1.  
The steps in the figure are a direct implementation of Eq. (9-40).

Geodesic dilation and erosion converge after a finite number of iterative steps, 
because propagation or shrinking of the marker image is constrained by the mask.

MORPHOLOGICAL RECONSTRUCTION BY DILATION AND BY EROSION

Based on the preceding concepts, morphological reconstruction by dilation of a 
marker image F with respect to a mask image G, denoted R FG

D ( ), is defined as the 
geodesic dilation of F with respect to G, iterated until stability is achieved; that is,

	
R F D FG

D
G

k( ) = ( )( ) 	 (9-42)

with k such that D F D FG
k

G
k( ) +( )( ) = ( )1 . 

Figure 9.30 illustrates reconstruction by dilation. Figure 9.30(a) continues the pro-
cess begun in Fig. 9.28. The next step in reconstruction after obtaining D FG

( )1 ( ) is to 
dilate this result, then AND it with mask G to yield D FG

( ) ,2 ( )  as Fig. 9.30(b) shows. 
Dilation of D FG

( )2 ( ) and masking with G then yields D FG
( ) ,3 ( )  and so on. This pro-

cedure is repeated until stability is reached. Carrying out this example one more 
step would give D F D FG G

( ) ( ) ,5 6( ) = ( )  so the image, morphologically reconstructed by 
dilation, is given by R F D FG

D
G( ) = ( )( )5 , as indicated in Eq. (9-42). The reconstructed 

image is identical to the mask, as expected.
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In a similar manner, the morphological reconstruction by erosion of a marker 
image F with respect to a mask image G, denoted R FG

E ( ), is defined as the geodesic 
erosion of F with respect to G, iterated until stability; that is,

	 R F E FG
E

G
k( ) = ( )( ) 	 (9-43)

with k such that E F E FG
k

G
k( ) +( )( ) = ( )1 . As an exercise, generate a figure similar to 

Fig. 9.30 for morphological reconstruction by erosion. Reconstruction by dilation 
and erosion are duals with respect to set complementation (see Problem 9.43).

SAMPLE APPLICATIONS

Morphological reconstruction has a broad spectrum of practical applications, each 
determined by the selection of the marker and mask images, by the structuring 

Marker, F

Mask, G

Marker eroded by B

B

�

Geodesic erosion, E (1)(F)
G

(This is the eroded maker
image masked by G.)

FIGURE 9.29
Illustration of a 
geodesic erosion 
of size 1.

ba dc
f he g

FIGURE 9.30
Illustration of 
morphological 
reconstruction 
by dilation. Sets
D FG

( )( ),1  G, B  
and F are from 
Fig. 9.28. The  
mask (G) is 
shown dotted for 
reference.

(1)( ) dilated by GD F B (2)Result of masking = ( ) GD F (2)( ) dilated by GD F B (3)Result of masking = ( ) GD F

(3)( ) dilated by GD F B (4)Result of masking = ( ) GD F (4)( ) dilated by GD F B (5)Result of masking = ( ) GD F
No changes after this point,
so (5)( ) ( )D

G GR F D F=
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	 X I R FI
D= − ( ) 	 (9-48)

to obtain an image, X , with no objects touching the border.
As an example, consider the original text image from Fig. 9.31(a) again. 

Figure 9.34(a) shows the reconstruction R FI
D ( ) obtained using a 3 3×  structuring 

element of 1’s. The objects touching the border of the original image are visible 
in the right side of Fig. 9.34(a). Figure 9.34(b) shows image X, computed using Eq. 
(9-48). If the task at hand were automated character recognition, having an image in 
which no characters touch the border is most useful because the problem of having 
to recognize partial characters (a difficult task at best) is avoided.

9.7	SUMMARY OF MORPHOLOGICAL OPERATIONS ON BINARY 
IMAGES  

Figure 9.35 summarizes the types of structuring elements used in the various binary 
morphological methods discussed thus far. The shaded elements are foreground 
values (typically denoted by 1’s in numerical arrays), the elements in white are 
background values (typically denoted by 0’s), and the ×’s  are “don’t care” elements. 
Table 9.1 summarizes the binary morphological results developed in the preceding 
sections. The Roman numerals in the third column of Table 9.1 refer to the structur-
ing elements in Fig. 9.35.

9.7

ba
dc

FIGURE 9.33
(a) Text image of 
size 918 2018×  
pixels.  
(b) Complement 
of (a) for use as a 
mask image.  
(c) Marker image. 
(d) Result of 
hole-filling using 
Eqs. (9-45) and 
(9-46).

ba

FIGURE 9.34
(a) Reconstruction 
by dilation of marker 
image. (b) Image 
with no objects 
touching the border. 
The original image is 
Fig. 9.31(a).
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9.8	GRAYSCALE MORPHOLOGY  

In this section, we extend to grayscale images the basic operations of dilation, ero-
sion, opening, and closing. We then use these operations to develop several basic 
grayscale morphological algorithms. Throughout the discussion that follows, we deal 
with digital functions of the form f x y( , ) and b x y( , ), where f x y( , ) is a grayscale 
image and b x y( , ) is a structuring element. The assumption is that these functions 
are discrete in the sense defined in Section 2.4. That is, if Z  denotes the set of real 
integers, then the coordinates ( , )x y  are integers from the Cartesian product Z2, and 
f x y( , ) and b x y( , ) are functions that assign an intensity value (a real number from 
the set of real numbers, R) to each distinct pair of coordinates ( , ).x y  If the intensity 
levels are integers also, then Z replaces R.

Structuring elements in grayscale morphology perform the same basic functions 
as their binary counterparts: They are used as “probes” to examine a given image for 
specific properties. Structuring elements in grayscale morphology belong to one of 
two categories: nonflat and flat. Figure 9.36 shows an example of each. Figure 9.36(a) 
is a hemispherical grayscale SE shown as an image, and Fig. 9.36(c) is a horizontal 
intensity profile through its center. Figure 9.34(b) shows a flat structuring element 
in the shape of a disk, and Fig. 9.36(d) is its corresponding intensity profile. (The 
shape of this profile explains the origin of the word “flat.”) The elements in Fig. 9.36 
are shown as continuous quantities for clarity; their computer implementation is 
based on digital approximations. Because of a number of difficulties discussed later 
in this section, grayscale nonflat SEs are not used frequently in practice. Finally, we 
mention that, as in the binary case, the origin of grayscale structuring elements must 
be clearly identified. Unless mentioned otherwise, all the examples in this section 
are based on symmetrical, flat structuring elements of unit height whose origins 
are at the center. The reflection of an SE in grayscale morphology is as defined in 
Section 9.1; we denote it in the following discussion by ˆ , , .b x y b x y( ) = − −( )

GRAYSCALE EROSION AND DILATION

The grayscale erosion of f  by a flat structuring element b at location ( , )x y  is defined 
as the minimum value of the image in the region coincident with b x y( , ) when the 
origin of b is at ( , ).x y  In equation form, the erosion at ( , )x y  of an image f  by a struc-
turing element b is given as

	 f b x y f x s y t
s t b

|[ ]( ) = + +( ){ }( ) ∈
, min ,

,
	 (9-49)

9.8

FIGURE 9.35
Five basic types 
of structuring 
elements used for 
binary  
morphology. 

B
I

Bi  i � 1, 2, 3, 4
(rotate 90�)

�

�

Bi  i � 5, 6, 7, 8
(rotate 90�)

V

B
II

Bi  i � 1, 2, 3, 4
(rotate 90�)

III

�

�

�

�

�

Bi  i � 1, 2, . . . , 8
(rotate 45�)

IV

� �

�

= origin
= don’t care
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ba c
ed f
hg i

FIGURE 9.46 (a) Original image of size 1134 1360×  pixels. (b) Opening by reconstruction of (a), using a structur-
ing element consisting of a horizontal line 71 pixels long in the erosion. (c) Opening of (a) using the same SE.  
(d) Top-hat by reconstruction. (e) Result of applying just a top-hat transformation. (f) Opening by reconstruction 
of (d), using a horizontal line 11 pixels long. (g) Dilation of (f) using a horizontal line 21 pixels long. (h) Minimum  
of (d) and (g). (i) Final reconstruction result. (Images courtesy of Dr. Steve Eddins, MathWorks, Inc.)

constant intensity. The solution of this problem is a good illustration of the power of grayscale mor-
phology. We begin by suppressing the horizontal reflection on the top of the keys. The reflections are 
wider than any single character in the image, so we should be able to suppress them by performing an 
opening by reconstruction using a long horizontal line in the erosion operation. This operation will 
yield the background containing the keys and their reflections. Subtracting this from the original image 
(i.e., performing a top-hat by reconstruction) will eliminate the horizontal reflections and variations in 
background from the original image.
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(Hint: Use proof by induction.)

(a) *	D f E E fg
n

g g

n c
c

c c
( ) ( ) −( )( ) = 





1 1[ ( )] . Assume a symmetric 
structuring element.

(b)	 E f D D fg
n

g g

n c
c

c c
( ) ( ) −( )( ) = 





1 1[ ( )] .  Assume a symmetric 
structuring element.

9.48	 Prove the validity of the following grayscale mor-
phological expressions.

(a) *	R f R fg
D

g
E c

c

c( ) = ( )



 .

(b)	 R f R fg
E

g
D c

c

c( ) = ( )



 .

9.49	 Prove the validity of the following grayscale mor-
phological expressions.

(a) *	 f nb f nb
c c

| {( ) = ( )ˆ ,  where f nb|( ) indicates 
n successive erosions, starting with b.

(b)	 f nb f nb
c c

{ |( ) = ( )ˆ .

9.50	 Prove the validity of the following gray-
scale morphological expressions. Recall that 
f x y f x yc( , ) ( , )= −   and  that ˆ( , ) ( , ).b x y b x y= − −  

Assume a symmetric structuring element.

(a) *	O f C fR
n

R
n c

c( ) ( )( ) = ( )



 . 

(b)	 C f O fR
n

R
n c

c( ) ( )( ) = ( )



 .

9.51	 Consider the image below, which shows a region 
of small circles enclosed by a region of larger 
circles.

(a)	 Would you expect the method used to gen-
erate Fig. 9.45(d) to work with this image 
also? Explain your reasoning, including any 
assumptions that you need to make for the 
method to work.

(b) *	If your answer to (a) is yes, sketch what the 
boundary will look like.

9.52	 A grayscale image, f x y( , ), is corrupted by non-
overlapping noise spikes that can be modeled 
as small flat disks of radii R R Rmin max≤ ≤  and 
amplitude A A Amin max .≤ ≤

(a) *	Develop a morphological filtering approach 
for denoising the image.

(b)	 Repeat (a), but now assume that there is 
touching and overlapping of, at most, four 
noise spikes appearing either as an array of 
2-by-2 spikes, or 4-by-1 spikes.

9.53	 A preprocessing step in an application of mi- 
croscopy is concerned with the issue of isolating 
individual round particles from similar particles 
that overlap in groups of two or more particles 
(see the following image). Assuming that all parti-
cles are of the same size, propose a morphological 
algorithm that produces three images consisting 
respectively of:

(a) *	Only particles that have merged with the 
boundary of the image.

(b)	 Only overlapping particles.

(c)	 Only nonoverlapping particles.

9.54	 A high-technology manufacturing plant is award-
ed a government contract to manufacture high-
precision washers of the form shown:

The terms of the contract require that the shape 
of all washers be inspected by an imaging system. 
In this context, shape inspection refers to devia-
tions from round on the inner and outer edges of 
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the washers. You may assume the following: (1) A 
“golden” (perfect with respect to the problem) 
image of an acceptable washer is available; and 
(2) the imaging and positioning components ulti-
mately used in the system will have an accuracy 
high enough to allow you to ignore errors due to 

digitalization and positioning. You are hired as a 
consultant to help specify the visual inspection 
part of the system. Propose a solution based on 
morphological/logical operations.

Projects 
MATLAB solutions to the projects marked with an asterisk (*) are in the DIP4E Student Support Package (consult 
the book website: www.ImageProcessingPlace.com). 

9.1 *	 Numerous morphological functions are based on 
moving the center of a structuring element (SE) 
over an image I and, at each location ( , ),x y  deter-
mining how well the elements of the SE match 
the pixels of the corresponding neighborhood of I 
centered at ( , ).x y  This is similar to the mechanics 
of convolution and correlation discussed in Sec-
tion 3.4 (see Fig. 3.34). Let I be a binary image of 
size M × N and B an SE of size m × n (m and n odd) 
whose origin is at its canter. The elements of B can 
be: 0, corresponding to the background of I; 1, cor-
responding to the foreground; or any other value 
(e.g., any integer other than 0 or 1) correspond-
ing to “don’t care” values. As in convolution and 
correlation, I must be padded. To accommodate 
all possible excursions of B, pad I with m rows 
of padval above and below and n columns to the 
left and right. The padding value can be 0 (the 
default) or 1. The padded image, Ip, will be of size 
(M  + 2m) × (N + 2n).

(a)	 Write a function, S = morphoMatch4e(I,B,padval, 
mode) that finds all matches of B in I. Output 
S has elements with three possible values: 0, 
meaning no matches; 0.5, meaning partial 
matches; and 1 meaning a perfect match. 
Thus, a value of 1 at coordinates (x, y) in S 
means that the center of B was at (x, y) when B 
and the subimage of Ip directly under B were 
identical. In a partial match, at least one ele-
ment of B matches a corresponding element 
in Ip. When S is 0 at (x, y), no elements of B and 
the corresponding elements of the subimage 
were equal. Elements of B that have “don’t 
care” values are always forced to match their 
corresponding elements in Ip. If mode = 'full', S 
will be of the same size as Ip. If mode = 'same' 
(the default), S is cropped to the same size 

as I. If mode is included in the input argument, 
padval must be provided also.

You can implement this function in two basic 
ways. If you do not have the Image Process-
ing Toolbox in your MATLAB installation, 
use for loops. If you do have the toolbox, you 
may optionally write the function using tool-
box function colfilt, which implements slid-
ing neighborhoods. The first approach is the 
simplest (but it generally is slower). The sec-
ond approach is much more difficult, but it 
is faster and more elegant. We give solutions 
using both approaches. The solution using 
colfilt is called morphoMatch4e. The solution 
using loops is called morphoMatchLoops4e. If 
you implement only the loops solution, name 
it morphoMatch4e for use in later projects.

(b)	 Function morphoMatch4e is the foundation for 
most of the functions you will be writing in 
the following projects, so test it extensively 
with synthetic images of your choice. In your 
tests, make sure you use rectangular arrays 
(i.e., not square) for both I and B.

9.2	 Erosion and dilation.

(a) *	Write a function E = morphoErode4e(I,B,padval) 
for performing morphological erosion of 
binary image I by a structuring element B. 
The specifications for I, B, and padval, are the 
same as in Project 9.1, except that all ele-
ments of B should be 1. A value of padval = 1 is 
used, for example, when eroding the comple-
ment of I. Because we assume that the back-
ground is by default 0, complementing I turns 
the background into 1, so the border has to 
be padded with 1’s in such cases. (Hint: Use 
function morphoMatch4e from Project 9.1.)
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10
Image Segmentation I 
Edge Detection, Thresholding, and 
Region Detection 

Preview
The material in the previous chapter began a transition from image processing methods whose inputs 
and outputs are images, to methods in which the inputs are images but the outputs are attributes extract-
ed from those images. Most of the segmentation algorithms in this chapter are based on one of two basic 
properties of image intensity values: discontinuity and similarity. In the first category, the approach is 
to partition an image into regions based on abrupt changes in intensity, such as edges. Approaches in 
the second category are based on partitioning an image into regions that are similar according to a set 
of predefined criteria. Thresholding, region growing, and region splitting and merging are examples of 
methods in this category. We show that improvements in segmentation performance can be achieved 
by combining methods from distinct categories, such as techniques in which edge detection is combined 
with thresholding. We discuss also image segmentation using clustering and superpixels, and give an 
introduction to graph cuts, an approach ideally suited for extracting the principal regions of an image. 
This is followed by a discussion of image segmentation based on morphology, an approach that com-
bines several of the attributes of segmentation based on the techniques presented in the first part of the 
chapter. We conclude the chapter with a brief discussion on the use of motion cues for segmentation. 

Upon completion of this chapter, readers should:
	 Understand the characteristics of various types 

of edges found in practice.

	 Understand how to use spatial filtering for 
edge detection.

	 Be familiar with other types of edge detection 
methods that go beyond spatial filtering.

	 Understand image thresholding using several 
different approaches.

	 Know how to combine thresholding and spa-
tial filtering to improve segmentation.

	 Be familiar with region-based segmentation, 
including clustering and superpixels.

	 Understand how graph cuts and morphologi-
cal watersheds are used for segmentation. 

	 Be familiar with basic techniques for utilizing 
motion in image segmentation.

The whole is equal to the sum of its parts.
Euclid

The whole is greater than the sum of its parts.
Max Wertheimer
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10.1 	FUNDAMENTALS  

Let R represent the entire spatial region occupied by an image. We may view image 
segmentation as a process that partitions R into n subregions, R R Rn1 2, , , ,…  such 
that

(a)	 R Ri
i

n

=
=

.
1

∪
(b)	 Ri  is a connected set, for i n= 0 1 2, , , , .…

(c)	 R Ri j� = ∅ for all i and j, i j≠ .

(d)	 Q Ri( ) = TRUE for i n= 0 1 2, , , , .…
(e)	 Q R Ri j�( ) = FALSE for any adjacent regions Ri  and Rj .

where Q Rk( )  is a logical predicate defined over the points in set Rk , and ∅  is the 
null set. The symbols ´  and ¨  represent set union and intersection, respectively, as 
defined in Section 2.6. Two regions Ri  and Rj  are said to be adjacent if their union 
forms a connected set, as defined in Section 2.5. If the set formed by the union of two 
regions is not connected, the regions are said to disjoint.

Condition (a) indicates that the segmentation must be complete, in the sense that 
every pixel must be in a region. Condition (b) requires that points in a region be con-
nected in some predefined sense (e.g., the points must be 8-connected). Condition 
(c) says that the regions must be disjoint. Condition (d) deals with the properties that 
must be satisfied by the pixels in a segmented region—for example, Q Ri( ) = TRUE 
if all pixels in Ri  have the same intensity. Finally, condition (e) indicates that two 
adjacent regions Ri  and Rj  must be different in the sense of predicate Q.†

Thus, we see that the fundamental problem in segmentation is to partition an 
image into regions that satisfy the preceding conditions. Segmentation algorithms 
for monochrome images generally are based on one of two basic categories dealing 
with properties of intensity values: discontinuity and similarity. In the first category, 
we assume that boundaries of regions are sufficiently different from each other, and 
from the background, to allow boundary detection based on local discontinuities in 
intensity. Edge-based segmentation is the principal approach used in this category. 
Region-based segmentation approaches in the second category are based on parti-
tioning an image into regions that are similar according to a set of predefined criteria.

Figure 10.1 illustrates the preceding concepts. Figure 10.1(a) shows an image of a 
region of constant intensity superimposed on a darker background, also of constant 
intensity. These two regions comprise the overall image. Figure 10.1(b) shows the 
result of computing the boundary of the inner region based on intensity discontinui-
ties. Points on the inside and outside of the boundary are black (zero) because there 
are no discontinuities in intensity in those regions. To segment the image, we assign 
one level (say, white) to the pixels on or inside the boundary, and another level (e.g., 
black) to all points exterior to the boundary. Figure 10.1(c) shows the result of such 
a procedure. We see that conditions (a) through (c) stated at the beginning of this 

† In general, Q can be a compound expression such as, “Q Ri( ) = TRUE  if the average intensity of the pixels in 
region Ri  is less than mi  AND if the standard deviation of their intensity is greater than si,” where mi and si  
are specified constants. 

10.1
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FIGURE 10.1
(a) Image of a 
constant intensity 
region.  
(b) Boundary 
based on intensity 
discontinuities.  
(c) Result of 
segmentation.  
(d) Image of a 
texture region.  
(e) Result of 
intensity discon-
tinuity computa-
tions (note the 
large number of 
small edges).  
(f) Result of 
segmentation 
based on region 
properties.

section are satisfied by this result. The predicate of condition (d) is: If a pixel is on, 
or inside the boundary, label it white; otherwise, label it black. We see that this predi-
cate is TRUE for the points labeled black or white in Fig. 10.1(c). Similarly, the two 
segmented regions (object and background) satisfy condition (e).

The next three images illustrate region-based segmentation. Figure 10.1(d) is 
similar to Fig. 10.1(a), but the intensities of the inner region form a textured pattern. 
Figure 10.1(e) shows the result of computing intensity discontinuities in this image. 
The numerous spurious changes in intensity make it difficult to identify a unique 
boundary for the original image because many of the nonzero intensity changes are 
connected to the boundary, so edge-based segmentation is not a suitable approach. 
However, we note that the outer region is constant, so all we need to solve this seg-
mentation problem is a predicate that differentiates between textured and constant 
regions. The standard deviation of pixel values is a measure that accomplishes this 
because it is nonzero in areas of the texture region, and zero otherwise. Figure 10.1(f) 
shows the result of dividing the original image into subregions of size 8 8× . Each 
subregion was then labeled white if the standard deviation of its pixels was posi-
tive (i.e., if the predicate was TRUE), and zero otherwise. The result has a “blocky” 
appearance around the edge of the region because groups of 8 8×  squares were 
labeled with the same intensity (smaller squares would have given a smoother 
region boundary). Finally, note that these results also satisfy the five segmentation 
conditions stated at the beginning of this section.

10.2  POINT, LINE, AND EDGE DETECTION  

The focus of this section is on segmentation methods that are based on detecting 
sharp, local changes in intensity. The three types of image characteristics in which 

10.2
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point is said to be more likely associated with a horizontal line. If we are interested 
in detecting all the lines in an image in the direction defined by a given kernel, we 
simply run the kernel through the image and threshold the absolute value of the 
result, as in Eq. (10-15). The nonzero points remaining after thresholding are the 
strongest responses which, for lines one pixel thick, correspond closest to the direc-
tion defined by the kernel. The following example illustrates this procedure.

EXAMPLE 10.3 :  Detecting lines in specified directions.

Figure 10.7(a) shows the image used in the previous example. Suppose that we are interested in find-
ing all the lines that are one pixel thick and oriented at + °45 . For this purpose, we use the kernel in 
Fig. 10.6(b). Figure 10.7(b) is the result of filtering the image with that kernel. As before, the shades 
darker than the gray background in Fig. 10.7(b) correspond to negative values. There are two principal 
segments in the image oriented in the + °45  direction, one in the top left and one at the bottom right. Fig-
ures 10.7(c) and (d) show zoomed sections of Fig. 10.7(b) corresponding to these two areas. The straight 
line segment in Fig. 10.7(d) is brighter than the segment in Fig. 10.7(c) because the line segment in the 
bottom right of Fig. 10.7(a) is one pixel thick, while the one at the top left is not. The kernel is “tuned” 
to detect one-pixel-thick lines in the + °45  direction, so we expect its response to be stronger when such 
lines are detected. Figure 10.7(e) shows the positive values of Fig. 10.7(b). Because we are interested in 
the strongest response, we let T  equal 254 (the maximum value in Fig. 10.7(e) minus one). Figure 10.7(f) 
shows in white the points whose values satisfied the condition g T> , where g  is the image in Fig. 10.7(e). 
The isolated points in the figure are points that also had similarly strong responses to the kernel. In the 
original image, these points and their immediate neighbors are oriented in such a way that the kernel 
produced a maximum response at those locations. These isolated points can be detected using the kernel 
in Fig. 10.4(a) and then deleted, or they can be deleted using morphological operators, as discussed in the 
last chapter.

EDGE MODELS

Edge detection is an approach used frequently for segmenting images based on 
abrupt (local) changes in intensity. We begin by introducing several ways to model 
edges and then discuss a number of approaches for edge detection.

ba c d

FIGURE 10.6  Line detection kernels. Detection angles are with respect to the axis system in Fig. 2.19, with positive 
angles measured counterclockwise with respect to the (vertical) x-axis.
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FIGURE 10.7 (a) Image of a wire-bond template. (b) Result of processing with the + °45  line detector kernel in Fig. 
10.6. (c) Zoomed view of the top left region of (b). (d) Zoomed view of the bottom right region of (b). (e) The image 
in (b) with all negative values set to zero. (f) All points (in white) whose values satisfied the condition g T> , where 
g is the image in (e) and T = 254 (the maximum pixel value in the image minus 1). (The points in (f) were enlarged 
to make them easier to see.)

Edge models are classified according to their intensity profiles. A step edge is 
characterized by a transition between two intensity levels occurring ideally over the 
distance of one pixel. Figure 10.8(a) shows a section of a vertical step edge and 
a horizontal intensity profile through the edge. Step edges occur, for example, in 
images generated by a computer for use in areas such as solid modeling and ani-
mation. These clean, ideal edges can occur over the distance of one pixel, provided 
that no additional processing (such as smoothing) is used to make them look “real.” 
Digital step edges are used frequently as edge models in algorithm development. 
For example, the Canny edge detection algorithm discussed later in this section was 
derived originally using a step-edge model.

In practice, digital images have edges that are blurred and noisy, with the degree 
of blurring determined principally by limitations in the focusing mechanism (e.g., 
lenses in the case of optical images), and the noise level determined principally by 
the electronic components of the imaging system. In such situations, edges are more 
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FIGURE 10.8
From left to right, 
models (ideal 
representations) of 
a step, a ramp, and 
a roof edge, and 
their corresponding 
intensity profiles.

closely modeled as having an intensity ramp profile, such as the edge in Fig. 10.8(b). 
The slope of the ramp is inversely proportional to the degree to which the edge is 
blurred. In this model, we no longer have a single “edge point” along the profile. 
Instead, an edge point now is any point contained in the ramp, and an edge segment 
would then be a set of such points that are connected.

A third type of edge is the so-called roof edge, having the characteristics illus-
trated in Fig. 10.8(c). Roof edges are models of lines through a region, with the 
base (width) of the edge being determined by the thickness and sharpness of the 
line. In the limit, when its base is one pixel wide, a roof edge is nothing more than 
a one-pixel-thick line running through a region in an image. Roof edges arise, for 
example, in range imaging, when thin objects (such as pipes) are closer to the sensor 
than the background (such as walls). The pipes appear brighter and thus create an 
image similar to the model in Fig. 10.8(c). Other areas in which roof edges appear 
routinely are in the digitization of line drawings and also in satellite images, where 
thin features, such as roads, can be modeled by this type of edge.

It is not unusual to find images that contain all three types of edges. Although 
blurring and noise result in deviations from the ideal shapes, edges in images that 
are reasonably sharp and have a moderate amount of noise do resemble the charac-
teristics of the edge models in Fig. 10.8, as the profiles in Fig. 10.9 illustrate. What the 
models in Fig. 10.8 allow us to do is write mathematical expressions for edges in the 
development of image processing algorithms. The performance of these algorithms 
will depend on the differences between actual edges and the models used in devel-
oping the algorithms.

Figure 10.10(a) shows the image from which the segment in Fig. 10.8(b) was extract-
ed. Figure 10.10(b) shows a horizontal intensity profile. This figure shows also the first 
and second derivatives of the intensity profile. Moving from left to right along the 
intensity profile, we note that the first derivative is positive at the onset of the ramp 
and at points on the ramp, and it is zero in areas of constant intensity. The second 
derivative is positive at the beginning of the ramp, negative at the end of the ramp, 
zero at points on the ramp, and zero at points of constant intensity. The signs of the 
derivatives just discussed would be reversed for an edge that transitions from light to 
dark. The intersection between the zero intensity axis and a line extending between 
the extrema of the second derivative marks a point called the zero crossing of the 
second derivative.

We conclude from these observations that the magnitude of the first derivative 
can be used to detect the presence of an edge at a point in an image. Similarly, the 
sign of the second derivative can be used to determine whether an edge pixel lies on 
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FIGURE 10.18
Same sequence as 
in Fig. 10.16, but 
with the original 
image smoothed 
using a 5 5×  aver-
aging kernel prior 
to edge detection.

black. Comparing this image with Fig. 10.16(d), we see that there are fewer edges 
in the thresholded image, and that the edges in this image are much sharper (see, 
for example, the edges in the roof tile). On the other hand, numerous edges, such 
as the sloping line defining the far edge of the roof (see arrow), are broken in the 
thresholded image.

When interest lies both in highlighting the principal edges and on maintaining 
as much connectivity as possible, it is common practice to use both smoothing and 
thresholding. Figure 10.20(b) shows the result of thresholding Fig. 10.18(d), which is 
the gradient of the smoothed image. This result shows a reduced number of broken 
edges;  for instance, compare the corresponding edges identified by the arrows in 
Figs. 10.20(a) and (b). 

ba

FIGURE 10.19
Diagonal edge  
detection.  
(a) Result of using 
the Kirsch kernel in 
Fig. 10.15(c).  
(b) Result of using 
the kernel in Fig. 
10.15(d). The input 
image in both cases 
was Fig. 10.18(a).
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MORE ADVANCED TECHNIQUES FOR EDGE DETECTION

The edge-detection methods discussed in the previous subsections are based on fil-
tering an image with one or more kernels, with no provisions made for edge char-
acteristics and noise content. In this section, we discuss more advanced techniques 
that attempt to improve on simple edge-detection methods by taking into account 
factors such as image noise and the nature of edges themselves.

The Marr-Hildreth Edge Detector

One of the earliest successful attempts at incorporating more sophisticated analy-
sis into the edge-finding process is attributed to Marr and Hildreth [1980]. Edge- 
detection methods in use at the time were based on small operators, such as the 
Sobel kernels discussed earlier. Marr and Hildreth argued (1) that intensity chang-
es are not independent of image scale, implying that their detection requires using 
operators of different sizes; and (2) that a sudden intensity change will give rise to a 
peak or trough in the first derivative or, equivalently, to a zero crossing in the second 
derivative (as we saw in Fig. 10.10).

These ideas suggest that an operator used for edge detection should have two 
salient features. First and foremost, it should be a differential operator capable of 
computing a digital approximation of the first or second derivative at every point in 
the image. Second, it should be capable of being “tuned” to act at any desired scale, 
so that large operators can be used to detect blurry edges and small operators to 
detect sharply focused fine detail.

Marr and Hildreth suggested that the most satisfactory operator fulfilling these 
conditions is the filter 2G where, as defined in Section 3.6, 2 is the Laplacian, and 
G is the 2-D Gaussian function

	 G x y e
x y

( , ) =
− +2 2

22s 	 (10-27)

with standard deviation s  (sometimes s  is called the space constant in this context). 
We find an expression for 2G by applying the Laplacian to Eq. (10-27):

Equation (10-27) differs 
from the definition of a 
Gaussian function by a 
multiplicative constant 
[see Eq. (3-54)]. Here, 
we are interested only in 
the general shape of the 
Gaussian function.

ba

FIGURE 10.20
(a) Result of  
thresholding  
Fig. 10.16(d), the  
gradient of the 
original image.  
(b) Result of 
thresholding  
Fig. 10.18(d), the  
gradient of the 
smoothed image.
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direction, thus avoiding having to use multiple kernels to calculate the strongest 
response at any point in the image.

The Marr-Hildreth algorithm consists of convolving the LoG kernel with an input 
image,

	 g x y G x y f x y( , ) ( , ) ( , )=  2
 	 (10-30)

and then finding the zero crossings of g x y( , ) to determine the locations of edges in 
f x y( , ). Because the Laplacian and convolution are linear processes, we can write 
Eq. (10-30) as

	 g x y G x y f x y( , ) ( , ) ( , )= ∇ [ ]2
 	 (10-31)

indicating that we can smooth the image first with a Gaussian filter and then com-
pute the Laplacian of the result. These two equations give identical results.

The Marr-Hildreth edge-detection algorithm may be summarized as follows:

1.	 Filter the input image with an n n×  Gaussian lowpass kernel obtained by sam-
pling Eq. (10-27).

2.	 Compute the Laplacian of the image resulting from Step 1 using, for example, 
the 3 3×  kernel in Fig. 10.4(a). [Steps 1 and 2 implement Eq. (10-31).]

3.	 Find the zero crossings of the image from Step 2.

This expression is  
implemented in the 
spatial domain using 
Eq. (3-44). It can be 
implemented also in the 
frequency domain using 
Eq. (4-104).
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FIGURE 10.21
(a) 3-D plot of 
the negative of the 
LoG.  
(b) Negative of 
the LoG  
displayed as an 
image.  
(c) Cross section 
of (a) showing 
zero crossings. 
(d) 5 5×  kernel 
approximation to 
the shape in (a). 
The negative 
of this kernel 
would be used in 
practice.
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orientations of runways throughout the world are available in flight charts, and the direction of travel 
is easily obtainable using GPS (Global Positioning System) information. This information also could be 
used to compute the distance between the vehicle and the runway, thus allowing estimates of param-
eters such as expected length of lines relative to image size, as we did in this example.

10.3  THRESHOLDING  

Because of its intuitive properties, simplicity of implementation, and computational 
speed, image thresholding enjoys a central position in applications of image segmen-
tation. Thresholding was introduced in Section 3.1, and we have used it in various 
discussions since then. In this section, we discuss thresholding in a more formal way, 
and develop techniques that are considerably more general than what has been pre-
sented thus far.

FOUNDATION

In the previous section, regions were identified by first finding edge segments, 
then attempting to link the segments into boundaries. In this section, we discuss 

10.3

ba
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FIGURE 10.31  (a) A 502 564×  aerial image of an airport. (b) Edge map obtained using Canny’s algorithm. (c) Hough 
parameter space (the boxes highlight the points associated with long vertical lines). (d) Lines in the image plane 
corresponding to the points highlighted by the boxes. (e) Lines superimposed on the original image.
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techniques for partitioning images directly into regions based on intensity values 
and/or properties of these values.

The Basics of Intensity Thresholding

Suppose that the intensity histogram in Fig. 10.32(a) corresponds to an image, f x y( , ), 
composed of light objects on a dark background, in such a way that object and back-
ground pixels have intensity values grouped into two dominant modes. One obvious 
way to extract the objects from the background is to select a threshold, T, that sepa-
rates these modes. Then, any point ( , )x y  in the image at which f x y T( , ) >  is called 
an object point. Otherwise, the point is called a background point. In other words, 
the segmented image, denoted by g x y( , ), is given by

	 g x y
f x y T

f x y T
( , )

( , )

( , )
=

>



1

0

if 

if ≤
	 (10-46)

When T is a constant applicable over an entire image, the process given in this equa-
tion is referred to as global thresholding. When the value of T changes over an image, 
we use the term variable thresholding. The terms local or regional thresholding are 
used sometimes to denote variable thresholding in which the value of T at any point 
( , )x y  in an image depends on properties of a neighborhood of ( , )x y  (for example, 
the average intensity of the pixels in the neighborhood). If T depends on the spa-
tial coordinates ( , )x y  themselves, then variable thresholding is often referred to as 
dynamic or adaptive thresholding. Use of these terms is not universal.

Figure 10.32(b) shows a more difficult thresholding problem involving a histo-
gram with three dominant modes corresponding, for example, to two types of light 
objects on a dark background. Here, multiple thresholding classifies a point ( , )x y  as 
belonging to the background if f x y T( , ) ,≤ 1  to one object class if T f x y T1 2< ( , ) ,≤  
and to the other object class if f x y T( , ) .> 2  That is, the segmented image is given by

	 g x y

a f x y T

b T f x y T

c f x y T

,

( , )

( , )

( , )
( ) =

>
<







if 

if 

if 

2

1 2

1

≤
≤

	 (10-47)

Remember, f(x, y)  
denotes the intensity of f 
at coordinates (x, y).

Although we follow 
convention in using 0 
intensity for the back-
ground and 1 for object 
pixels, any two distinct 
values can be used in  
Eq. (10-46).

T T1 T2

ba

FIGURE 10.32
Intensity  
histograms that 
can be partitioned 
(a) by a single 
threshold, and  
(b) by dual 
thresholds.
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[see Fig. 10.33(e)], but their separation is enough so that the depth of the valley 
between them is sufficient to make the modes easy to separate. A threshold placed 
midway between the two peaks would do the job. Figure 10.33(c) shows the result 
of corrupting the image with Gaussian noise of zero mean and a standard deviation 
of 50 intensity levels. As the histogram in Fig. 10.33(f) shows, the situation is much 
more serious now, as there is no way to differentiate between the two modes. With-
out additional processing (such as the methods discussed later in this section) we 
have little hope of finding a suitable threshold for segmenting this image.

The Role of Illumination and Reflectance in Image Thresholding

Figure 10.34 illustrates the effect that illumination can have on the histogram of 
an image. Figure 10.34(a) is the noisy image from Fig. 10.33(b), and Fig. 10.34(d) 
shows its histogram. As before, this image is easily segmentable with a single thresh-
old. With reference to the image formation model discussed in Section 2.3, suppose 
that we multiply the image in Fig. 10.34(a) by a nonuniform intensity function, such 
as the intensity ramp in Fig. 10.37(b), whose histogram is shown in Fig. 10.34(e). 
Figure 10.34(c) shows the product of these two images, and Fig. 10.34(f) is the result-
ing histogram. The deep valley between peaks was corrupted to the point where sep-
aration of the modes without additional processing (to be discussed later in this sec-
tion) is no longer possible. Similar results would be obtained if the illumination was 

In theory, the histogram 
of a ramp image is 
uniform. In practice, the 
degree of uniformity 
depends on the size of 
the image and number of 
intensity levels. 

0 63 127 191 255 0 0.2 0.4 0.6 0.8 1 0 63 127 191 255

ba c
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FIGURE 10.34 (a) Noisy image. (b) Intensity ramp in the range [0.2, 0.6]. (c) Product of (a) and (b). (d) through (f) 
Corresponding histograms.
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initial choice for T ). If this condition is met, the algorithm converges in a finite num-
ber of steps, whether or not the modes are separable  (see Problem 10.32).

EXAMPLE 10.13 :   Global thresholding.

Figure 10.35 shows an example of segmentation using the preceding iterative algorithm. Figure 10.35(a) 
is the original image and Fig. 10.35(b) is the image histogram, showing a distinct valley. Application 
of the basic global algorithm resulted in the threshold T = 125 4.  after three iterations, starting with T 
equal to the average intensity of the image, and using T = 0. Figure 10.35(c) shows the result obtained 
using T = 125 to segment the original image. As expected from the clear separation of modes in the 
histogram, the segmentation between object and background was perfect.

OPTIMUM GLOBAL THRESHOLDING USING OTSU’S METHOD

Thresholding may be viewed as a statistical-decision theory problem whose objec-
tive is to minimize the average error incurred in assigning pixels to two or more 
groups (also called classes). This problem is known to have an elegant closed-form 
solution known as the Bayes decision function (see Section 13.4). The solution is 
based on only two parameters: the probability density function (PDF) of the inten-
sity levels of each class, and the probability that each class occurs in a given applica-
tion. Unfortunately, estimating PDFs is not a trivial matter, so the problem usually 
is simplified by making workable assumptions about the form of the PDFs, such as 
assuming that they are Gaussian functions. Even with simplifications, the process 
of implementing solutions using these assumptions can be complex and not always 
well-suited for real-time applications.

The approach in the following discussion, called Otsu’s method (Otsu [1979]), is 
an attractive alternative. The method is optimum in the sense that it maximizes the 

0 63 127 191 255

ba c

FIGURE 10.35 (a) Noisy fingerprint. (b) Histogram. (c) Segmented result using a global threshold (thin image border 
added for clarity). (Original image courtesy of the National Institute of Standards and Technology.).
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between-class variance, a well-known measure used in statistical discriminant analy-
sis. The basic idea is that properly thresholded classes should be distinct with respect 
to the intensity values of their pixels and, conversely, that a threshold giving the 
best separation between classes in terms of their intensity values would be the best 
(optimum) threshold. In addition to its optimality, Otsu’s method has the important 
property that it is based entirely on computations performed on the histogram of an 
image, an easily obtainable 1-D array (see Section 3.3).

Let 0 1 2 1, , , ,… L −{ }  denote the set of L distinct integer intensity levels in a digi-
tal image of size M N×  pixels, and let ni  denote the number of pixels with intensity i. 
The total number, MN, of pixels in the image is MN n n n nL= + + + + −0 1 2 1 . The 
normalized histogram (see Section 3.3) has components p n MNi i= , from which it 
follows that

	 p pi i
i

L

= ≥
=

−

∑ 1 0
0

1

	 (10-48)

Now, suppose that we select a threshold T k k k L( ) , ,= < < −0 1  and use it to thresh-
old the input image into two classes, c1 and c2 , where c1 consists of all the pixels in 
the image with intensity values in the range [ , ]0 k  and c2  consists of the pixels with 
values in the range [ , ].k L+ −1 1  Using this threshold, the probability, P k1( ), that a 
pixel is assigned to (i.e., thresholded into) class c1 is given by the cumulative sum

	 P k pi
i

k

1
0

( ) =
=
∑ 	 (10-49)

Viewed another way, this is the probability of class c1 occurring. For example, if we 
set k = 0, the probability of class c1 having any pixels assigned to it is zero. Similarly, 
the probability of class c2  occurring is

	 P k p P ki
i k

L

2 1
1

1

1( ) ( )= = −
= +

−

∑ 	 (10-50)

From Eq. (3-36), the mean intensity value of the pixels in c1 is 

	

m k iP i c iP c i P i P c

P k
i p

i

k

i

k

i
i

k

1 1
0

1
0

1

1 0

1

( ) = ( ) = ( ) ( ) ( )

= ( )

= =

=

∑ ∑

∑
	 (10-51)

where P k1( ) is given by Eq. (10-49). The term P i c1( ) in Eq. (10-51) is the probability 
of intensity value i, given that i  comes from class c1. The rightmost term in the first 
line of the equation follows from Bayes’ formula (see Section 2.6):

	 P A B P B A P A P B( ) = ( ) ( ) ( )
The second line follows from the fact that P c i1( ), the probability of c1 given i, is 1 
because we are dealing only with values of i  from class c1. Also, P i( ) is the probabil-
ity of the ith value, which is the ith component of the histogram, pi . Finally, P c( )1  is 
the probability of class c1 which, from Eq. (10-49), is equal to P k1( ).
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where Q is a predicate based on parameters computed using the pixels in neighbor-
hood Sxy. For example, consider the following predicate, Q mxy xys , ,( )  based on the 
local mean and standard deviation:

	 Q m
f x y a f x y bm

xy xy
xy xy

s
s

,
( , ) ( , )( ) =

> >TRUE if  AND  

FALSE otherwisee






	 (10-82)

Note that Eq. (10-80) is a special case of Eq. (10-81), obtained by letting Q be TRUE 
if f x y Txy( , ) >  and FALSE otherwise. In this case, the predicate is based simply on 
the intensity at a point.

EXAMPLE 10.18 : Variable thresholding based on local image properties.

Figure 10.43(a) shows the yeast image from Example 10.16. This image has three predominant inten-
sity levels, so it is reasonable to assume that perhaps dual thresholding could be a good segmentation 
approach. Figure 10.43(b) is the result of using the dual thresholding method summarized in Eq. (10-76). 
As the figure shows, it was possible to isolate the bright areas from the background, but the mid-gray 
regions on the right side of the image were not segmented (i.e., separated) properly. To illustrate the use 

ba
dc

FIGURE 10.43
(a) Image from 
Fig. 10.40.  
(b) Image  
segmented using 
the dual  
thresholding  
approach given 
by Eq. (10-76). 
(c) Image of local 
standard  
deviations.  
(d) Result  
obtained using  
local thresholding.

DIP4E_Print_Ready.indb   824 4/2/2017   8:49:04 PM



826    Chapter 10  Image Segmentation I Edge Detection, Thresholding, and Region Detection 

As another illustration of the effectiveness of this segmentation approach, we used the same param-
eters as in the previous paragraph to segment the image in Fig. 10.45(a), which is corrupted by a sinu-
soidal intensity variation typical of the variations that may occur when the power supply in a document 
scanner is not properly grounded. As Figs. 10.45(b) and (c) show, the segmentation results are compa-
rable to those in Fig. 10.44.

Note that successful segmentation results were obtained in both cases using the same values for n 
and c, which shows the relative ruggedness of the approach. In general, thresholding based on moving 
averages works well when the objects of interest are small (or thin) with respect to the image size, a 
condition satisfied by images of typed or handwritten text.

10.4   SEGMENTATION BY REGION GROWING AND BY REGION 
SPLITTING AND MERGING 

As we discussed in Section 10.1, the objective of segmentation is to partition an 
image into regions. In Section 10.2, we approached this problem by attempting to 
find boundaries between regions based on discontinuities in intensity levels, where-
as in Section 10.3, segmentation was accomplished via thresholds based on the dis-
tribution of pixel properties, such as intensity values or color. In this section and in 
Sections 10.5 and 10.6, we discuss segmentation techniques that find the regions 
directly. In Section 10.7, we will discuss a method that finds the regions and their 
boundaries simultaneously. 

REGION GROWING

As its name implies, region growing is a procedure that groups pixels or subregions 
into larger regions based on predefined criteria for growth. The basic approach is to 
start with a set of “seed” points, and from these grow regions by appending to each 
seed those neighboring pixels that have predefined properties similar to the seed 
(such as ranges of intensity or color).

Selecting a set of one or more starting points can often be based on the nature of 
the problem, as we show later in Example 10.20. When a priori information is not 

10.4

You should review the 
terminology introduced 
in Section 10.1 before 
proceeding.

ba c

FIGURE 10.44 (a) Text image corrupted by spot shading. (b) Result of global thresholding using Otsu’s method.  
(c) Result of local thresholding using moving averages.
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3.	 Stop when no further merging is possible.

Numerous variations of this basic theme are possible. For example, a significant 
simplification results if in Step 2 we allow merging of any two adjacent regions Rj  
and Rk  if each one satisfies the predicate individually. This results in a much sim-
pler (and faster) algorithm, because testing of the predicate is limited to individual 
quadregions. As the following example shows, this simplification is still capable of 
yielding good segmentation results.

EXAMPLE 10.21 :  Segmentation by region splitting and merging.

Figure 10.48(a) shows a 566 566×  X-ray image of the Cygnus Loop supernova. The objective of this 
example is to segment (extract from the image) the “ring” of less dense matter surrounding the dense 
inner region. The region of interest has some obvious characteristics that should help in its segmenta-
tion. First, we note that the data in this region has a random nature, indicating that its standard devia-
tion should be greater than the standard deviation of the background (which is near 0) and of the large 
central region, which is smooth. Similarly, the mean value (average intensity) of a region containing 
data from the outer ring should be greater than the mean of the darker background and less than the 
mean of the lighter central region. Thus, we should be able to segment the region of interest using the 
following predicate:

ba
dc

FIGURE 10.48
(a) Image of the 
Cygnus Loop  
supernova, taken 
in the X-ray band 
by NASA’s 
Hubble Telescope. 
(b) through (d) 
Results of limit-
ing the smallest 
allowed  
quadregion to be 
of sizes of 32 32× , 
16 16× , and 8 8×  
pixels,  
respectively. 
(Original image 
courtesy of 
NASA.)
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	 Q R
a m bR R( ) =

> < <



TRUE if AND

FALSE otherwise

s 0

where sR  and mR are the standard deviation and mean of the region being processed, and a  and b are 
nonnegative constants.

Analysis of several regions in the outer area of interest revealed that the mean intensity of pixels 
in those regions did not exceed 125, and the standard deviation was always greater than 10. Figures 
10.48(b) through (d) show the results obtained using these values for a  and b, and varying the minimum 
size allowed for the quadregions from 32 to 8. The pixels in a quadregion that satisfied the predicate 
were set to white; all others in that region were set to black. The best result in terms of capturing the 
shape of the outer region was obtained using quadregions of size 16 16× . The small black squares in 
Fig. 10.48(d) are quadregions of size 8 8×  whose pixels did not satisfy the predicate. Using smaller 
quadregions would result in increasing numbers of such black regions. Using regions larger than the one 
illustrated here would result in a more “block-like” segmentation. Note that in all cases the segmented 
region (white pixels) was a connected region that completely separates the inner, smoother region from 
the background. Thus, the segmentation effectively partitioned the image into three distinct areas that 
correspond to the three principal features in the image: background, a dense region, and a sparse region. 
Using any of the white regions in Fig. 10.48 as a mask would make it a relatively simple task to extract 
these regions from the original image (see Problem 10.45). As in Example 10.20, these results could not 
have been obtained using edge- or threshold-based segmentation.

As used in the preceding example, properties based on the mean and standard 
deviation of pixel intensities in a region attempt to quantify the texture of the region 
(see Section 12.3 for a discussion on texture). The concept of texture segmentation 
is based on using measures of texture in the predicates. In other words, we can per-
form texture segmentation by any of the methods discussed in this section simply by 
specifying predicates based on texture content.

10.5 	REGION SEGMENTATION USING CLUSTERING AND  
SUPERPIXELS  

In this section, we discuss two related approaches to region segmentation. The first 
is a classical approach based on seeking clusters in data, related to such variables as 
intensity and color. The second approach is significantly more modern, and is based 
on using clustering to extract “superpixels” from an image.

REGION SEGMENTATION USING K-MEANS CLUSTERING

The basic idea behind the clustering approach used in this chapter is to partition a 
set, Q, of observations into a specified number, k, of clusters. In k-means clustering, 
each observation is assigned to the cluster with the nearest mean (hence the name 
of the method), and each mean is called the prototype of its cluster. A k-means algo-
rithm is an iterative procedure that successively refines the means until convergence 
is achieved.

Let { , , , }z z z1 2 … Q  be set of vector observations (samples). These vectors have 
the form

10.5

A more general form of 
clustering is  
unsupervised clustering, 
in which a clustering 
algorithm attempts to 
find a meaningful set of 
clusters in a given set 
of samples. We do not 
address this topic, as 
our focus in this brief 
introduction is only to 
illustrate how supervised 
clustering is used for 
image segmentation.
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some minor differences in areas around sharp edges. But remember, the superpixel 
image has an order of magnitude fewer elements than the original and, if needed, 
contrast differences are easily remedied by histogram processing.

As a final illustration, we show the results of severely decreasing the number of 
superpixels to 1,000, 500, and 250. The results in Fig. 10.52, show a significant loss of 
detail compared to Fig. 10.50(a), but the first two images contain most of the detail 
relevant to the image description discussed earlier. A notable difference is that two 
of the three small carvings on the fence in the back were eliminated. The 250-ele-
ment superpixel image even lost the third. However, the boundaries between the 
principal regions, as well as the basic topology of the images, were preserved.

ba c

FIGURE 10.51  (a) Original image. (b) Image composed of 40,000 superpixels. (c) Difference between (a) and (b). 

FIGURE 10.52 Top row: Results of using 1,000, 500, and 250 superpixels in the representation of Fig. 10.50(a). As before, 
the boundaries between superpixels are superimposed on the images for reference. Bottom row: Superpixel images.
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than is needed for a proper segmentation. In terms of computational advantage, consider that generat-
ing Fig. 10.53(b) required individual processing of over 300K pixels, while (e) required processing of 100 
pixels with considerably fewer shades of gray.

Figure 10.54(a) is the same as Fig. 10.49(a), and Fig. 10.54(b) is a 95K-superpixel image (about 20% 
of the number of pixels in the original image). The original and the superpixel images are quite close 
visually. Although the number of superpixels is significantly smaller than the number of pixels in the 
original, they have basically the same content. For example, Fig. 10.54(c) is the result of segmenting Fig. 
10.54(b) using the same k-means approach we used to generate Fig. 10.49(b), which is a segmentation of 
the original image. You can see by comparing Figs. 10.54(c) and 10.42(b) that the result using superpixels 
is superior. An added bonus is that the computational load of segmenting the superpixel image was 
significantly less.

10.6  REGION SEGMENTATION USING GRAPH CUTS  
In this section, we discuss an approach for partitioning an image into regions by 
expressing the pixels of the image as nodes of a graph, and then finding an optimum 
partition (cut) of the graph into groups of nodes. Optimality is based on criteria whose 

10.6
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FIGURE 10.53 (a) Image of size 533 566×  (301,678) pixels. (b) Image segmented using the k-means algorithm.  
(c) 100-element superpixel image showing boundaries for reference. (d) Same image without boundaries. (e) Super-
pixel image (d) segmented using the k-means algorithm. (Original image courtesy of NOAA.)
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The essence of the material in this section is to represent an image to be seg-
mented as a weighted, undirected graph, where the nodes of the graph are the pixels 
in the image, and an edge is formed between every pair of nodes. The weight, w( , ),i j  
of each edge is a function of the similarity between nodes i and j. We then seek to 
partition the nodes of the graph into disjoint subsets V V VK1 2, , ,…  where, by some 
measure, the similarity among the nodes within a subset is high, and the similarity 
across the nodes of different subsets is low. The nodes of the partitioned subsets 
correspond to the regions in the segmented image.

Set V is partitioned into subsets by cutting the graph. A cut of a graph is a parti-
tion of V into two subsets A and B such that

	 A B V A B´ ¨= = ∅and 	 (10-96)  

where the cut is implemented by removing the edges connecting subgraphs A and B. 
There are two key aspects of using graph cuts for image segmentation: (1) how to 
associate a graph with an image; and (2) how to cut the graph in a way that makes 
sense in terms of partitioning the image into background and foreground (object) 
pixels. We address these two questions next.

Figure 10.55 shows a simplified approach for generating a graph from an image. 
The nodes of the graph correspond to the pixels in the image and, to keep the expla-
nation simple, we allow edges only between adjacent pixels using 4-connectivity, 
which means that there are no diagonal edges linking the pixels. But, keep in mind 
that, in general, edges are specified between every pair of pixels. The weights for the 
edges typically are formed from spatial relationships (for example, distance from the 
vertex pixel) and intensity measures (for example, texture and color), consistent with 
exhibiting similarity between pixels. In this simple example, we define the degree 
of similarity between two pixels as the inverse of the difference in their intensities. 

Superpixels are also well 
suited for use as graph 
nodes. Thus, when we 
refer in this section to 

“pixels” in an image, we 
are, by implication,  
also referring to super-
pixels.

Cut

⇓

⇓

⇓Image

Graph

Segmentation

Edge
Node
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FIGURE 10.55
(a) A 3 3×  image. 
(c) A corresponding 
graph.  
(d) Graph cut.  
(c) Segmented  
image.
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EXAMPLE 10.25 :  Segmentation using graph cuts.

Graph cuts are ideally suited for obtaining a rough segmentation of the principal regions in an image. 
Figure 10.58 shows a typical result. Figure 10.58(a) is the familiar building image. Consistent with the 
idea of extracting the principal regions of an image, Fig. 10.58(b) shows the image smoothed with a 
simple 25 25×  box kernel. Observe how the fine detail is smoothed out, leaving only major regional 
features such as the facade and sky. Figure 10.58(c) is the result of segmentation using the graph cut 
algorithm just developed, with weights of the form discussed in the previous example, and allowing only 
two partitions. Note how well the region corresponding to the building was extracted, with none of the 
details characteristic of the methods discussed earlier in this chapter. In fact, it would have been nearly 
impossible to obtain comparable results using any of the methods we have discussed thus far without 
significant additional processing. This type of result is ideal for tasks such as providing broad cues for 
autonomous navigation, for searching image databases, and for low-level image analysis.

Figure 10.59 shows another example in which the image was smoothed with the same kernel. Here, 
we first specified two regions, resulting in Fig. 10.59(c). Note the fidelity of the separation between the 
iceberg and the background. Figure 10.59(d) is the result of specifying three regions in the segmenta-
tion. We see by comparing Figs. 10.59(d) and Fig. 10.42(c) that the graph-cut approach yielded a much 
more accurate segmentation, in the sense that none of the pixels within the regions were mislabeled as 
belonging to another region.

10.7  SEGMENTATION USING MORPHOLOGICAL WATERSHEDS  

Thus far, we have discussed segmentation based on three principal concepts: edge 
detection, thresholding, and region extraction. Each of these approaches was found 
to have advantages (for example, speed in the case of global thresholding) and dis-
advantages (for example, the need for post-processing, such as edge linking, in edge-
based segmentation). In this section, we discuss an approach based on the concept of 
so-called morphological watersheds. Segmentation by watersheds embodies many of 
the concepts of the other three approaches and, as such, often produces more stable 

10.7
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FIGURE 10.58 (a) Image of size 600 600×  pixels. (b) Image smoothed with a 25 25×  box kernel. (c) Graph cut segmen-
tation obtained by specifying two regions.
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Water Water

Water

b
a

d
c

FIGURE 10.60
(a) Original  
image.  
(b) Topographic 
view. Only the 
background is 
black. The basin 
on the left is 
slightly lighter 
than black. 
(c) and (d) Two 
stages of flooding. 
All constant dark 
values of gray are 
intensities in the 
original image. 
Only constant 
light gray repre-
sents “water.” 
(Courtesy of Dr. 
S. Beucher, CMM/
Ecole des Mines 
de Paris.) 
(Continued on 
next page.)

from spilling out through the edges of the image, we imagine the perimeter of the 
entire topography (image) being enclosed by dams that are higher than the highest 
possible mountain, whose value is determined by the highest possible intensity value 
in the input image.

Suppose that a hole is punched in each regional minimum [shown as dark areas in 
Fig. 10.60(b)] and that the entire topography is flooded from below by letting water 
rise through the holes at a uniform rate. Figure 10.60(c) shows the first stage of flood-
ing, where the “water,” shown in light gray, has covered only areas that correspond 
to the black background in the image. In Figs. 10.60(d) and (e) we see that the water 
now has risen into the first and second catchment basins, respectively. As the water 
continues to rise, it will eventually overflow from one catchment basin into another. 
The first indication of this is shown in 10.60(f). Here, water from the lower part of 
the left basin overflowed into the basin on the right, and a short “dam” (consisting of 
single pixels) was built to prevent water from merging at that level of flooding (the 
mathematical details of dam building are discussed in the following section). The 
effect is more pronounced as water continues to rise, as shown in Fig. 10.60(g). This 

Because of neighboring 
contrast, the leftmost 
basin in Fig. 10.60(c) 
appears black, but it is a 
few shades lighter than 
the black background. 
The mid-gray in the 
second basin is a natural 
gray from the image 
in (a).
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C Mn i( ) and T n[ ] either increases or remains 
the same as n increases.

10.50	 You saw in Section 10.7 that the boundaries 
obtained using the watershed segmentation algo-
rithm form closed loops (for example, see Figs. 
10.62 and 10.64). Advance an argument that estab-
lishes whether or not closed boundaries always 
result from application of this algorithm.

10.51 *	Give a step-by-step implementation of the dam-
building procedure for the one-dimensional inten-
sity cross section shown below. Show a drawing 
of the cross section at each step, showing “water” 
levels and dams constructed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x0

1
2
3
4
5
6
7

10.52	 What would the negative ADI image shown 
in Fig. 10.65(c) look like if we tested against T 
(instead of testing against −T) in Eq. (10-117)?

10.53	 Are the following statements true or false? Ex-
plain the reason for your answer in each.

(a) *	The nonzero entries in the absolute ADI 
continue to grow in dimension, provided 
that the object is moving.

(b)	 The nonzero entries in the positive ADI  
always occupy the same area, regardless of 
the motion undergone by the object.

(c)	 The nonzero entries in the negative ADI 
continue to grow in dimension, provided 
that the object is moving.

10.54	 Suppose that in Example 10.29 motion along the 
x-axis is set to zero. The object now moves only 
along the y-axis at 1 pixel per frame for 32 frames 
and then (instantaneously) reverses direction 
and moves in exactly the opposite direction for  
another 32 frames. What would Figs. 10.69(a)  
and (b) look like under these conditions?

10.55 *	Advance an argument that demonstrates that 
when the signs of S x1  and S x2  in Eqs. (10-125) 
and (10-126) are the same, velocity component 
V1 is positive.

10.56	 An automated pharmaceutical plant uses image 
processing to measure the shapes of medication 

tablets for the purpose of quality control. The 
segmentation stage of the system is based on 
Otsu’s method. The speed of the inspection lines 
is so high that a very high rate flash illumina-
tion is required to “stop” motion. When new, the  
illumination lamps project a uniform pattern of 
light. However, as the lamps age, the illumination  
pattern deteriorates as a function of time and 
spatial coordinates according to the equation

	 i x y A t t e x M y N( , ) ( ) [( ) ( ) ]= − − − + −2 2 22 2

where M N2 2,( ) is the center of the viewing 
area and t is time measured in increments of 
months. The lamps are still experimental and 
the behavior of A t( ) is not fully understood by 
the manufacturer. All that is known is that, dur-
ing the life of the lamps, A t( ) is always greater 
than the negative component in the preceding 
equation because illumination cannot be nega-
tive. It has been observed that Otsu’s algorithm 
works well when the lamps are new, and their  
pattern of illumination is nearly constant over the  
entire image. However, segmentation perfor-
mance deteriorates with time. Being experimental, 
the lamps are exceptionally expensive, so you are 
employed as a consultant to help solve the prob-
lem using digital image processing techniques to 
compensate for the changes in illumination, and 
thus extend the useful life of the lamps. You are 
given flexibility to install any special markers or 
other visual cues in the viewing area of the imag-
ing cameras. Propose a solution in sufficient detail 
that the engineering plant manager can under-
stand your approach. (Hint: Review the image 
model discussed in Section 2.3 and consider using 
one or more targets of known reflectivity.)

10.57	 The speed of a bullet in flight is to be estimated by 
using high-speed imaging techniques. The method 
of choice involves the use of a CCD camera and 
flash that exposes the scene for K seconds. The bul-
let is 2.5 cm long, 1 cm wide, and its range of speed 
is 750 250± m s. The camera optics produce an  
image in which the bullet occupies 10% of the 
horizontal resolution of a 256 256×  digital image.

(a) *	Determine the maximum value of K that 
will guarantee that the blur from motion 
does not exceed 1 pixel.

(b)	 Determine the minimum number of frames 
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Projects 
MATLAB solutions to the projects marked with an asterisk (*) are in the DIP4E Student Support Package (consult 
the book website: www.ImageProcessingPlace.com). 

10.1	 Edge models.

(a) *	Write a function, g = edgeModel4e(type,M,N,iLow, 
iHigh,width,angle) for generating an image of 
size M N×  containing an edge passing 
through the center of the image. Values of 
type define the edge as a 'step', 'ramp', or 'roof' 
edge. Using a vertical edge (the default) as a 
reference, iLow denotes the intensity on the 
left side of the edge, and iHigh the intensity 
of its right side, with iLow < iHigh. Parameter 
width (in pixels) is the width of the transition 
of a ramp or roof edge; it is ignored for step 
edges. It is required that width be less than 
N – 2. The default value for width is (N/4), but a 
value for width must be specified for all three 
edges if angle is specified (width is ignored for 
step edges). Parameter angle (in degrees) 
is the rotation of the edge about its center. 
The default is 0 for a vertical edge, and a 
positive value of angle results in counter- 
clockwise rotation. The image generated by 
this function must fill the entire M N× , rect-
angle. (Hint: Consider using project function 
imageRotate4e to perform the rotation.

(b) *	Use f = edgeModel4e('step',10,10,0,1) to gener-
ate a small vertical binary step edge. Display 
the array. Apply both Sobel kernels (see 
Project 10.2) individually to the small image 
using function twodConv4e and display the 
two resulting numerical arrays. Explain why 
the results are different.

(c)	 Use function edgeModel4e to generate an 
edge as in (b), but oriented at 45°. Convolve 
this image with the north Kirsch kernel and 
display the resulting array. Repeat using the 
south Kirsch kernel. You will find that both 

kernels give nonzero results along the edge, 
but the results differ in the sign and location 
of the values. Explain what this means. Both 
results suggest the presence of a binary edge 
oriented at 45°, so what is the usefulness of 
having two kernels for 45° edge detection?

(d) *	Test function edgeModel4e with more practical 
arrays by generating and displaying four 8-bit 
images of size 512 512×  pixels with: a step 
edge oriented at 60°, a step edge oriented at 
−60°,  a ramp edge with a ramp width of 128 
pixels, oriented at −45°, and a roof edge of 
the same width oriented at 45°.

(e)	 Show how you would use function edgeMod-
el4e to generate a black image containing 
eight white 1-pixel lines in the eight com-
pass directions that intersect in the center of 
a 512 512×  image.

10.2	 Sobel, Prewitt, and Kirsch compass kernels.

(a)	 Write a function w = edgeKernel4e(type,dir) for 
generating the kernels in Figs. 10.14 and 10.15. 
Parameter type is one of three strings: 'prewitt', 

'sobel', and 'kirsch'. Parameter dir is 'v' for the 
vertical edges in the Prewitt and Sobel ker-
nels, and 'h' for the horizontal edges in these 
two kernels. For the Kirsch kernels, dir is a 
detailed in Fig. 10.15.

(b) *	Display all the kernels that your function is 
capable of generating.

10.3	 Edge magnitude and angle.

(a) *	Write a function g = edgeMag4e(f,type,T) for 
computing the magnitude of the gradi-
ent of image f. Parameter 'type' designates 
the kernel used to compute the gradient: 

'prewitt', 'sobel', and 'kirsch', corresponding to 

per second that would have to be acquired 
in order to guarantee that at least two com-
plete images of the bullet are obtained dur-
ing its path through the field of view of the 
camera.

(c) *	Propose a segmentation procedure for 
automatically extracting the bullet from a 
sequence of frames.

(d)	 Propose a method for automatically deter-
mining the speed of the bullet.
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11
Image Segmentation II 
Active Contours: Snakes and 
Level Sets

Preview
In this chapter, we develop the foundation for image segmentation based on active contours, which are 
deformable models confined to the plane. We discuss two approaches: snakes and level sets. Snakes are 
active contours based on explicit (e.g., parametric) representation of segmentation curves; they derive 
their name from the way the curves appear to "slither" on the image plane in the process of seek-
ing region boundaries. Level sets are based on implicit representation of curves, which are techniques 
for representing active contours as the intersection of a 3-D surface with a plane. The fundamental 
equations of both approaches are derived starting from basic principles. We give numerous examples 
designed to illustrate the strengths and limitations of both methods, and conclude the chapter with a 
brief discussion of a fast implementation approach for level sets. 

Upon completion of this chapter, readers should:
	 Have a command of the derivation of the 

snake and level set equations, starting from 
basic principles.

	 Understand how to implement discrete, itera-
tive formulations of both approaches.

	 Be able to formulate explicit functions for use 
in snake segmentation.

	 Understand how to formulate implicit func-
tions for use in level set segmentation.

	 Understand force fields and be able to apply 
them in active contour algorithms.

	 Know how to generate level set functions, start- 
ing with a plane curve. 

	 Be aware of the central role played by the 
image gradient in both snake and level set 
force formulations.

	 Be able to relate a variety of different level 
set approaches to the same fundamental iter-
ative solution.

	 Be familiar with the advantages and limita-
tions of snakes and level sets as they apply to 
image processing.

Divide each difficulty into as many parts as is feasible and 
necessary to resolve it.

Rene Descartes
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11.1 	BACKGROUND  
With the exception of graph cuts and watershed segmentation, the material in the 
previous chapter dealt mostly with what we might call “traditional” segmentation 
methods, based primarily on detecting intensity discontinuities or similarities. In 
this chapter, we discuss techniques that approach segmentation from a “model-
ing” point of view. Specifically, we develop methods whose origin can be traced to 
work on deformable models conducted in the 1980s. Deformable models are physi-
cally based models of deformable curves, surfaces, and solids used traditionally in 
computer graphics. The topic of this chapter, active contours (also called evolving 
fronts or evolving interfaces), are deformable models confined to the plane. The term 

“active” indicates that the curves are dynamic, as opposed, for example, to segmenta-
tion curves resulting from a global thresholding operation. In segmentation, these 
active curves are attracted to region boundaries, acting under the influence of forces 
extracted typically from an image being segmented. 

Work on active contours related specifically to image segmentation evolved along 
two different paths. One path was based on so-called snakes, introduced by Kass, 
Witkin, and Terzopoulus [1988]. Snakes are parametric curves that seek the bound-
ary of a region by minimizing an energy functional, guided by internal forces, and 
influenced by image forces that pull it toward image features, such as lines and edges. 
The term “snake” is based on the appearance of a curve as it “slithers” on the image 
plane in the process of seeking its minimum energy.

A development parallel chronologically to snakes was based on level sets, intro-
duced by Osher and Sethian [1988] as a tool in computational fluid dynamics for 
following fronts propagating through a medium. The key difference between the 
two approaches is that snakes are based on explicit representations of segmentation 
contours as parametric curves, while level sets rely on implicit representations of 
contours, expressed as the intersection of a 3-D surface with a plane. For example, 
the intersection of a sphere and plane is an implicit representation of a circle.

The body of work on active contours is impressive, both in breadth and depth, 
including countless articles and numerous books and monographs dealing with vari-
ous aspects of the subject. Our focus in this chapter is on the foundation of both 
active contour approaches. In the next section, we will derive the fundamental snake 
equation, starting from basic principles. We then discuss various implementation 
details and give several application examples. We will follow a similar path in Sec-
tion 11.3 by deriving the level set equation, and illustrating its implementation and 
use in image segmentation. These two equations are the foundation for most of the 
active-contour approaches you are likely to encounter in image processing.

11.2 	IMAGE SEGMENTATION USING SNAKES  

Snakes are parametric representations of active contours, so begin the discussion by 
reviewing some basic concepts of parametric curve representation.

EXPLICIT (PARAMETRIC) REPRESENTATION OF ACTIVE CONTOURS 

A parametric curve in the xy-plane is defined by coordinates expressed as

	 ( , ) ( ), ( )x y g s h s= ( )	 (11-1)

11.1

11.2
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Solving this equation for x( )t  and y( )t  yields the iterative solution of the snake equa-
tion:

	
x I D x F x y

y I D

( ) ( ) ( ), ( )

( )

t t t t t t

t t

x= −[ ] − + − −( ) 

= −[ ]

−

−

 



1

1

1 1 1

yy F x y( ) ( ), ( )t t t ty− + − −( ) 1 1 1
	 (11-43)

where I is the K K×  identity matrix. The t  constant multiplies all derivative and 
force terms in this equation, so it has little selective influence on the internal versus 
the external forces. A more selective formulation is obtained by letting t = 1 and 
multiplying the external force components by a constant g. This allows control of 
the internal forces by a  and b, and the external force by g. Equation (11-43) then 
becomes

	
x I D x F x y

y I D y

( ) ( ) ( ), ( )

( ) (

t t t t

t t

x= −[ ] − + − −( ) 

= −[ ] −

−

−

1

1

1 1 1

1

g

)) ( ), ( )+ − −( ) gF x yy t t1 1
	 (11-44)

The term I D−[ ]−1 does not depend on k nor t, so it is computed only once for fixed 
values of a  and b. Letting this term be represented as a constant matrix,

	 A I D= −[ ]−1 	 (11-45)

we can write Eq. (11-44) as

	
x A x F x y

y A y F x

( ) ( ) ( ), ( )

( ) ( ) ( ),

t t t t

t t t

x

y

= − + − −( ) 

= − + −

1 1 1

1 1

g

g yy( )t −( ) 1
	 (11-46)

These two equations constitute the iterative form of the snake equation. As you can 
see, we have reduced the problem of finding a segmentation snake to solving two 
straightforward iterative equations—a trivial task, especially in a matrix-oriented 
language, such as MATLAB. The approach is to specify the coordinates x( )0  and 
y( )0  of an initial snake, then solve this equation iteratively for t = 1 2, , .…  At any 
value of t, x( )t  and y( )t  are vectors containing all the coordinates of the snake at that 
iterative step, while x( )t − 1  and y( )t − 1  are vectors containing the coordinates from 
the previous step. Similarly, F x yx t t( ), ( )− −( )1 1  and F x yy t t( ), ( )− −( )1 1  are vectors 
containing the x and y components of the forces acting on all points of the snake at 
step t − 1. In theory, the snake is said to have converged when c stops changing; that 
is, when c c( ) ( ).t t= − 1  In practice, we have to allow for variations due to factors such 
as noise, so comparing for equality is not feasible. One of the simplest ways to mea-
sure change is to compute the vector norm of the difference, c c( ) ( ) ,t t− − 1  and say 
that the snake has converged if the norm is less than a predefined threshold. All that 

All vectors in this  
equation are  
K-dimensional. Matrix A 
is of size K  K.
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ba
dc

FIGURE 11.3
(a) Edge map 
used to generate 
the results in  
Fig. 11.2.  
(b) Edge map 
with only the 
MOG filtered and 
then thresholded. 
(c) Result after 
200 iterations 
using the forces 
based on (a).  
(d) Result after 
200 iterations 
using the forces 
based on (b).  
The initial snake 
is shown in  
Fig. 11.2(a). 
(Continued)

FIGURE 11.4
Force field  
obtained using 
the edge map in 
Fig. 11.3(a). All 
the arrows are of 
the same length 
because each  
element of the 
force field was 
normalized using 
Eqs. (11-49)  
and (11-50). 

This fact is illustrated vividly by the force field in Fig. 11.5, which was obtained using the edge map in 
Fig. 11.3(b). Note the randomness of the force vectors throughout the entire force field; this explains the 
reason for the poor result in Fig. 11.3(d).

The points in the initial snake in Fig. 11.2(a) are equidistant (i.e., the arc distance between adjacent 
points is the same). However, because no provision is made in Eq. (11-46) for maintaining this spatial 
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ba

FIGURE 11.12
(a) MOG-based 
snake after 90 
iterations. The 
snake is beginning 
to attach itself 
to the boundary, 
but it has a long 
way to go before 
it fully converges 
to the boundary. 
(b) GVF-based 
snake after the 
same number of 
iterations.

ba c
ed f

FIGURE 11.13  (a) 586 600×  MRI image of a breast implant and initial snake. Results after: (b) 10, (c) 20, (d) 40, (e) 60, 
and (f) 80 iterations, respectively. The snake parameters used were a = 0 05. ,  b = 0 5. , and g = 2 5. . (Original image 
courtesy of NIH/National Library of Medicine.) 
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implant (the ellipse shown is the initial snake). Our interest is in obtaining the boundary of the implant. 
As motivation for this type of processing, imagine you were conducting a study of a historical medical 
database containing thousands of images of breast implants. An important aspect of such a study might 
be to analyze the shape of the implants, in order to quantify abnormalities (e.g., collapsed implants) 
as a percentage of normal implants. Even if total automation is not acceptable (a typical constraint in 
medical image processing), a semi-automated technique, in which a human expert initiates the process 
by pointing to a starting location in the implants and letting a computer extract the boundary, often is 
acceptable. Such an approach can save many hours of effort and yield more accurate measurements 
than manual estimates.

To generate the results in Fig. 11.13, we used parameters similar to those in Example 11.3. The smooth-
ing was the same, but the smoothed image was thresholded at 0.01. We used a GVF force field, with 
m = 0 2.  and 160 iterations, which are the same settings as in Example 11.5. The results in Figs. 11.13(b) 
through (f) show how the snake evolved from an initial position straddling the boundary of the implant, 
to an almost perfect segmentation of that region. Observe how the snake contracted initially, and then 
expanded, finally snapping to the contour of the region of interest.

11.3 	SEGMENTATION USING LEVEL SETS  

As we mentioned in Section 11.1, level sets in our context are sets of points of a 2-D 
curve formed by the intersection of a plane and a 3-D surface. Unlike the paramet-
ric representation used for snakes, level sets are based on implicit representations. 
An important aspect of this approach is that it can adapt to changing topology (e.g., 
the discovery of “holes” within a region, and the emergence of new regions) during 
curve evolution. Inherently, parametric curves do not have this capability. However, 
as we will illustrate later in this section, each approach has strengths that make it an 
appropriate choice in a given application. As noted in Section 11.1, level sets were 
used initially to describe the propagation of interfaces between fluids. In the ter-
minology of image segmentation, “fluids” represent image regions, and “interfaces” 
become segmentation contours separating one region from another.

IMPLICIT REPRESENTATION OF ACTIVE CONTOURS

The representation of snakes discussed in Section 11.2 is explicit, in the sense that 
an active contour is represented by an equation, written typically in Cartesian or 
(more frequently) parametric form. An alternate representation of a 2-D contour is 
to define it implicitly as the intersection of a plane and a 3-D surface. To illustrate, 
consider the explicit equation of a circle centered at point ( , )x y0 0  in the xy-plane:

	 ( ) ( )x x y y r− + − =0
2

0
2 2

Figure 11.14(a) shows a generic plot of this function. We can write this equation 
equivalently as

	 ( ) ( )x x y y r− + − − =0
2

0
2 2 0

Suppose that we define the following scalar function of two variables:

	 f( , ) ( ) ( )x y x x y y r= − + − −0
2

0
2 2

11.3

Remember, a scalar  
function outputs a 
scalar value, regardless 
of the number of scalar 
variables on which it 
depends.
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2 2 2
0 0( , ) ( ) ( )x y x x y y r= − + − −f
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plane

( , ) 0x y =f
x

y
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Ω+

Ω0

Ω

ba c

FIGURE 11.14  (a) Cartesian equation of a circle and its corresponding plot. (b) The same circle, obtained as the level 
set curve f( , )x y = 0 (i.e., the intersection of f( , )x y  and the zero plane). (c) Top view of (b); the dark area enclosed 
by the circle is the visible section of the zero-plane. The symbols Æ0, Æ− ,  and Æ+ ,  are the sets of points (on the 
plane) that are on, inside, and outside the boundary, respectively, while Æ  represents the entire image plane.

Figure 11.14(b) is a plot of f as a function of x and y. As you can see, f is a surface 
in 3-D, while the equation of the circle is a curve in 2-D. However, we can extract the 
circle from the surface as the locus of points in the intersection of f with the zero-
plane. This set of points is given by values of x and y for which f( , ) ,x y = 0  as Fig. 
11.14(b) shows. Figure 11.14(c) is a top view, showing the intersection more clearly. 

The set of points in the intersection just mentioned is called a level set, and f is 
usually referred to as a level set function. When dealing with two variables (which is 
our focus in this chapter), the level set reduces to a level set curve C that, based on 
the preceding discussion, we define as 

	 C x y x y= ={ }( , ) ( , )f 0 	 (11-57)

That is, a level curve is the set of points ( , )x y  such that f( , ) .x y = 0 † Viewed another 
way, we say that a 2-D curve C is embedded into a 3-D function f by letting C be 
the zero-level set of this function. In the discussion that follows, level curves will 
become segmentation boundaries, and the power of this concept is that the level 
set approach does not require an explicit representation of these boundaries. In 
fact, you can easily visualize that if f( , )x y  in Fig. 11.14 were more complex, C in 
Eq. (11-57) could represent an arbitrarily complex curve that would be defined sim-
ply by the locus of points satisfying this equation.

Because the level set curves with which we work in this chapter are closed, it fol-
lows that f( , )x y  satisfies the following conditions for an arbitrary point ( , ) :x y

†  In reality this is the zero-level-set curve of f( , ).x y  In general, a level set curve can be defined for any constant c, 
such that f( , ) .x y c=  In terms of Fig. 11.14, values of c > 0 would yield circles of a larger diameter than the one 
at the zero-plane, and c < 0 would yield circles of smaller diameter. Note that changing c changes the location 
(level) of the intersecting plane, hence the use of the term level in “level sets.”

We use the term level set 
or level set function to 
refer to the 3-D function 
φ(x,y) in general, and 
zero-level-set, zero-level-
set function, or level-set 
curve to refer to the 2-D 
curve defined by the 
equation φ(x,y) = 0.
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Property Description

1) Unit gradient magnitude. f( , )x y = 1

2) Unit normal to the boundary at point
 ( , ).x y

n = =




f

f
f

( , )
( , )

( , )
x y
x y

x y  

3) Mean curvature (equal to the 
Laplacian).

k
f

f
f f f= = = = [ ]




  i ia b

( , )
( , )

( , ) ( , ) ( , )
x y
x y

x y x y x y2 Laplacian  

4) Point ( , )x yB B  on the boundary closest
 to an arbitrary point ( , )x y  on the plane
(see Fig. 11.14).

x

y

x

y
x yB

B





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


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where n is the unit normal from Property 2.

5) Convexity. If Æ−  is convex, then its corresponding signed distance function, 
f( , ),x y  is a convex function. (See Section 9.5 regarding convexity.)

6) Signed distance function of union. The signed distance function of the union Æ ´ Æ1 2
− −  is given by

f f f( , ) min ( , ), ( , ) .x y x y x y= Q R1 2

7) Signed distance function of intersection. The signed distance function of the intersection Æ ¨ Æ1 2
− −  is given 

by f f f( , ) max ( , ), ( , ) .x y x y x y= Q R1 2

8) Signed distance function of difference. The signed distance function of the set difference ( )Æ Æ1 2
− −−  is 

given by f f f( , ) max ( , ), ( , ) .x y x y x y= −Q R1 2

9) Inclusion [Eq. (11-89)]. The arrow is
 used to denote “implies.”

For a given ( , ),x y  f( , ) ( , ) ;x y x y>[ ] ⇒ ∈ +0 Æ  

f( , ) ( , ) ;x y x y<[ ] ⇒ ∈ −0 Æ  and f( , ) ( , ) .x y x y=[ ] ⇒ ∈0 0Æ  

TABLE 11.1
Properties of signed distance functions. Regions Æ1

−  and Æ2
−  are regions enclosed by the zero level sets (i.e. boundar-

ies) of signed distance functions f1( , )x y  and f2( , ),x y  respectively.

	

f f f( , ) ( ) ( )x y x y

x

x y

y

x y

= ∂ ∂ + ∂ ∂

=
+

+
+

=

2 2

2

2 2

2

2 2

1

showing that, indeed, the given f is a signed distance function.

Although circular functions are useful, their fixed shape limits their applicability. 
Fortunately, signed distance functions of arbitrary shape are not difficult to construct. 
We begin by specifying any closed interface curve that suits our initial purpose. This 
curve is on the plane, so the condition f( , )x y = 0 is automatically satisfied. Because 
the curve is closed, it follows that there is an infinite number of possible choices for 
the “rest” of f such that any point inside the curve will give f( , ) ,x y < 0  and any 
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11.3  Segmentation Using Level Sets    917

Our final task in implementing a level set solution for image segmentation is to 
specify a force function, F, for use in the general iterative algorithm in Eq. (11-82). In 
the following sections, we will discuss two basic classes of force functions suitable for 
level set image segmentation. The first and simplest are forces based only on proper-
ties of the image to be segmented. The key advantage of these forces is that they can 
be precomputed because the input image obviously is available from the beginning. 
This reduces the computational load significantly. Their principal disadvantage is 
that properties of the level set function itself are ignored. Forces in the second cat-
egory are based on properties of both the image and level set function. These forces 
are in general more powerful, but they have the disadvantage that they must be 
computed at every iterative step because the level set function itself changes during 
iterations of Eq. (11-82).

FORCE FUNCTIONS BASED ONLY ON IMAGE PROPERTIES

As an introduction to forces suitable for level set segmentation, we start with forces 
used for segmenting binary images. Because of their simplicity, these forces are 
an ideal way to introduce a number of important concepts that we will use in the 
remainder of this chapter. Because they depend only on pixel intensity values, the 
forces discussed in this section are calculated only once for a given image. During 
evolution, the force value acting on a point on the interface is determined com-
pletely by the ( , )x y  location of that point. Because the force is precomputed, we can 
find max F  and use Eq. (11-83) to compute t. All examples in this section use this 
method for computing the time step. 

In terms of segmentation, binary images are viewed as being composed of objects 
and background. The objects can be darker (0) than the background (1), or vice versa, 
but not both. For consistency in the following discussion, we assign 0's to dark pixels 
and 1's to light pixels. The simplest force we can consider is based only on the inten-
sity of individual pixels. For example,

	 F x y
a f x y

b f x y
( , )

( , )

( , )
=

=
=





if   

if  

1

0
	 (11-93)

where a and b are constants whose values determine how f behaves as a function of 
image intensity. We can write this equation equivalently as

	 F x y af x y b f x y( , ) ( , ) ( , )= + −[ ]1 	 (11-94)

To illustrate how to use this force in Eq. (11-82), consider Fig. 11.18. Part (a) of this 
figure shows a dark object on a light background. The curve shown is f0 , specified 
as a circle with an offset center (see Problem 11.17). Suppose that we let a = 1 and 
b = 0. The force in Eq. (11-94) then becomes

	 F x y f x y( , ) ( , )= 	

All points in the initial curve have value 1 because they are in the background. 
Thus, all values of F at that location are 1, and the force causes the circle to begin 
expanding (recall from Example 11.7 that a positive constant force expands a 
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FIGURE 11.18  (a) Character image and initial zero level set boundary (gray = 0 and white = 1). (b)–(d) Results after 
100, 400, and 900 iterations of Eq. (11-82) with a = 1 and b = 0 in the force definition. Only the outer boundary was 
detected. (e) A different initial level set function. (f)–(h) Results after 100, 400, and 900 iterations with a = 1 and 
b = −1 in the force definition. Both outer and inner boundaries were detected. (All curves are closed, but their 
values in (a), (d), and (h) are outside the confines of the image area.)

circle out uniformly). The expansion will continue until the evolving curve reach-
es the boundary of an object. Object points in this case have value 0 so, because 
F x y f x y( , ) ( , ),=  the force acting on points on the object boundary will also be 0, 
meaning that points in the evolving curve will cease to move once they reach the 
boundary of an object. However, any curve points still residing on the background 
will continue to expand until they too reach the boundary. Eventually, the evolving 
curve will wrap itself completely around the object. Figures 11.18 (c) and (d) show 
various stages of this process.

Because the evolving curve was stopped at the outer boundary of the object, the 
inner white region was missed completely. In order to detect it, the initial curve has 
to contain at least one point in that region, as in Fig. 11.18(e). Then, because the 
force associated with white points is positive [we are still using F x y f x y( , ) ( , )],=  
that part of the curve will expand until it is stopped by the dark inner boundary, 
thus completely defining the inner region. However, part of the initial curve is now 
contained in the object (whose values are 0) and will not evolve because, again, the 
force we are using will be zero when f x y( , ) .= 0  Setting b to a positive value would 
not work because we do not want the curve to expand within the character. What 
we want is for the curve segments within the character to shrink, and this is accom-
plished by using a negative force, say −1. Then, letting a = 1 and b = −1, our force 
specification becomes

DIP4E_Print_Ready.indb   918 4/2/2017   8:59:43 PM



922    Chapter 11  Image Segmentation II Active Contours: Snakes and Level Sets

ba c
ed f

FIGURE 11.22  (a) 586 600×  MRI image of a breast implant and initial level set curve. (b) Force field displayed as an 
image. Results after: (c) 50 iterations, (d) 100 iterations, (e) 200 iterations, and (f) 400 iterations. (Original image 
courtesy of NIH/National Library of Medicine.)

EDGE/CURVATURE-BASED FORCES

The forces discussed in the previous section are based only on image intensities. In 
this section we discuss forces based on image (edge), and level set (curvature) prop-
erties. Unlike the forces in the previous section, the forces discussed next have to be 
computed at every step because the level set function changes during iterations of 
Eq. (11-82).

In addition to being more general, the method discussed next is important from 
a historical perspective because it establishes that energy-minimizing solutions, like 
snakes, can be related to a level set solution based on geodesic curves.† The concept 
is based on minimizing a snake-like function of the form

†  A geodesic curve is a local, length-minimizing curve. Equivalently, it can be interpreted as the path that a par-
ticle would follow if it is not accelerating. In a plane, geodesic curves are straight lines. In general, Euclidean 
geometry studies shapes on a plane. Riemann geometry is concerned with the way shapes work in spaces that 
curve back on themselves (e.g., how curves behave on the surface of a sphere, where geodesic lines are great 
circles, like the equator).
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EXAMPLE 11.14 : Level set segmentation of multiple regions using region-based forces.

Figure 11.32(a) shows a noisy image containing three regions. The initial boundary, shown superimposed 
on the image, was specified interactively and then converted to a signed distance function using the 
approach discussed in Example 11.11. Figures 11.32(b) through (d) are the results of the number of itera-
tions with the value of m  shown in the caption. Normalization and reinitialization was done as in the pre-
vious example. The resulting segmentation contours in Fig. 11.32(d) are an accurate representation of the 
content of the image in terms of the number of relevant regions. The second row shows the segmentation 
regions themselves, obtained as in Fig. 11.23.

As noted earlier, parameter m  controls the influence exercised by curvature on the segmentation pro-
cess. If using m = 0 5.  in the previous example resulted in three regions being detected, we would expect 
that increasing this parameter would result in fewer segmented regions. As Fig. 11.33 shows, this indeed 
was the case (using smaller values of m  would result is smaller noise points being picked up, and the region 
boundaries would become more ragged). The results in Fig. 11.33 also demonstrate that the region-based 
segmentation method has a rudimentary region-size “filtering” capability. None of the methods discussed 
earlier are able to do this.

ba c
ed f

FIGURE 11.31  (a) Image and initial contour. (b) through (f) Results after 500, 1000, 1500, 2000, and 3500 iterations 
respectively. The following parameters were used: m = 2, n = 0, l1 1= ,  and l2 1= . Compare (f) with the results in 
Fig. 10.48(d). (Original image courtesy of NASA.)
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FIGURE 11.32  (a) 200 200×  image containing three regions and an initial contour. (b)–(d) Results (using m = 0 5. ) 
after 500, 1000, and 1500 iterations, respectively. The second row shows the corresponding segmented regions (i.e., 
regions for which f( , ) ).x y ≤ 0

EXAMPLE 11.15 :   Level set segmentation of the rose image using region-based forces.

Figure 11.34 shows segmentation of the rose image using region-based active contours. The number 
of iterations and parameters used are listed in the figure caption. The relatively low value m = 0 5.  was 
selected to allow the contour to penetrate the troublesome deep concavity on the right side of the flower 
(see the comments in Example 11.12 regarding this issue). Normalization of the force and curvature 
were done as in the previous two examples, but the relatively low noise content and uniformity of the 
area where the curve evolved made reinitialization of the level set function unnecessary. For the most 
part, the contour evolved nicely to enclose the principal object of interest, but the segmentation is not as 
accurate as what we obtained with earlier methods. We discuss the reasons why in the following example.

EXAMPLE 11.16 :   Some comparisons between snakes and level sets.

We conclude our list of examples of active contours with several comparisons between snakes and the 
two principal grayscale level set methods developed in this chapter. Figure 11.35 shows segmentation 
of the rose image using snakes, edge-based level sets, and region-based level sets. The boundaries are 
displayed with the same graphic symbols for consistency. The first obvious difference is in the smooth-
ness of the contours. The snake result is the smoothest, a fact that can be attributed to the smoothing 
effect characteristic of the parametric representation of snakes. In contrast, the edge-based approach 
was powerful enough to take advantage of the clear definition of the original edges, without the need for 
blurring to extend the influence of the edges, as we had to do for the snake. This is important, because 
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FIGURE 11.33
Effect of  
parameter m  on 
the number of 
regions detected. 
(a) m = 0 5. .  
(b) m = 1 5. .  
(c) m = 3 0. .  
(d)–(f) Corre-
sponding  
segmented 
regions (i.e., 
regions for which 
f( , ) ).x y ≤ 0  
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FIGURE 11.34  (a) Image and initial contour. Results after: (b) 100, (c) 300, (d) 500, (e) 700, and (f) 1100 iterations, 
respectively. We used m = 0 5.  in all cases.
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initial curve encloses all three regions. Let 
the object pixels be denoted by 0, and the 
background pixels be denoted by 1. Use 
a = 1 and b = −1 in Eq. (11-94).

(b)	 Repeat (a) but with the initial contour start-
ing as a small circle near the center of the 
image (without touching any of the three 
regions).

11.32	 If we let a = −1 and b = 1 in Eq. (11-94), and start 
with the configuration in the figure below, what 
would the segmentation contour look like at con-
vergence?

11.33	 Propose a segmentation solution based on mor-
phology to obtain the same segmentation result 
as in Fig. 11.20(f).

11.34	 It is possible to use a Gaussian function to 
accomplish the same objective as Eq. (11-96) for 
generating a force field that can be used for level 
set segmentation.

(a)	 Propose such a function using the same 
parameters, s and l,  as in Eq. (11-96). [Note: 
Your function should have a Gaussian, form 
and not be a modification of Eq. (11-96).]

(b)	 Discuss how the parameters s and l  would 
affect the shape of your function.

11.35 *	Demonstrate the validity of Eq. (11-100).

11.36	 With reference to Fig. 11.41(d), assume that the 
force acting on point p2 is negative. What would 
the boundary look like after p2 is processed?

11.37	 What would the figure below look like after the 
application of Procedure 3 in Table 11.4?

Projects 
MATLAB solutions to the projects marked with an asterisk (*) are in the DIP4E Student Support Package (consult 
the book website: www.ImageProcessingPlace.com). 

11.1	 Snake input and display.

(a) *	Read the image rose512.tif and use the util-
ity function snake_manual_input.m to generate 
and display the coordinates of a 150-point 
snake enclosing the rose. The snake points 
should be displayed as small yellow circles.

(b)	 Write the MATLAB code necessary to 
generate a circular snake centered in the 
middle of image rose512.tif and large enough 
to enclose the rose without touching it or 
the image border. Use the utility function 
snake_display.m to display the image with the 
boundary superimposed on it using small 
red circles. (Hint: Use the parametric repre-
sentation of a circle to generate the circular 
snake.)

11.2	 Snake edge map.

(a) *	Write a function, emap = snakeMap4e(f,T,sig,n, 
order), to compute the edge map, emap, of 
input image f. If only f is provided in the 
input, emap will equal the magnitude of the 
gradient (MOG) of f without thresholding. 
If only f and T are provided, emap is thres-
holded such that emap > T, where threshold  
T is the range [ , ].0 1  No smoothing filter is 
applied. If all inputs are provided, the gradi-
ent is thresholded. Filtering with a Gaussian 
kernel of size (n*sig)*(n*sig) and standard de-
viation sig is determined by order, a character 
string with the following possible values: If 
order = 'before' then image f is filtered before 
the map (gradient) is computed. If order = 'af-
ter' filtering is performed on the edge map 
after it is computed. If order = 'both' filtering 
is performed before and after the edge map 
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12 Feature Extraction 

Preview
After an image has been segmented into regions or their boundaries using methods such as those in 
Chapters 10 and 11, the resulting sets of segmented pixels usually have to be converted into a form suit-
able for further computer processing. Typically, the step after segmentation is feature extraction, which 
consists of feature detection and feature description. Feature detection refers to finding the features 
in an image, region, or boundary. Feature description assigns quantitative attributes to the detected 
features. For example, we might detect corners in a region boundary, and describe those corners by 
their orientation and location, both of which are quantitative attributes. Feature processing methods 
discussed in this chapter are subdivided into three principal categories, depending on whether they are 
applicable to boundaries, regions, or whole images. Some features are applicable to more than one cat-
egory. Feature descriptors should be as insensitive as possible to variations in parameters such as scale, 
translation, rotation, illumination, and viewpoint. The descriptors discussed in this chapter are either 
insensitive to, or can be normalized to compensate for, variations in one or more of these parameters. 

Upon completion of this chapter, readers should:
	 Understand the meaning and applicability of 

a broad class of features suitable for image 
processing.

	 Understand the concepts of feature vectors 
and feature space, and how to relate them 
to the various descriptors developed in this 
chapter.

	 Be skilled in the mathematical tools used in 
feature extraction algorithms.

	 Be familiar with the limitations of the various 
feature extraction methods discussed.

	 Understand the principal steps used in the 
solution of feature extraction problems. 

	 Be able to formulate feature extraction algo-
rithms.

	 Have a “feel” for the types of features that 
have a good chance of success in a given 
application.

Well, but reflect; have we not several times  
acknowledged that names rightly given are the  
likenesses and images of the things which they name?

Socrates
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12.1 	BACKGROUND  

Although there is no universally accepted, formal definition of what constitutes an 
image feature, there is little argument that, intuitively, we generally think of a fea-
ture as a distinctive attribute or description of “something” we want to label or 
differentiate. For our purposes, the key words here are label and differentiate. The 

“something” of interest in this chapter refers either to individual image objects, or 
even to entire images or sets of images. Thus, we think of features as attributes that 
are going to help us assign unique labels to objects in an image or, more gener-
ally, are going to be of value in differentiating between entire images or families of 
images.

There are two principal aspects of image feature extraction: feature detection, and 
feature description. That is, when we refer to feature extraction, we are referring 
to both detecting the features and then describing them. To be useful, the extrac-
tion process must encompass both. The terminology you are likely to encounter in 
image processing and analysis to describe feature detection and description varies, 
but a simple example will help clarify our use of these term. Suppose that we use 
object corners as features for some image processing task. In this chapter, detection 
refers to finding the corners in a region or image. Description, on the other hand, 
refers to assigning quantitative (or sometimes qualitative) attributes to the detected 
features, such as corner orientation, and location with respect to other corners. In 
other words, knowing that there are corners in an image has limited use without 
additional information that can help us differentiate between objects in an image, 
or between images, based on corners and their attributes.

Given that we want to use features for purposes of differentiation, the next ques-
tion is: What are the important characteristics that these features must possess in 
the realm of digital image processing? You are already familiar with some of these 
characteristics. In general, features should be independent of location, rotation, and 
scale. Other factors, such as independence of illumination levels and changes caused 
by the viewpoint between the imaging sensor(s) and the scene, also are impor-
tant. Whenever possible, preprocessing should be used to normalize input images 
before feature extraction. For example, in situations where changes in illumination 
are severe enough to cause difficulties in feature detection, it would make sense to 
preprocess an image to compensate for those changes. Histogram equalization or 
specification come to mind as automatic techniques that we know are helpful in 
this regard. The idea is to use as much a priori information as possible to preprocess 
images in order to improve the chances of accurate feature extraction.

When used in the context of a feature, the word “independent” usually has one of 
two meanings: invariant or covariant. A feature descriptor is invariant with respect 
to a set of transformations if its value remains unchanged after the application (to 
the entity being described) of any transformation from the family. A feature descrip-
tor is covariant with respect to a set of transformations if applying to the entity any 
transformation from the set produces the same result in the descriptor. For example, 
consider this set of affine transformations: {translation, reflection, rotation}, and sup-
pose that we have an elliptical region to which we assign the feature descriptor area. 
Clearly, applying any of these transformations to the region does not change its area. 

12.1

See Table 2.3 regarding 
affine transformations.
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The following algorithm traces the boundary of a 1-valued region, R, in a binary 
image.

1.	 Let the starting point, b0 , be the uppermost-leftmost point† in the image that is 
labeled 1. Denote by c0  the west neighbor of b0  [see Fig. 12.1(b)]. Clearly, c0  is 
always a background point. Examine the 8-neighbors of b0 , starting at c0  and 
proceeding in a clockwise direction. Let b1 denote the first neighbor encountered 
whose value is 1, and let c1 be the (background) point immediately preceding b1 
in the sequence. Store the locations of b0  for use in Step 5.

2.	 Let b b= 0 and c c= 0.
3.	 Let the 8-neighbors of b, starting at c and proceeding in a clockwise direction, 

be denoted by n n n1 2 8, , , .…  Find the first neighbor labeled 1 and denote it by nk .
4.	 Let b nk=  and c nk= – .1

5.	 Repeat Steps 3 and 4 until b b= 0. The sequence of b points found when the 
algorithm stops is the set of ordered boundary points.

Note that c in Step 4 is always a background point because nk is the first 1-valued 
point found in the clockwise scan. This algorithm is referred to as the Moore bound-
ary tracing algorithm after Edward F. Moore, a pioneer in cellular automata theory. 

Figure 12.1 illustrates the first few steps of the algorithm. It is easily verified (see 
Problem 12.1) that continuing with this procedure will yield the correct boundary, 
shown in Fig. 12.1(f), whose points are ordered in a clockwise sequence. The algo-
rithm works equally well with more complex boundaries, such as the boundary with 
an attached branch in Fig. 12.2(a) or the self-intersecting boundary in Fig. 12.2(b). 
Multiple boundaries [Fig. 12.2(c)] are handled by processing one boundary at a time 
(see Project 12.1).

If we start with a binary region instead of a boundary, the algorithm extracts the 
outer boundary of the region. Typically, the resulting boundary will be one pixel 
thick, but not always [see Problem 12.1(b)]. If the objective is to find the boundaries 
of holes in a region (these are called the inner or interior boundaries of the region), 

† As you will see later in this chapter and in Problem 12.11, the uppermost-leftmost point in a 1-valued boundary 
has the important property that a polygonal approximation to the boundary has a convex vertex at that location. 
Also, the left and north neighbors of the point are guaranteed to be background points. These properties make 
it a good “standard” point at which to start boundary-following algorithms. 

See Section 2.5 for the 
definition of 4-neigh-
bors, 8-neighbors, and 
m-neighbors of a point,

ba c ed f

FIGURE 12.1  Illustration of the first few steps in the boundary-following algorithm. The point to be processed next is 
labeled in bold, black; the points yet to be processed are gray; and the points found by the algorithm are shaded. 
Squares without labels are considered background (0) values.
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Slope Chain Codes

Using Freeman chain codes generally requires resampling a boundary to smooth 
small variations, a process that implies defining a grid and subsequently assigning 
all boundary points to their closest neighbors in the grid. An alternative to this 
approach is to use slope chain codes (SCCs) (Bribiesca [1992, 2013]). The SCC of a 
2-D curve is obtained by placing straight-line segments of equal length around the 
curve, with the end points of the segments touching the curve. 

Obtaining an SSC requires calculating the slope changes between contiguous line 
segments, and normalizing the changes to the continuous (open) interval ( , ).−1 1  
This approach requires defining the length of the line segments, as opposed to Free-
man codes, which require defining a grid and assigning curve points to it—a much 
more elaborate procedure. Like Freeman codes, SCCs are independent of rotation, 
but a larger range of possible slope changes provides a more accurate representa-
tion under rotation than the rotational independence of the Freeman codes, which is 
limited to the eight directions in Fig. 12.3(b). As with Freeman codes, SCCs are inde-
pendent of translation, and can be normalized for scale changes (see Problem 12.8).
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FIGURE 12.5 (a) Noisy image of size 570 570×  pixels. (b) Image smoothed with a 9 9×  box kernel. (c) Smoothed 
image, thresholded using Otsu’s method. (d) Longest outer boundary of (c). (e) Subsampled boundary (the points 
are shown enlarged for clarity). (f) Connected points from (e).
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Figure 12.6 illustrates how an SCC is generated. The first step is to select the 
length of the line segment to use in generating the code [see Fig. 12.6(b)]. Next, a 
starting point (the origin) is specified (for an open curve, the logical starting point is 
one of its end points). As Fig. 12.6(c) shows, once the origin has been selected, one 
end of a line segment is placed at the origin and the other end of the segment is set 
to coincide with the curve. This point becomes the starting point of the next line seg-
ment, and we repeat this procedure until the starting point (or end point in the case 
of an open curve) is reached. As the figure illustrates, you can think of this process as 
a sequence of identical circles (with radius equal to the length of the line segment) 
traversing the curve. The intersections of the circles and the curve determine the 
nodes of the straight-line approximation to the curve. 

Once the intersections of the circles are known, we determine the slope changes 
between contiguous line segments. Positive and zero slope changes are normalized 
to the open half interval [ , ),0 1  while negative slope changes are normalized to the 
open interval ( , ).−1 0  Not allowing slope changes of ±1 eliminates the implementa-
tion issues that result from having to deal with the fact that such changes result in 
the same line segment with opposite directions. 

The sequence of slope changes is the chain that defines the SCC approximation 
to the original curve. For example, the code for the curve in Fig. 12.6(e) is 0 12. , 0 20. , 
0 21. , 0 11. , −0 11. , −0 12. , −0 21. , −0 22. , −0 24. , −0 28. , −0 28. , −0 31. , −0 30. . The accu-
racy of the slope changes defined in Fig. 12.6(d) is 10 2− , resulting in an “alphabet” 
of 199 possible symbols (slope changes). The accuracy can be changed, of course. For 
instance, and accuracy of 10 1−  produces an alphabet of 19 symbols (see Problem 12.9). 
Unlike a Freeman code, there is no guarantee that the last point of the coded curve 
will coincide with the last point of the curve itself. However, shortening the line 

Line segment

ba c ed

FIGURE 12.6 (a) An open curve. (b) A straight-line segment. (c) Traversing the curve using circumferences to deter-
mine slope changes; the dot is the origin (starting point). (d) Range of slope changes in the open interval ( , )−1 1  
(the arrow in the center of the chart indicates direction of travel). There can be ten subintervals between the slope 
numbers shown.(e) Resulting coded curve showing its corresponding numerical sequence of slope changes. (Cour-
tesy of Professor Ernesto Bribiesca, IIMAS-UNAM, Mexico.)
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length and/or increasing angle resolution often resolves the problem, because the 
results of computations are rounded to the nearest integer (remember we work with 
integer coordinates).

The inverse of an SCC is another chain of the same length, obtained by reversing 
the order of the symbols and their signs. The mirror image of a chain is obtained by 
starting at the origin and reversing the signs of the symbols. Finally, we point out 
that the preceding discussion is directly applicable to closed curves. Curve following 
would start at an arbitrary point (for example, the uppermost-leftmost point of the 
curve) and proceed in a clockwise or counterclockwise direction, stopping when the 
starting point is reached. We will illustrate an use of SSCs in Example 12.6.

BOUNDARY APPROXIMATIONS USING MINIMUM-PERIMETER  
POLYGONS

A digital boundary can be approximated with arbitrary accuracy by a polygon. For a 
closed curve, the approximation becomes exact when the number of segments of the 
polygon is equal to the number of points in the boundary, so each pair of adjacent 
points defines a segment of the polygon. The goal of a polygonal approximation 
is to capture the essence of the shape in a given boundary using the fewest pos-
sible number of segments. Generally, this problem is not trivial, and can turn into 
a time-consuming iterative search. However, approximation techniques of modest 
complexity are well suited for image-processing tasks. Among these, one of the most 
powerful is representing a boundary by a minimum-perimeter polygon (MPP), as 
defined in the following discussion.

Foundation

An intuitive approach for computing MPPs is to enclose a boundary [see Fig. 12.7(a)] 
by a set of concatenated cells, as in Fig. 12.7(b). Think of the boundary as a rubber 
band contained in the gray cells in Fig. 12.7(b). As it is allowed to shrink, the rubber 
band will be constrained by the vertices of the inner and outer walls of the region 
of the gray cells. Ultimately, this shrinking produces the shape of a polygon of mini-
mum perimeter (with respect to this geometrical arrangement) that circumscribes 
the region enclosed by the cell strip, as in Fig. 12.7(c). Note in this figure that all the 
vertices of the MPP coincide with corners of either the inner or the outer wall.

The size of the cells determines the accuracy of the polygonal approximation. 
In the limit, if the size of each (square) cell corresponds to a pixel in the boundary, 
the maximum error in each cell between the boundary and the MPP approxima-
tion would be 2d, where d is the minimum possible distance between pixels (i.e., 
the distance between pixels established by the resolution of the original sampled 
boundary). This error can be reduced in half by forcing each cell in the polygonal 
approximation to be centered on its corresponding pixel in the original boundary. 
The objective is to use the largest possible cell size acceptable in a given application, 
thus producing MPPs with the fewest number of vertices. Our objective in this sec-
tion is to formulate a procedure for finding these MPP vertices.

The cellular approach just described reduces the shape of the object enclosed 
by the original boundary, to the area circumscribed by the gray walls in Fig. 12.7(b). 

For an open curve, the 
number of segments 
of an exact polygonal 
approximation is equal 
to the number of points 
minus 1.
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Figure 12.8(a) shows this shape in dark gray. Suppose that we traverse the bound-
ary of the dark gray region in a counterclockwise direction. Every turn encountered 
in the traversal will be either a convex or a concave vertex (the angle of a vertex is 
defined as an interior angle of the boundary at that vertex). Convex and concave 
vertices are shown, respectively, as white and blue dots in Fig. 12.8(b). Note that 
these vertices are the vertices of the inner wall of the light-gray bounding region in 
Fig. 12.8(b), and that every concave (blue) vertex in the dark gray region has a corre-
sponding concave “mirror” vertex in the light gray wall, located diagonally opposite 
the vertex. Figure 12.8(c) shows the mirrors of all the concave vertices, with the MPP 
from Fig. 12.7(c) superimposed for reference. We see that the vertices of the MPP 
coincide either with convex vertices in the inner wall (white dots) or with the mir-
rors of the concave vertices (blue dots) in the outer wall. Only convex vertices of the 
inner wall and concave vertices of the outer wall can be vertices of the MPP.  Thus, 
our algorithm needs to focus attention only on those vertices.

MPP Algorithm

The set of cells enclosing a digital boundary [e.g., the gray cells in Fig. 12.7(b)] is 
called a cellular complex. We assume the cellular complexes to be simply connected, 
in the sense the boundaries they enclose are not self-intersecting. Based on this 
assumption, and letting white (W) denote convex vertices, and blue (B) denote mir-
rored concave vertices, we state the following observations:

1.	 The MPP bounded by a simply connected cellular complex is not self-intersecting.

2.	 Every convex vertex of the MPP is a W vertex, but not every W vertex of a bound-
ary is a vertex of the MPP.

A convex vertex is the 
center point of a triplet 
of points that define an 
angle in the range  
0° < u < 180°. Similarly, 
angles of a concave  
vertex are in the range  
180° < u < 360°. An 
angle of 180° defines a 
degenerate vertex (i.e., 
segment of a straight 
line), which cannot be an 
MPP-vertex.

ba c
FIGURE 12.7 (a) An object boundary. (b) Boundary enclosed by cells (shaded). (c) Minimum-perimeter polygon 
obtained by allowing the boundary to shrink. The vertices of the polygon are created by the corners of the inner 
and outer walls of the gray region.
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tangent-angle values. Because a histogram is a measure of the concentration of val-
ues, the slope density function responds strongly to sections of the boundary with 
constant tangent angles (straight or nearly straight segments) and has deep valleys 
in sections producing rapidly varying angles (corners or other sharp inflections).

EXAMPLE 12.4 :  Signatures of two regions.

Figures 12.11(a) and (d) show two binary objects, and Figs. 12.11(b) and (e) are their boundaries. The 
corresponding r( )u  signatures in Figs. 12.11(c) and (f) range from 0° to 360° in increments of 1°. The 
number of prominent peaks in the signatures is sufficient to differentiate between the shapes of the two 
objects.

SKELETONS, MEDIAL AXES, AND DISTANCE TRANSFORMS

Like boundaries, skeletons are related to the shape of a region. Skeletons can be 
computed from a boundary by filling the area enclosed by the boundary with fore-
ground values, and treating the result as a binary region. In other words, a skeleton is 
computed using the coordinates of points in the entire region, including its boundary. 
The idea is to reduce a region to a tree or graph by computing its skeleton. As we 
explained in Section 9.5 (see Fig. 9.25), the skeleton of a region is the set of points in 
the region that are equidistant from the border of the region. 

The skeleton is obtained using one of two principal approaches: (1) by succes-
sively thinning the region (e.g., using morphological erosion) while preserving end 
points and line connectivity (this is called topology-preserving thinning); or (2) 
by computing the medial axis of the region via an efficient implementation of the 
medial axis transform (MAT) proposed by Blum [1967]. We discussed thinning in 
Section 9.5. The MAT of a region R with border B is as follows: For each point p in 
R, we find its closest neighbor in B. If p has more than one such neighbor, it is said 

As is true of thinning, 
the MAT is highly 
susceptible to boundary 
and internal region 
irregularities, so smooth-
ing and other preprocess-
ing steps generally are 
required to obtain a 
clean a binary image.
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FIGURE 12.10
Distance-versus-
angle signatures. 
In (a), r( )u  is  
constant. In (b), 
the signature  
consists of 
repetitions of 
the pattern 
r Au u( ) = sec  for 
0 4≤ ≤u p , and 
r Au u( ) = csc  for 
p u p4 2< ≤ .
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pixels to their nearest background (zero) pixels, which constitute the region bound-
ary. Thus, we compute the distance transform of the complement of the image, as 
Figs. 12.13(c) and (d) illustrate. By comparing Figs. 12.13(d) and 12.12(a), we see 
in the former that the MAT (skeleton) is equivalent to the ridge of the distance 
transform [i.e., the ridge in the image in Fig. 12.13(d)]. This ridge is the set of local 
maxima [shown bold in Fig. 12.13(d)]. Figures 12.13(e) and (f) show the same effect 
on a larger ( )414 708×  binary image. 

Finding approaches for computing the distance transform efficiently has been a 
topic of research for many years. Numerous approaches exist that can compute the 
distance transform with linear time complexity, O K( ), for a binary image with K 
pixels. For example, the algorithm by Maurer et al. [2003] not only can compute the 
distance transform in O K( ), it can compute it in O K P( ) using P processors.

1.41   1    1    1   1.41
   1      0    0    0     1
   1      0    0    0     1
1.41   1    1    1    1.41

0     0     0     0     0     0     0     0     0
0     1     1     1     1     1     1     1     0
0     1     2     2     2     2     2     1     0
0     1     2     3     3     3     2     1     0
0     1     2     2     2     2     2     1     0
0     1     1     1     1     1     1     1     0
0     0     0     0     0     0     0     0     0

0      0      0      0      0 
0      1      1      1      0 
0      1      1      1      0 
0      0      0      0      0 

 0     0     0     0     0     0     0     0     0
 0     1     1     1     1     1     1     1     0
 0     1     1     1     1     1     1     1     0
 0     1     1     1     1     1     1     1     0
 0     1     1     1     1     1     1     1     0
 0     1     1     1     1     1     1     1     0
 0     0     0     0     0     0     0     0     0

ba
dc
fe

FIGURE 12.13
(a) A small  
image and (b) its 
distance  
transform. Note 
that all 1-valued 
pixels in (a) have 
corresponding 
0’s in (b). (c) A 
small image, and 
(d) the distance 
transform of its 
complement. (e) A 
larger image, and 
(f) the distance 
transform of its 
complement. The 
Euclidian distance 
was used through-
out.

ba c  
FIGURE 12.12
Medial axes 
(dashed) of three 
simple regions.
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The value of this descriptor is 1 for a circle (its maximum value) and p 4 for a square. 
Note that these two measures are independent of size, orientation, and translation. 
Another measure based on a circle is the effective diameter:

	 d
A

e = 2
p

	 (12-20)

This is the diameter of a circle having the same area, A, as the region being pro-
cessed. This measure is neither dimensionless nor independent of region size, but it 
is independent of orientation and translation. It can be normalized for size and made 
dimensionless by dividing it by the largest diameter expected in a given application. 

In a manner analogous to the way we defined compactness and circularity relative 
to a circle, we define the eccentricity of a region relative to an ellipse as the eccentricity 
of an ellipse that has the same second central moments as the region. For 1-D, the sec-
ond central moment is the variance which, for discrete variables, we estimate using 
Eq. (2-114). For 2-D discrete data, we have to consider the variance of each variable 
as well as the covariance between them. These are the components of the covariance 
matrix, which is estimated from samples using Eq. (2-130), with the samples in this 
case being 2-D vectors representing the coordinates of the data.

Figure 12.21(a) shows an ellipse in standard form (i.e., an ellipse whose major and 
minor axes are aligned with the coordinate axes). The eccentricity of such an ellipse 
is defined as the ratio of the distance between foci (2c  in Fig. 12.21), and the length 
of its major axis ( ),2a  which gives the ratio 2 2c a c a= . That is, 

	 eccentricity = =
−

= −c
a

a b

a
b a a b

2 2
21 ( ) ≥ 	

However, we are interested in the eccentricity of an ellipse that has the same second 
central moments as a given 2-D region, which means that our ellipses can have arbi-
trary orientations. Intuitively, what we are trying to do is approximate our 2-D data 
by an elliptical region whose axes are aligned with the principal axes of the data, as 
Fig. 12.21(b) illustrates. As you will learn in Section 12.5 (see Example 12.17), the 
principal axes are the eigenvectors of the covariance matrix, C, of the data, which is 
given by:

	 C z z z z=
−

− −
=

∑1
1 1K k k

T

k

K

( )( )  	 (12-21)

ba

FIGURE 12.21
(a) An ellipse in 
standard form. 
(b) An ellipse 
approximating a 
region in arbitrary 
orientation.
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Binary
region eigenvectors and

corresponding eigenvalues
of the covariance matrix of 
the coordinates of the region
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where zk  is a 2-D vector whose elements are the two spatial coordinates of a point in 
the region, K is the total number of points, and z  is the mean vector:

	 z z=
=

∑1

1K k
k

K

	 (12-22)

The main diagonal elements of C are the variances of the coordinate values of the 
points in the region, and the off-diagonal elements are their covariances (see the 
discussion on the multivariate Gaussian density in Section 2.6 and Example 2.22).

An ellipse oriented in the same direction as the principal axes of the region can be 
interpreted as the intersection of a 2-D Gaussian function with the xy-plane. The ori-
entation of the axes of the ellipse are also in the direction of the eigenvectors of the 
covariance matrix, and the distances from the center of the ellipse to its intersection 
with its major and minor axes is equal to the largest and smallest eigenvalues of the 
covariance matrix, respectively, as Fig. 12.21(b) shows. With reference to Fig. 12.21, 
and the equation of its eccentricity given above, we see by analogy that the eccen-
tricity of an ellipse with the same second moments as the region is given by

	
eccentricity =

−

= −

l l

l

l l l l

2
2

1
2

2

1 2
2

2 11 ( ) ≥

	 (12-23)

For circular regions, l l1 2=  and the eccentricity is 0. For a line, l1 0=  and the eccen-
tricity is 1. Thus, values of this descriptor are in the range [ , ].0 1

EXAMPLE 12.9 :   Comparison of feature descriptors.

Figure 12.22 shows values of the preceding descriptors for several region shapes. None of the descriptors 
for the circle was exactly equal to its theoretical value because digitizing a circle introduces error into 
the computation, and because we approximated the length of a boundary as its number of elements. The 
eccentricity of the square did have an exact value of 0, because a square with no rotation aligns perfectly 
with the sampling grid. The other two descriptors for the square were close to their theoretical values also. 

The values listed in the first two rows of Fig. 12.22 carry the same information. For example, we can 
tell that the star is less compact and less circular than the other shapes. Similarly, it is easy to tell from the 
numbers listed that the teardrop region has by far the largest eccentricity, but it is harder to differentiate 
from the other shapes using compactness or circularity.

As we discussed in Section 12.1, feature descriptors typically are arranged in the form of feature 
vectors for subsequent processing. Figure 12.23 shows the feature space for the descriptors in Fig. 12.22. 

13.230842.2442

0.2975 0.9478

10.1701

1.2356

0.0411 0.0636 0.8117

Compactness

Circularity

Eccentricity

15.9836

0.7862

0

Descriptor

ba c d

FIGURE 12.22
Compactness, 
circularity, and  
eccentricity of 
some simple 
binary regions.
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MOMENT INVARIANTS

The 2-D moment of order p q+( ) of an M N×  digital image, f x y( , ), is defined as

	 m x y f x ypq
p q

y

N

x

M

= ( )
==

∑∑
0

1

0

1 ––

, 	 (12-34)

where p = 0 1 2, , ,… and q = 0 1 2, , ,… are integers. The corresponding central moment 
of order p q+( ) is defined as

	 mpq
y

N

x

M p q
x x y y f x y= ( ) ( ) ( )

==
∑∑ – – ,

––

0

1

0

1

	 (12-35)

for p = 0 1 2, , ,… and q = 0 1 2, , , ,…  where

	 x
m
m

y
m
m

= =10

00

01

00

and 	 (12-36)

The normalized central moment of order p q+( ), denoted hpq , is defined as

	 h
m

m
gpq
pq=
00

	 (12-37)

where

	 g = + +p q
2

1 	 (12-38)

for p q+ = 2 3, , .… A set of seven, 2-D moment invariants can be derived from the 
second and third normalized central moments:†

	 f h h1 20 02= + 	 (12-39)

 	 f h h h2 20 02
2

11
24= ( ) +– 	 (12-40)

	 f h h h h3 30 12
2

21 03
2

3 3= ( ) + ( )– – 	 (12-41)

	 f h h h h4 30 12
2

21 03
2= +( ) + +( ) 	 (12-42)

† Derivation of these results requires concepts that are beyond the scope of this discussion. The book by Bell 
[1965] and the paper by Hu [1962] contain detailed discussions of these concepts. For generating moment invari-
ants of an order higher than seven, see Flusser [2000]. Moment invariants can be generalized to n dimensions 
(see Mamistvalov [1998]).

DIP4E_Print_Ready.indb   1000 4/2/2017   9:01:10 PM



12.6  Whole-Image Features    1011

The state of the art in image processing is such that as the complexity of the task 
increases, the number of techniques suitable for addressing those tasks decreases. 
This is particularly true when dealing with feature descriptors applicable to entire 
images that are members of a large family of images. In this section, we discuss 
two of the principal feature detection methods currently being used for this pur-
pose. One is based on detecting corners, and the other works with entire regions 
in an image. Then, in Section 12.7 we present a feature detection and description 
approach designed specifically to work with these types of features.

THE HARRIS-STEPHENS CORNER DETECTOR

Intuitively, we think of a corner as a rapid change of direction in a curve. Corners 
are highly effective features because they are distinctive and reasonably invariant to 
viewpoint. Because of these characteristics, corners are used routinely for matching 
image features in applications such as tracking for autonomous navigation, stereo 
machine vision algorithms, and image database queries.

In this section, we discuss an algorithm for corner detection formulated by Har-
ris and Stephens [1988]. The idea behind the Harris-Stephens (HS) corner detec-
tor is illustrated in Fig. 12.45. The basic approach is this: Corners are detected by 
running a small window over an image, as we did in Chapter 3 for spatial filtering. 
The detector window is designed to compute intensity changes. We are interested in 
three scenarios: (1) Areas of zero (or small) intensity changes in all directions, which 

The discussion in  
Sections 13.5 through 
13.7 dealing with neural 
networks is also impor-
tant in terms of process-
ing large numbers of 
entire images for the 
purpose of characterizing 
their content.

Our use the term “corner” 
is broader than just 
90° corners; it refers to 
features that are “corner-
like.” 
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FIGURE 12.44
A manual  
example.  
(a) Original points. 
(b) Eigenvectors of 
the covariance  
matrix of the points 
in (a).  
(c) Transformed 
points obtained 
using Eq. (12-49). 
(d) Points from (c), 
rounded and trans-
lated so that all 
coordinate values 
are integers greater 
than 0. The dashed 
lines are included 
to facilitate viewing. 
They are not part of 
the data.
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happens when the window is located in a constant (or nearly constant) region, as 
in location A in Fig. 12.45; (2) areas of changes in one direction but no (or small) 
changes in the orthogonal direction, which this happens when the window spans a 
boundary between two regions, as in location B; and (3) areas of significant changes 
in all directions, a condition that happens when the window contains a corner (or 
isolated points), as in location C. The HS corner detector is a mathematical formula-
tion that attempts to differentiate between these three conditions.

Let f denote an image, and let f s t( , ) denote a patch of the image defined by the 
values of ( , ).s t  A patch of the same size, but shifted by ( , ),x y  is given by f s x t y( , ).+ +  
Then, the weighted sum of squared differences between the two patches is given by

	 C x y s t f s x t y f s t
ts

( , ) ( , ) ( , ) ( , )= + + −[ ]∑∑ w
2

	 (12-56)

where w( , )s t  is a weighting function to be discussed shortly. The shifted patch can be 
approximated by the linear terms of a Taylor expansion

	 f s x t y f s t xf s t yf s tx y( , ) ( , ) ( , ) ( , )+ + ≈ + + 	 (12-57)

where f s t f xx( , ) = ∂ ∂  and f s t f yy( , ) ,= ∂ ∂  both evaluated at ( , ).s t  We can then write 
Eq. (12-56) as

	 C x y s t xf s t yf s tx y
ts

( , ) ( , ) ( , ) ( , )= + ∑∑ w
2

	 (12-58)

This equation can written in matrix form as

	 C x y x y
x

y
( , ) = [ ] 







M 	 (12-59)

A patch is the image area 
spanned by the detector 
window at any given 
time.

FIGURE 12.45
Illustration of how 
the Harris-Stephens 
corner detector  
operates in the 
three types of sub-
regions indicated by 
A (flat), B (edge), 
and C (corner). The 
wiggly arrows  
indicate graphically 
a directional  
response in the 
detector as it moves 
in the three areas 
shown.

B C

Region 1

Region 2
A

Boundary
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As you can see, numerous detection errors occurred (see, for example, the large number of wrong corner 
detections in the right edge of the building). Increasing k alone had little effect on the over-detection 
of corners until k was near its maximum value. Using the same values as in Fig. 12.48(c) resulted in the 
image in 12.49(c), which shows a reduced number of erroneous corners, at the expense of missing numer-
ous important ones in the front of the building. Reducing k  to 0.17 and increasing T to 0.05 did a much 
better job, as Fig. 12.49(d) show. Parameter k did not play a major role in corner detection for the building 
image. In fact, Figs. 12.49(e) and (f) show essentially the same level of performance obtained by reducing 
k to its default value of 0.04, and using T = 0 05.  and T = 0 07. ,  respectively.

Finally, Fig. 12.50 shows corner detection on a rotated image. The result in Fig. 12.50(b) was obtained 
using the same parameters we used in Fig. 12.49(f), showing the relative insensitivity of the method to 
rotation. Figures 12.49(f) and 12.50(b) show detection of at least one corner in every major structural 
feature of the image, such as the front door, all the windows, and the corners that define the apex of the 
facade. For matching purposes, these are excellent results.

ba c
ed f

FIGURE 12.49 600 600×  image of a building. (b) Result of applying the HS corner detector with k = 0 04.  and T = 0 01.  
(the default values in our implementation). Numerous irrelevant corners were detected. (c) Result using k = 0 249.  
and the default value for T. (d) Result using k = 0 17.  and T = 0 05. . (e) Result using the default value for k and 
T = 0 05. . (f) Result using the default value of k and T = 0 07. . 
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ba

FIGURE 12.50
(a) Image  
rotated 5°.  
(b) Corners 
detected using the 
parameters used 
to obtain  
Fig. 12.49(f). 

MAXIMALLY STABLE EXTREMAL REGIONS (MSERs)

The Harris-Stephens corner detector discussed in the previous section is useful in 
applications characterized by sharp transitions of intensities, such as the intersec-
tion of straight edges, that result in corner-like features in an image. Conversely, the 
maximally stable extremal regions (MSERs) introduced by Matas et al. [2002] are 
more “blob” oriented. As with the HS corner detector, MSERs are intended to yield 
whole image features for the purpose of establishing correspondence between two 
or more images.

We know from Fig. 2.18 that a grayscale image can be viewed as a topographic 
map, with the xy-axes representing spatial coordinates, and the z-axis representing 
intensities. Imagine that we start thresholding an 8-bit grayscale image one intensity 
level at a time. The result of each thresholding is a binary image in which we show 
the pixels at or above the threshold in white, and the pixels below the threshold as 
black. When the threshold, T, is 0, the result is a white image (all pixel values are 
at or above 0). As we start increasing T in increments of one intensity level, we will 
begin to see black components in the resulting binary images. These correspond to 
local minima in the topographic map view of the image. These black regions may 
begin to grow and merge, but they never get smaller from image to image. Finally, 
when we reach T = 255,  the resulting image will be black (there are no pixel values 
above this level). Because each stage of thresholding results in a binary image, there 
will be one or more connected components of white pixels in each image. The set of 
all such components resulting from all thresholdings is the set of extremal regions. 
Extremal regions that do not change size (number of pixels) appreciably over a 
range of threshold values are called maximally stable extremal regions.

As you will see shortly, the procedure just discussed can be cast in the form of a 
rooted, connected tree called a component tree, where each level of the tree corre-
sponds to a value of the threshold discussed in the previous paragraph. Each node 
of this tree represents an extremal region, R, defined as

	 ∀ ∈ ∀ ∈p R q R I p I q and boundary( ) : ( ) ( )> 	 (12-64)

Remember, ∀  
means “for any,” ∈ 
means “belonging to,” 
and a colon, :,  
is used to  
mean “it is true that.”
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of the original area, we reduced the valid MSER range by one-fourth to 2500 –7500 pixels. Other than 
these changes, we used the same parameters as in Fig. 12.53. Figure 12.55(c) shows the resulting MSER. 
As you can see, this figure is quite close to the full-size result in Fig. 12.53(e).

12.7  SCALE-INVARIANT FEATURE TRANSFORM (SIFT) 

SIFT is an algorithm developed by Lowe [2004] for extracting invariant features from 
an image. It is called a transform because it transforms image data into scale-invariant 
coordinates relative to local image features. SIFT is by far the most complex feature 
detection and description approach we discuss in this chapter. 

As you progress though this section, you will notice the use of a significant num-
ber of experimentally determined parameters. Thus, unlike most of the formulations 
of individual approaches we have discussed thus far, SIFT is strongly heuristic. This 
is a consequence of the fact that our current knowledge is insufficient to tell us how 

12.7

ba
c ed

FIGURE 12.53 (a) Building image of size 600 600×  pixels. (b) Image smoothed using a 5 5×  box kernel. (c) and 
(d) MSERs detected using T = 0, T = 10, and MSER size range between 10,000 and 30,000 pixels, corresponding 
approximately to 3% and 8% of the area of the image. (e) Composite image.
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SCALE SPACE

The first stage of the SIFT algorithm is to find image locations that are invariant 
to scale change. This is achieved by searching for stable features across all possible 
scales, using a function of scale known as scale space, which is a multi-scale rep-
resentation suitable for handling image structures at different scales in a consis-
tent manner. The idea is to have a formalism for handling the fact that objects in 
unconstrained scenes will appear in different ways, depending on the scale at which 
images are captured. Because these scales may not be known beforehand, a reason-
able approach is to work with all relevant scales simultaneously. Scale space repre-
sents an image as a one-parameter family of smoothed images, with the objective of 
simulating the loss of detail that would occur as the scale of an image decreases. The 
parameter controlling the smoothing is referred to as the scale parameter.

In SIFT, Gaussian kernels are used to implement smoothing, so the scale param-
eter is the standard deviation. The reason for using Gaussian kernels in based on 
work performed by Lindberg [1994], who showed that the only smoothing kernel 
that meets a set of important constraints, such as linearity and shift-invariance, is 
the Gaussian lowpass kernel. Based on this, the scale space, L x y( , , ),s  of a grayscale 
image, f x y( , ),† is produced by convolving f with a variable-scale Gaussian kernel, 
G x y( , , ) :s

	 L x y G x y f x y( , , ) ( , , ) ( , )s s=  	 (12-66)

where the scale is controlled by parameter s, and G is of the form

	 G x y e x y( , , ) ( )s
ps

s= − +1
2 2

22 2 2

	 (12-67)

The input image f x y( , ) is successively convolved with Gaussian kernels having 
standard deviations s s s s, , , , . . .k k k2 3  to generate a “stack” of Gaussian-filtered 
(smoothed) images that are separated by a constant factor k, as shown in the lower 
left of Fig. 12.56.

SIFT subdivides scale space into octaves, with each octave corresponding to a 
doubling of s, just as an octave in music theory corresponds to doubling the fre-
quency of a sound signal. SIFT further subdivides each octave into an integer num-
ber, s, of intervals, so that an interval of 1 consists of two images, an interval of 2 
consists of three images, and so forth. It then follows that the value used in the Gauss-
ian kernel that generates the image corresponding to an octave is kss s= 2  which 
means that k s= 21 . For example, for s = 2, k = 2, and the input image is succes-
sively smoothed using standard deviations of s s s, ( ) , ,2 2 2and ( )  so that the third 
image (i.e., the octave image for s = 2) in the sequence is filtered using a Gaussian 
kernel with standard deviation ( )2 22s s= . 

†  Experimental results reported by Lowe [2004] suggest that smoothing the original image using a Gaussian 
kernel with s = 0 5.  and then doubling its size by linear (nearest-neighbor) interpolation improves the number 
of stable features detected by SIFT. This preprocessing step is an integral part of the algorithm. Images are 
assumed to have values in the range [ , ].0 1

As in Chapter 3, “” 
indicates spatial convolu-
tion.
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1026    Chapter 12  Feature Extraction 

The preceding discussion indicates that the number of smoothed images gener-
ated in an octave is s + 1. However, as you will see in the next section, the smoothed 
images in scale space are used to compute differences of Gaussians [see Eq. (10-32)] 
which, in order to cover a full octave, implies that an additional two images past the 
octave image are required, giving a total of s + 3 images. Because the octave image is 
always the ( )s + 1 th  image in the stack (counting from the bottom), it follows that this 
image is the third image from the top in the expanded sequence of s + 3 images. Each 
octave in Fig. 12.56 contains five images, indicating that s = 2 was used in this case.

The first image in the second octave is formed by downsampling the original 
image (by skipping every other row and column), and then smoothing it using a 
kernel with twice the standard deviation used in the first octave (i.e., s s2 12= ). 
Subsequent images in that octave are smoothed using s2 , with the same sequence 
of values of k as in the first octave (this is denoted by dots in Fig. 12.56). The same 
basic procedure is then repeated for subsequent octaves. That is, the first image of 
the new octave is formed by: (1) downsampling the original image enough times 
to achieve half the size of the image in the previous octave, and (2) smoothing the 
downsampled image with a new standard deviation that is twice the standard devia-
tion of the previous octave. The rest of the images in the new octave are obtained by 
smoothing the downsampled image with the new standard deviation multiplied by 
the same sequence of values of k as before. 

When k = 2, we can obtain the first image of a new octave without having to 
smooth the downsampled image. This is because, for this value of k, the kernel used 
to smooth the first image of every octave is the same as the kernel used to smooth 

Instead of repeatedly 
downsampling the 
original image, we can 
carry the previously 
downsampled image, 
and downsample it 
by 2 to obtain the image 
required for the next 
octave.

Images smoothed using
Gaussian lowpass kernelsOctave 1

Scale

Scale

Scale
Octave 2

Octave 3

.

.

.
More octaves

6
6 Standard deviations used 

in the Gaussian lowpass
kernels of each octave (the
same number of images 
with the same powers of k is
generated in each octave)

.

.

.

1s
1ks

2
1k s

3
1k s

4
1k s

2 12=s s
2ks

4
2k s...

2=3 2s s

4
3k s...

3ks 6
FIGURE 12.56
Scale space,  
showing three 
octaves. Because 
s = 2  in this case, 
each octave has five 
smoothed  
images. A  
Gaussian ker-
nel was used for 
smoothing, so the 
space parameter 
is s.  
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1028    Chapter 12  Feature Extraction 

	 G x y k G x y k G( , , ) ( , , ) ( )s s s− ≈ − 1 2 2 	 (12-70)

Therefore, DoGs already have the necessary scaling “built in.” The factor ( )k − 1  is 
constant over all scales, so it does not influence the process of locating extrema in 
scale space. Although Eqs. (12-68) and (12-69) are applicable to the first two images 

1

2

3

Scale
1 2 3 4 5

0.707 1.000 1.414 2.000 2.828

1.414 2.000 2.828 4.000 5.657

2.828 4.000 5.657 8.000 11.314

Octave

Octave 1

B
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k 
P
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e 

W
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6 

by
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7p
0)

2 1.414k = =
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1 2 2 0.707= =s

1s

1ks

2
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3
1k s

4
1k s

Octave 2

Sc
al

e
2ks

2
2k s

3
2k s

4
2k s

Octave 3

Sc
al

e

3 2 12 4= =s s s

3ks

2
3k s

3
3k s

4
3k s

2 12=s s

FIGURE 12.57
Illustration using 
images of the first 
three octaves of 
scale space in 
SIFT. The entries 
in the table are 
values of standard 
deviation used 
at each scale of 
each octave. For 
example the  
standard  
deviation used in 
scale 2 of octave 1 
is ks1, which is 
equal to 1.0.  
(The images 
of octave 1 are 
shown slightly 
overlapped to 
fit in the figure 
space.)
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full. As they move along a conveyor line past an 
automatic filling and capping station, the bottles 
appear as shown in the following image. A bottle 
is considered imperfectly filled when the level 
of the liquid is below the midway point between 
the bottom of the neck and the shoulder of the 
bottle. The shoulder is defined as the intersection 
of the sides and slanted portions of the bottle. 
The bottles move at a high rate of speed, but the 
company has an imaging system equipped with 
an illumination flash front end that effectively 
stops motion, so you will be given images that 
look very close to the sample shown here. Based 
on the material you have learned up to this point, 
propose a solution for detecting bottles that are 
not filled properly. State clearly all assumptions 
that you make and that are likely to impact the 
solution you propose.

12.42	 Having heard about your success with the 
bottle inspection problem, you are contacted by a 

fluids company that wishes to automate bubble-
counting in certain processes for quality control. 
The company has solved the imaging problem 
and can obtain 8-bit images of size 700 700×  pix-
els, such as the one shown in the figure below. 

Each image represents an area of 7 2cm . The 
company wishes to do two things with each 
image: (1) Determine the ratio of the area occu-
pied by bubbles to the total area of the image; 
and (2) count the number of distinct bubbles. 
Based on the material you have learned up to 
this point, propose a solution to this problem. In 
your report, state the physical dimensions of the 
smallest bubble your solution can detect. State 
clearly all assumptions that you make and that 
are likely to impact the solution you propose.

Projects 

MATLAB solutions to the projects marked with an asterisk (*) are in the DIP4E Student Support Package (consult 
the book website: www.ImageProcessingPlace.com).

12.1	 Boundary tracing.

(a) *	Write a function B = boundaryTracer4e(I,dir) that 
traces the boundaries of multiple objects in 
binary image I using 8-connectivity. The back-
ground pixels in I must be 0. If dir = 'cw' the 
boundary is traced in the clockwise direc-
tion (this is the default). If dir = 'ccw' the 
boundary is traced in the counterclockwise 
direction. In either case, tracing starts at the 
uppermost-leftmost point in each object [see 
part (b)]. B is a cell array with P cells, where 
P is the number of objects in I. Each cell of B 
is an np × 2  matrix, each row of which con-
tains the coordinates of one boundary point, 

and np  is the total number of points. The key 
usefulness of this algorithm is that it returns 
boundary points as an ordered sequence in 
a specified direction.

(b)	 Write a function ulp = uppermostLeftmost4e(b) 
that finds the uppermost-leftmost point 
in a boundary whose 2-D coordinates are 
given in np × 2  array b. In the output, ulp is 
a 1 2×  vector containing the ( , )x y  coordi-
nates of the uppermost-leftmost point in b. 
As discussed in Section 12.3, the uppermost-
leftmost point has some very important prop-
erties that are useful for setting the starting 
point of boundary processing algorithms.
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13 Image Pattern Classification

Preview
We conclude our coverage of digital image processing with an introduction to techniques for image 
pattern classification. The approaches developed in this chapter are divided into three principal catego-
ries: classification by prototype matching, classification based on an optimal statistical formulation, and 
classification based on neural networks. The first two approaches are used extensively in applications in 
which the nature of the data is well understood, leading to an effective pairing of features and classifier 
design. These approaches often rely on a great deal of engineering to define features and elements of a 
classifier. Approaches based on neural networks rely less on such knowledge, and lend themselves well 
to applications in which pattern class characteristics (e.g., features) are learned by the system, rather 
than being specified a priori by a human designer. The focus of the material in this chapter is on prin-
ciples, and on how they apply specifically in image pattern classification.

Upon completion of this chapter, readers should:
	 Understand the meaning of patterns and pat-

tern classes, and how they relate to digital 
image processing.

	 Be familiar with the basics of minimum-dis-
tance classification. 

	 Know how to apply image correlation tech-
niques for template matching.

	 Understand the concept of string matching.

	 Be familiar with Bayes classifiers.

	 Understand perceptrons and their history.

	 Be familiar with the concept of learning from 
training samples.

	 Understand neural network architectures. 

	 Be familiar with the concept of deep learning 
in fully connected and deep convolutional neu-
ral networks. In particular, be familiar with the 
importance of the latter in digital image pro-
cessing.

One of the most interesting aspects of the world is that it can be  
considered to be made up of patterns.

A pattern is essentially an arrangement. It is characterized by  
the order of the elements of which it is made, rather than by the  
intrinsic nature of these elements.

Norbert Wiener
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1050    Chapter 13  Image Pattern Classification

13.1 	BACKGROUND  

Humans possess the most sophisticated pattern recognition capabilities in the known 
biological world. By contrast, the capabilities of current recognition machines pale 
in comparison with tasks humans perform routinely, from being able to interpret the 
meaning of complex images, to our ability for generalizing knowledge stored in our 
brains. But recognition machines play an important, sometimes even crucial role in 
everyday life. Imagine what modern life would be like without machines that read 
barcodes, process bank checks, inspect the quality of manufactured products, read 
fingerprints, sort mail, and recognize speech. 

In image pattern recognition, we think of a pattern as a spatial arrangement of 
features. A pattern class is a set of patterns that share some common properties. Pat-
tern recognition by machine encompasses techniques for automatically assigning 
patterns to their respective classes. That is, given a pattern or sets of patterns whose 
class is unknown, the job of a pattern recognition system is to assign a class label to 
each of its input patterns.

There are four main stages involved in recognition: (1) sensing, (2) preprocessing, 
(3) feature extraction, and (4) classification. In terms of image processing, sensing is 
concerned with generating signals in a spatial (2-D) or higher-dimensional format. 
We covered numerous aspects of image sensing in Chapter 1. Preprocessing deals 
with techniques for tasks such as noise reduction, enhancement, restoration, and 
segmentation, as discussed in earlier chapters. You learned about feature extraction 
in Chapters 12. Classification, the focus of this chapter, deals with using a set of fea-
tures as the basis for assigning class labels to unknown input image patterns.

In the following section, we will discuss three basic approaches used for image 
pattern classification: (1) classification based on matching unknown patterns against 
specified prototypes, (2) optimum statistical classifiers, and (3) neural networks. 
One way to characterize the differences between these approaches is in the level 
of “engineering” required to transform raw data into formats suitable for computer 
processing. Ultimately, recognition performance is determined by the discriminative 
power of the features used. 

In classification based on prototypes, the objective is to make the features so 
unique and easily detectable that classification itself becomes a simple task. A good 
example of this are bank-check processors, which use stylized font styles to simplify 
machine processing (we will discuss this application in Section 13.3). 

In the second category, classification is cast in decision-theoretic, statistical terms, 
and the classification approach is based on selecting parameters that can be shown 
to yield optimum classification performance in a statistical sense. Here, emphasis is 
placed on both the features used, and the design of the classifier. We will illustrate 
this approach in Section 13.4 by deriving the Bayes pattern classifier, starting from 
basic principles. 

In the third category, classification is performed using neural networks. As you 
will learn in Sections 13.5 and 13.6, neural networks can operate using engineered 
features too, but they have the unique ability of being able to generate, on their own, 
representations (features) suitable for recognition. These systems can accomplish 
this using raw data, without the need for engineered features. 

13.1
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One characteristic shared by the preceding three approaches is that they are 
based on parameters that must be either specified or learned from patterns that rep-
resent the recognition problem we want to solve. The patterns can be labeled, mean-
ing that we know the class of each pattern, or unlabeled, meaning that the data are 
known to be patterns, but the class of each pattern is unknown. A classic example 
of labeled data is the character recognition problem, in which a set of character 
samples is collected and the identity of each character is recorded as a label from 
the group 0 through 9 and a through z. An example of unlabeled data is when we are 
seeking clusters in a data set, with the aim of utilizing the resulting cluster centers as 
being prototypes of the pattern classes contained in the data.

When working with a labeled data, a given data set generally is subdivided into 
three subsets: a training set, a validation set, and a test set (a typical subdivision might 
be 50% training, and 25% each for the validation and test sets). The process by 
which a training set is used to generate classifier parameters is called training. In 
this mode, a classifier is given the class label of each pattern, the objective being to 
make adjustments in the parameters if the classifier makes a mistake in identify-
ing the class of the given pattern. At this point, we might be working with several 
candidate designs. At the end of training, we use the validation set to compare the 
various designs against a performance objective. Typically, several iterations of train-
ing/validation are required to establish the design that comes closest to meeting the 
desired objective. Once a design has been selected, the final step is to determine how 
it will perform “in the field.” For this, we use the test set, which consists of patterns 
that the system has never “seen” before. If the training and validation sets are truly 
representative of the data the system will encounter in practice, the results of train-
ing/validation should be close to the performance using the test set. If training/vali-
dation results are acceptable, but test results are not, we say that training/validation 

“over fit” the system parameters to the available data, in which case further work on 
the system architecture is required. Of course all this assumes that the given data are 
truly representative of the problem we want to solve, and that the problem in fact 
can be solved by available technology.

A system that is designed using training data is said to undergo supervised learn-
ing. If we are working with unlabeled data, the system learns the pattern classes 
themselves while in an unsupervised learning mode. In this chapter, we deal only 
with supervised learning. As you will see in this and the next chapter, supervised 
learning covers a broad range of approaches, from applications in which a system 
learns parameters of features whose form is fixed by a designer, to systems that uti-
lize deep learning and large sets of raw data sets to learn, on their own, the features 
required for classification. These systems accomplish this task without a human 
designer having to specify the features, a priori. 

After a brief discussion in the next section of how patterns are formed, and on 
the nature of patterns classes, we will discuss in Section 13.3 various approaches for 
prototype-based classification. In Section 13.4, we will start from basic principles 
and derive the equations of the Bayes classifier, an approach characterized by opti-
mum classification performance on an average basis. We will also discuss supervised 
training of a Bayes classifier based on the assumption of multivariate Gaussian 

Because the examples in 
this chapter are intended 
to demonstrate basic 
principles and are not 
large scale, we dispense 
with validation and 
subdivide the pattern 
data into training and 
test sets.

Generally, we associate 
the concept of deep 
learning with large sets 
of data. These ideas are 
discussed in more detail 
later in this section and 
next.
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1052    Chapter 13  Image Pattern Classification

distributions. Starting with Section 13.5, we will spend the rest of the chapter discuss-
ing neural networks. We will begin Section 13.5 with a brief introduction to percep-
trons  and some historical facts about machine learning. Then, we will introduce the 
concept of deep neural networks and derive the equations of backpropagation, the 
method of choice for training deep neural nets. These networks are well-suited for 
applications in which input patterns are vectors. In Section 13.6, we will introduce 
deep convolutional neural networks, which currently are the preferred approach 
when the system inputs are digital images. After deriving the backpropagation equa-
tions used for training convolutional nets, we will give several examples of appli-
cations involving classes of images of various complexities. In addition to working 
directly with image inputs, deep convolutional nets are capable of learning, on their 
own, image features suitable for classification. This is accomplished starting with raw 
image data, as opposed to the other classification methods discussed in Sections 13.3 
and 13.4, which rely on “engineered” features whose form, as noted earlier, is speci-
fied a priori by a human designer.

13.2 	PATTERNS AND PATTERN CLASSES  

In image pattern classification, the two principal pattern arrangements are quantita-
tive and structural. Quantitative patterns are arranged in the form of pattern vectors. 
Structural patterns typically are composed of symbols, arranged in the form of strings, 
trees, or, less frequently, as graphs. Most of the work in this chapter is based on pat-
tern vectors, but we will discuss structural patterns briefly at the end of this section, 
and give an example at the end of Section 13.3. 

PATTERN VECTORS

Pattern vectors are represented by lowercase letters, such as x, y, and z, and have 
the form

	 x =



















x

x

xn

1

2


	 (13-1)

where each component, xi , represents the ith feature descriptor, and n is the total 
number of such descriptors. We can express a vector in the form of a column, as 
in Eq. (13-1), or in the equivalent row form x = ( )x x xn

T
1 2, , , ,…  where T  indicates 

transposition. A pattern vector may be “viewed” as a point in n-dimensional Euclid-
ean space, and a pattern class may be interpreted as a “hypercloud” of points in this 
pattern space. For the purpose of recognition, we like for our pattern classes to be 
grouped tightly, and as far away from each other as possible. 

Pattern vectors can be formed directly from image pixel intensities by vector-
izing the image using, for example, linear indexing, as in Fig. 13.1. A more common 
approach is for pattern elements to be features. An early example is the work of 
Fisher [1936] who, close to a century ago, reported the use of what then was a new 

13.2

We discussed linear  
indexing in Section 2.4 
(see Fig. 2.22).
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Spectral band 1

Spectral band 2
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Images in spectral bands 1 3–

Images in spectral bands 4 6–

FIGURE 13.5
An example of  
pattern vectors 
based on  
properties of 
subimages. See 
Table 12.3 for an 
explanation of the 
components of x.
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FIGURE 13.6 Feature 
vectors with 
components that 
are invariant to 
transformations 
such as rotation, 
scaling, and  
translation. The 
vector compo-
nents are moment  
invariants. 
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FIGURE 13.7 Pattern (feature) vectors formed by concatenating corresponding pixels from a set of registered images. 
(Original images courtesy of NASA.)
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white dot the location of this maximum correlation value (in this case there was a unique match whose 
maximum value was 1), which we see corresponds closely with the location of the eye in Fig. 13.13(a).	

MATCHING SIFT FEATURES

We discussed the scale-invariant feature transform (SIFT) in Section 12.7. SIFT 
computes a set of invariant features that can be used for matching between known 
(prototype) and unknown images. The SIFT implementation in Section 12.7 yields 
128-dimensional feature vectors for each local region in an image. SIFT performs 
matching by looking for correspondences between sets of stored feature vector pro-
totypes and feature vectors computed for an unknown image. Because of the large 
number of features involved, searching for exact matches is computationally inten-
sive. Instead, the approach is to use a best-bin-first method that can identify the near-
est neighbors with high probability using only a limited amount of computation (see 
Lowe [1999], [2004]). The search is further simplified by looking for clusters of poten-
tial solutions using the generalized Hough transform proposed by Ballard [1981]. We 

ba
dc  

FIGURE 13.13
(a) 913 913×  
satellite image 
of Hurricane 
Andrew.  
(b) 31 31×   
template of the 
eye of the storm.  
(c) Correlation 
coefficient shown 
as an image (note 
the brightest 
point, indicated 
by an arrow). 
(d) Location of 
the best match 
(identified by the 
arrow). This point 
is a single pixel, 
but its size was 
enlarged to make 
it easier to see. 
(Original image 
courtesy of 
NOAA.)
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know from the discussion in Section 10.2 that the Hough transform simplifies looking 
for data patterns by utilizing bins that reduce the level of detail with which we look at 
a data set. We already discussed the SIFT algorithm in Section 12.7. The focus in this 
section is to further illustrate the capabilities of SIFT for prototype matching. 

Figure 13.14 shows the circuit board image we have used several times before. 
The small rectangle enclosing the rightmost connector on the top of the large image 
identifies an area from which an image of the connector was extracted. The small 
image is shown zoomed for clarity.  The sizes of the large and small images are shown 
in the figure caption. Figure 13.15 shows the keypoints found by SIFT, as explained 
in Section 12.7. They are visible as faint lines on both images. The zoomed view of 
the subimage shows them a little clearer. It is important to note that the keypoints 
for the image and subimage were found independently by SIFT.  The large image 
had 2714 keypoints, and the small image had 35. 

Figure 13.16 shows the matches between keypoints found by SIFT. A total of 41 
matches were found between the two images. Because there are only 35 keypoints 

FIGURE 13.15
Keypoints found 
by SIFT. The 
large image has 
2714 keypoints 
(visible as faint 
gray lines). The 
subimage has 35 
keypoints. This is 
a separate image, 
and SIFT found 
its keypoints inde-
pendently of the 
large image. The 
zoomed section is 
shown for clarity.

FIGURE 13.14
Circuit board 
image of size 
948 915×  pixels, 
and a subimage 
of one of the 
connectors. The 
subimage is of size 
212 128×  pixels, 
shown zoomed 
on the right for 
clarity. (Original 
image courtesy of 
Mr. Joseph E.  
Pascente, Lixi, 
Inc.)
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13.4 	OPTIMUM (BAYES) STATISTICAL CLASSIFIERS  

In this section, we develop a probabilistic approach to pattern classification. As is 
true in most fields that deal with measuring and interpreting physical events, prob-
ability considerations become important in pattern recognition because of the ran-
domness under which pattern classes normally are generated. As shown in the fol-
lowing discussion, it is possible to derive a classification approach that is optimal in 
the sense that, on average, it yields the lowest probability of committing classifica-
tion errors (see Problem 13.12).

DERIVATION OF THE BAYES CLASSIFIER

The probability that a pattern vector x comes from class ci  is denoted by p ci x( ). If 
the pattern classifier decides that x came from class cj  when it actually came from ci  
it incurs a loss (to be defined shortly), denoted by Lij . Because pattern x may belong 
to any one of Nc  possible classes, the average loss incurred in assigning x to class cj  is

	 r L p cj kj
k

N

k

c

x x( ) = ( )
=

∑
1

	 (13-16)

Quantity rj( )x  is called the conditional average risk or loss in decision-theory termi-
nology.

We know from Bayes’ rule (see Section 2.6) that p a b p a p b a p b( ) ( ) ( ) ( ),= [ ]  so 
we can write Eq. (13-16) as

	 r
p

L p c P cj kj
k

N

k k

c

x
x

x( ) = ( ) ( ) ( )
=

∑1

1

	 (13-17)

where p ckx( ) is the probability density function (PDF) of the patterns from class 
ck , and P ck( ) is the probability of occurrence of class ck (sometimes P ck( ) is referred 
to as the a priori, or simply the prior, probability). Because 1 p( )x  is positive and 
common to all the r j Nj cx( ) =, , , , ,1 2 …  it can be dropped from Eq. (13-17) without 
affecting the relative order of these functions from the smallest to the largest value. 
The expression for the average loss then reduces to

	 r L p c P cj kj
k

N

k k

c

x x( ) = ( ) ( )
=

∑
1

	 (13-18)

Given an unknown pattern, the classifier has Nc  possible classes from which to 
choose. If the classifier computes r r rNc1 2( ), ( ), , ( )x x x…  for each pattern x and 
assigns the pattern to the class with the smallest loss, the total average loss with 
respect to all decisions will be minimum. The classifier that minimizes the total 
average loss is called the Bayes classifier. This classifier assigns an unknown pat-
tern x to class ci  if r ri j( ) ( )x x<  for j N j ic= ≠1 2, , , ; .…  In other words, x is assigned 
to class ci  if

	 L p c P c L p c P cki k
k

N

k qj q q
q

Nc c

x x( ) ( ) < ( ) ( )
= =

∑ ∑
1 1

	 (13-19)

13.4
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The inverse of this matrix is

	 C C1
1
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8 4 4
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4 4 8

− −= =
− −

−
−

















Next, we obtain the decision functions. Equation (13-34) applies because the covariance matrices are 
equal, and we are assuming that the classes are equally likely:

	 dj
T

j j
T

jx x C m m C m( ) = −− −1 11
2

Carrying out the vector-matrix expansion, we obtain the two decision functions:

	 d x d x x x1 1 2 1 2 34 1 5 4 8 8 5 5x x( ) = − ( ) = − + + −. .and

The decision boundary separating the two classes is then

	 d d x x x1 2 1 2 38 8 8 4 0x x( ) − ( ) = − − + =

Figure 13.20 shows a section of this planar surface. Note that the classes were separated effectively.

EXAMPLE 13.6 :  Classification of multispectral data using a Bayes classifier.

As discussed in Sections 1.3 and 12.5, a multispectral scanner responds to selected bands of the electro-
magnetic energy spectrum, such as the bands: 0.45– 0.52, 0.53– 0.61, 0.63– 0.69, and 0.78– 0.90 microns. 
These ranges are in the visible blue, visible green, visible red, and near infrared bands, respectively. A 
region on the ground scanned using these multispectral bands produces four digital images of the region, 

x3

x1

(1, 0, 0)

(1, 0, 1)

(0, 0, 0)

(1, 1, 1)

(0, 0, 1)
(0, 1, 1)

(0, 1, 0)

(1, 1, 0)

x2

1c∈

2c∈

FIGURE 13.20
Two simple 
pattern classes 
and the portion 
of their Bayes 
decision bound-
ary (shaded) that 
intersects the 
cube.
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ba c
ed f
hg i

FIGURE 13.21  Bayes classification of multispectral data. (a)–(d) Images in the visible blue, visible green, visible red, 
and near infrared wavelength bands. (e) Masks for regions of water (labeled 1), urban development (labeled 2), 
and vegetation (labeled 3). (f) Results of classification; the black dots denote points classified incorrectly. The other 
(white) points were classified correctly. (g) All image pixels classified as water (in white). (h) All image pixels clas-
sified as urban development (in white). (i) All image pixels classified as vegetation (in white).
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Training Patterns Test Patterns

Class
No. of 

Samples

Classified into Class % 
Correct Class

No. of 
Samples

Classified into Class % 
Correct1 2 3 1 2 3

1 484 482 2 0 99.6 1 483 478 3 2 98.9

2 933 0 885 48 94.9 2 932 0 880 52 94.4

3 483 0 19 464 96.1 3 482 0 16 466 96.7

TABLE 13.1
Bayes classification of multispectral image data. Classes 1, 2, and 3 are water, urban, and vegetation, respectively.

have mentioned previously, estimating these densities is not a trivial task. If assump-
tions have to be made (e.g., as in assuming Gaussian densities), then the degree of 
optimality achieved in classification depends on how close the assumptions are to 
reality.

13.5 	NEURAL NETWORKS AND DEEP LEARNING  

The principal objectives of the material in this section and in Section 13.6 are to 
present an introduction to deep neural networks, and to derive the equations that 
are the foundation of deep learning. We will discuss two types of networks. In this 
section, we focus attention on multilayer, fully connected neural networks, whose 
inputs are pattern vectors of the form introduced in Section 13.2. In Section 13.6, we 
will discuss convolutional neural networks, which are capable of accepting images 
as inputs. We follow the same basic approach in presenting the material in these two 
sections. That is, we begin by developing the equations that describe how an input is 
mapped through the networks to generate the outputs that are used to classify that 
input. Then, we derive the equations of backpropagation, which are the tools used 
to train both types of networks. We give examples in both sections that illustrate the 
power of deep neural networks and deep learning for solving complex pattern clas-
sification problems.

BACKGROUND

The essence of the material that follows is the use of a multitude of elemental non-
linear computing elements (called artificial neurons), organized as networks whose 
interconnections are similar in some respects to the way in which neurons are inter-
connected in the visual cortex of mammals. The resulting models are referred to 
by various names, including neural networks, neurocomputers, parallel distributed 
processing models, neuromorphic systems, layered self-adaptive networks, and con-
nectionist models. Here, we use the name neural networks, or neural nets for short. 
We use these networks as vehicles for adaptively learning the parameters of decision 
functions via successive presentations of training patterns.

Interest in neural networks dates back to the early 1940s, as exemplified by the 
work of McCulloch and Pitts [1943], who proposed neuron models in the form of 

13.5
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binary thresholding devices, and stochastic algorithms involving sudden 0–1 and 1–0 
changes of states, as the basis for modeling neural systems. Subsequent work by 
Hebb [1949] was based on mathematical models that attempted to capture the con-
cept of learning by reinforcement or association.

During the mid-1950s and early 1960s, a class of so-called learning machines origi-
nated by Rosenblatt [1959, 1962] caused a great deal of excitement among research-
ers and practitioners of pattern recognition. The reason for the interest in these 
machines, called perceptrons, was the development of mathematical proofs showing 
that perceptrons, when trained with linearly separable training sets (i.e., training sets 
separable by a hyperplane), would converge to a solution in a finite number of itera-
tive steps. The solution took the form of parameters (coefficients) of hyperplanes 
that were capable of correctly separating the classes represented by patterns of the 
training set.

Unfortunately, the expectations following discovery of what appeared to be a 
well-founded theoretical model of learning soon met with disappointment. The 
basic perceptron, and some of its generalizations, were inadequate for most pattern 
recognition tasks of practical significance. Subsequent attempts to extend the power 
of perceptron-like machines by considering multiple layers of these devices lacked 
effective training algorithms, such as those that had created interest in the percep-
tron itself. The state of the field of learning machines in the mid-1960s was sum-
marized by Nilsson [1965]. A few years later, Minsky and Papert [1969] presented 
a discouraging analysis of the limitation of perceptron-like machines. This view was 
held as late as the mid-1980s, as evidenced by comments made by Simon [1986]. In 
this work, originally published in French in 1984, Simon dismisses the perceptron 
under the heading “Birth and Death of a Myth.”

More recent results by Rumelhart, Hinton, and Williams [1986] dealing with the 
development of new training algorithms for multilayers of perceptron-like units 
have changed matters considerably. Their basic method, called backpropagation 
(backprop for short), provides an effective training method for multilayer networks. 
Although this training algorithm cannot be shown to converge to a solution in the 
sense of the proof for the single-layer perceptron, backpropagation is capable of 
generating results that have revolutionized the field of pattern recognition. 

The approaches to pattern recognition we have studied up to this point rely on 
human-engineered techniques to transform raw data into formats suitable for com-
puter processing. The methods of feature extraction we studied in Chapter 12 are 
examples of this. Unlike these approaches, neural networks can use backpropaga-
tion to automatically learn representations suitable for recognition, starting with 
raw data. Each layer in the network “refines” the representation into more abstract 
levels. This type of multilayered learning is commonly referred to as deep learning, 
and this capability is one of the underlying reasons why applications of neural net-
works have been so successful. As we noted at the beginning of this section, practical 
implementations of deep learning generally are associated with large data sets.

Of course, these are not “magical” systems that assemble themselves. Human 
intervention is still required for specifying parameters such as the number of layers, 
the number of artificial neurons per layer, and various coefficients that are problem 
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EXAMPLE 13.8 :  Using the perceptron to classify two sets of iris data measurements.

In Fig. 13.10 we showed a reduced set of the iris database in two dimensions, and mentioned that the 
only class that was separable from the others is the class of Iris setosa. As another illustration of the 
perceptron, we now find the full decision boundary between the Iris setosa and the Iris versicolor classes. 
As we mentioned when discussing Fig. 13.10, these are 4-D data sets. Letting a = 0 5. , and starting with 
all parameters equal to zero, the perceptron converged in only four epochs to the solution weight vector 
w = − −[ . , . , . , . , . ] ,0 65 2 05 2 60 1 10 0 50 T  where the last element is wn+1.

In practice, linearly separable pattern classes are rare, and a significant amount 
of research effort during the 1960s and 1970s went into developing techniques for 
dealing with nonseparable pattern classes. With recent advances in neural networks, 
many of those methods have become items of mere historical interest, and we will 
not dwell on them here. However, we mention briefly one approach because it is rel-
evant to the discussion of neural networks in the next section. The method is based 
on minimizing the error between the actual and desired response at any training step.

Let r denote the response we want the perceptron to have for any pattern during 
training. The output of our perceptron is either +1 or −1, so these are the two pos-
sible values that r can have. We want to find the augmented weight vector, w,  that 
minimizes the mean squared error (MSE) between the desired and actual responses 
of the perceptron. The function should be differentiable and have a unique mini-
mum. The function of choice for this purpose is a quadratic of the form

	 E r T( )w w= −( )1
2

2
x 	 (13-47)

where E is our error measure, w  is the weight vector we are seeking, x  is any pattern 
from the training set, and r is the response we desire for that pattern. Both w  and x  
are augmented vectors. 

The 1 ⁄ 2 is used to cancel 
out the 2 that will result 
from taking the deriva-
tive of this expression. 
Also, remember that wTx 
is a scalar. 

0 1 2 3

1

2

3

x1

0
1

2
3

1
2

3 x1

x2

1 2 1 2( ) ( , ) 3d d x x x x= = + −x

1 2 3x x+ −

1 2 3 0x x+ − =

+

1 2 3 0x x+ − =

x2

ba

FIGURE 13.24
(a) Segment 
of the decision 
boundary learned 
by the perceptron 
algorithm.  
(b) Section of the 
decision surface. 
The decision 
boundary is the 
intersection of the 
decision surface 
with the x x1 2 -
plane.
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We find the minimum of E( )w  using an iterative gradient descent algorithm, whose 
form is

	 w w
w

w
w w

k k
E

k

+( ) = −
∂ ( )

∂










= ( )
1 ( ) a 	 (13-48)

where the starting weight vector is arbitrary, and a > 0. 
Figure 13.25(a) shows a plot of E for scalar values, w  and x, of w  and x. We want 

to move w  incrementally so E( )w  approaches a minimum, which implies that E 
should stop changing or, equivalently, that ∂ ∂ =E( ) .w w 0  Equation (13-48) does 
precisely this. If ∂ ∂ >E( ) ,w w 0  a portion of this quantity (determined by the value 
of the learning increment a) is subtracted from w( )k  to create a new, updated value 
w( ),k + 1  of the weight. The opposite happens if ∂ ∂ <E( ) .w w 0  If ∂ ∂ =E( ) ,w w 0  
the weight is unchanged, meaning that we have arrived at a minimum, which is the 
solution we are seeking. The value of a  determines the relative magnitude of the 
correction in weight value. If a  is too small, the step changes will be correspond-
ingly small and the weight would move slowly toward convergence, as Fig. 13.25(a) 
illustrates. On the other hand, choosing a  too large could cause large oscillations 
on either side of the minimum, or even become unstable, as Fig. 13.25(b) illustrates. 
There is no general rule for choosing a. However, a logical approach is to start small 
and experiment by increasing a  to determine its influence on a particular set of 
training patterns. Figure 13.25(c) shows the shape of the error function for two vari-
ables.

Because the error function is given analytically and it is differentiable, we can 
express Eq. (13-48) in a form that does not require computing the gradient explicitly 
at every step. The partial of E( )w  with respect to w  is

	
∂ ( )

∂
= − −( )E

r Tw

w
w x x 	 (13-49)

Note that the right side 
of this equation is the 
gradient of E(w).
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FIGURE 13.25 Plots of E as a function of wx  for r = 1. (a) A value of a  that is too small can slow down convergence. 
(b) If a  is too large, large oscillations or divergence may occur. (c) Shape of the error function in 2-D.
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Natural questions at this point are: Can more than one perceptron solve the XOR 
problem? If so, what is the minimum number of units required? We know that a 
single perceptron can implement one straight line, and we need to implement two 
lines, so the obvious answers are: yes to the first question, and two units to the sec-
ond. Figure 13.28(a) shows the solution for two variables, which requires a total of 
six coefficients because we need two lines. The solution coefficients are such that, 
for either of the two patterns from class c1, one output is true (1) and the other is 
false (0). The opposite condition must hold for either pattern from class c2. This 
solution requires that we analyze two outputs. If we want to implement the truth 
table, meaning that a single output should give the same response as the XOR func-
tion [the third column in Fig. 13.27(a)], then we need one additional perceptron. 
Figure 13.28(b) shows the architecture for this solution. Here, one perceptron in the 
first layer maps any input from one class into a 1, and the other perceptron maps a 
pattern from the other class into a 0. This reduces the four possible inputs into two 
outputs, which is a two-point problem. As you know from Fig. 13.24, a single percep-
tron can solve this problem. Therefore, we need three perceptrons to implement the 
XOR table, as in Fig. 13.28(b).

With a little work, we could determine by inspection the coefficients needed to 
implement either solution in Fig. 13.28. However, rather than dwell on that, we focus 
attention in the following section on a more general, layered architecture, of which 
the XOR solution is a trivial, special case.

MULTILAYER FEEDFORWARD NEURAL NETWORKS

In this section, we discuss the architecture and operation of multilayer neural net-
works, and derive the equations of backpropagation used to train them. We then 
give several examples illustrating the capabilities of neural nets

Model of an Artificial Neuron 

Neural networks are interconnected perceptron-like computing elements called 
artificial neurons. These neurons perform the same computations as the perceptron, 
but they differ from the latter in how they process the result of the computations. 
As illustrated in Fig. 13.23, the perceptron uses a “hard” thresholding function that 
outputs two values, such as +1 and −1, to perform classification. Suppose that in a 
network of perceptrons, the output before thresholding of one of the perceptrons 
is infinitesimally greater than zero. When thresholded, this very small signal will be 
turned into a +1. But a similarly small signal with the opposite sign would cause 
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FIGURE 13.28
(a) Minimum  
perceptron solution 
to the XOR problem 
in 2-D. (b) A solution 
that implements the 
XOR truth table in 
Fig. 13.27(a).
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a large swing in value from +1 to −1. Neural networks are formed from layers of 
computing units, in which the output of one unit affects the behavior of all units fol-
lowing it. The perceptron’s sensitivity to the sign of small signals can cause serious 
stability problems in an interconnected system of such units, making perceptrons 
unsuitable for layered architectures.

The solution is to change the characteristic of the activation function from a hard-
limiter to a smooth function. Figure 13.29 shows an example based on using the 
activation function

	 h z
e z( ) =

+ −
1

1
	 (13-51)

where z is the result of the computation performed by the neuron, as shown in Fig. 
13.29. Except for more complicated notation, and the use of a smooth function rath-
er than a hard threshold, this model performs the same sum-of-products operations 
as in Eq. (13-36) for the perceptron. Note that the bias term is denoted by b instead 
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FIGURE 13.30 Various activation functions. (a) Sigmoid. (b) Hyperbolic tangent (also has a sigmoid shape, but it is 
centered about 0 in both dimensions). (c) Rectifier linear unit (ReLU).
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FIGURE 13.29  
Model of an 
artificial neuron, 
showing all the 
operations it 
performs. The  
“” is used to  
denote a  
particular layer in 
a layered  
network.
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sometimes you will see the words “shallow” and “deep” used subjectively to denote 
networks with a “few” and with “many” layers, respectively.

We used the notation in Eq. (13-37) to label all the inputs and weights of a per-
ceptron. In a neural network, the notation is more complicated because we have to 
account for neuron weights, inputs, and outputs within a layer, and also from layer 
to layer. Ignoring layer notation for a moment, we denote by wij  the weight that 
associates the link connecting the output of neuron j to the input of neuron i. That is, 
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Layer 1
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Layer L
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Hidden Layers
(The number of nodes in 
the hidden layers can be 

different from layer to layer )
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FIGURE 13.31
General model 
of a feedforward, 
fully connected 
neural net. The 
neuron is the 
same as in  
Fig. 13.29. Note 
how the output of 
each neuron goes 
to the input of all 
neurons in the 
following layer, 
hence the name 
fully connected 
for this type of 
architecture.
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size n np−1 × , B( )  is of size n np × , and A( )  is of size n np × . Table 13.2 summa-
rizes the matrix formulation for the forward pass through a fully connected, feed-
forward neural network for all pattern vectors. Implementing these operations in a 
matrix-oriented language like MATLAB is a trivial undertaking. Performance can 
be improved significantly by using dedicated hardware, such as one or more graphics 
processing units (GPUs). 

The equations in Table 13.2 are used to classify each of a set of patterns into one 
of nL pattern classes. Each column of output matrix A( )L  contains the activation 
values of the nL output neurons for a specific pattern vector. The class membership 
of that pattern is given by the location of the output neuron with the highest activa-
tion value. Of course, this assumes we know the weights and biases of the network. 
These are obtained during training using backpropagation, as we explain next.

USING BACKPROPAGATION TO TRAIN DEEP NEURAL NETWORKS

A neural network is defined completely by its weights, biases, and activation func-
tion. Training a neural network refers to using one or more sets of training patterns 
to estimate these parameters. During training, we know the desired response of 
every output neuron of a multilayer neural net. However, we have no way of know-
ing what the values of the outputs of hidden neurons should be. In this section, we 
develop the equations of backpropagation, the tool of choice for finding the value 
of the weights and biases in a multilayer network. This training by backpropaga-
tion involves four basic steps: (1) inputting the pattern vectors; (2) a forward pass 
through the network to classify all the patterns of the training set and determine the 
classification error; (3) a backward (backpropagation) pass that feeds the output 
error back through the network to compute the changes required to update the 
parameters; and (4) updating the weights and biases in the network. These steps are 
repeated until the error reaches an acceptable level. We will provide a summary of 
all principal results derived in this section at the end of the discussion (see Table 
13.3). As you will see shortly, the principal mathematical tool needed to derive the 
equations of backpropagation is the chain rule from basic calculus.

The Equations of Backpropagation

Given a set of training patterns and a multilayer feedforward neural network archi-
tecture, the approach in the following discussion is to find the network parameters 

Step Description Equations

Step 1 Input patterns A X( )1 =

Step 2 Feedforward For  …= 2, , ,L  compute Z W A B( ) ( ) ( ) ( )   = − +1  and A Z( ) ( ) = ( )h

Step 3 Output A Z( ) ( )L h L= ( )

TABLE 13.2
Steps in the matrix computation of a forward pass through a fully connected, feedforward multilayer neural net.
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Figure 13.35 shows the neural net based on these values.
When presented with the four training patterns after training was completed, the results at the two 

outputs should have been equal to the values in R. Instead, the values were close:

	 A( )
.

3
0 010

=










0.987 0.990 0.010 0.010

0.013 0.990 0.990

These weights and biases, along with the sigmoid activation function, completely specify our trained 
neural network. To test its performance with values other than the training patterns, which we know it 
classifies correctly, we created a set of 2-D test patterns by subdividing the pattern space into increments 
of 0.1, from −1 5.  to 1.5 in both directions, and classified the resulting points using a forward pass through 

x1

x2

4.792 4.792
(2)

4.486 4.486
 

=  
 

W

4.590
(2)

4.486
 

=  − 
b

9.180 9.429
(3)

9.178 9.427

− 
=  − 

W

4.420
(3)

4.419
 

=  − 
b

FIGURE 13.35
Neural net used 
to solve the XOR 
problem, showing 
the weights and 
biases learned 
via training using 
the equations in 
Table 13.3. 
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0.0
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0.0
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FIGURE 13.34 Neural net solution to the XOR problem. (a) Four patterns in an XOR arrangement. (b) Results of 
classifying additional points in the range −1 5.  to 1 5.  in increments of 0.1. All solid points were classified as belong-
ing to class c1 and all open circles were classified as belonging to class c2 . Together, the two lines separating the 
regions constitute the decision boundary [compare with Fig. 13.27(b)]. (c) Decision surface, shown as a mesh. The 
decision boundary is the pair of dashed, white lines in the intersection of the surface and a plane perpendicular to 
the vertical axis, intersecting that axis at 0.5. (Figure (c) is shown in a different perspective than (b) in order to make 
all four patterns visible.)
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and vegetation. Figure 13.37 shows the four multispectral images used in the experiment, the masks used 
to extract the training and test samples, and the approach used to generate the 4-D pattern vectors.

As in Example 13.6, we extracted a total of 1900 training pattern vectors and 1887 test pattern vectors 
(see Table 13.1 for a listing of vectors by class). After preliminary runs with the training data to establish 
that the mean squared error was decreasing as a function of epoch, we determined that a neural net 
with one hidden layer of two nodes achieved stable learning with a = 0 001.  and 1,000 training epochs. 
Keeping those two parameters fixed, we varied the number of nodes in the internal layer, as listed in 
Table 13.4. The objective of these preliminary runs was to determine the smallest neural net that would 
give the best recognition rate. As you can see from the results in the table, [4 3 3] is clearly the architec-
ture of choice in this case. Figure 13.38 shows this neural net, along with the parameters learned during 
training.

After the basic architecture was defined, we kept the learning rate constant at a = 0 001.  and varied the 
number of epochs to determine the best recognition rate with the architecture in Fig. 13.38. Table 13.5 
shows the results. As you can see, the recognition rate improved slowly as a function of epoch, reach-
ing a plateau at around 50,000 epochs. In fact, as Fig. 13.39 shows, the MSE decreased quickly up to 
about 800 training epochs and decreased slowly after that, explaining why the correct recognition rate 
changed so little after about 2,000 epochs. Similar results were obtained with a = 0 01. , but decreasing 

(a) Images in spectral bands 1  4 and binary mask used to extract training samples

Spectral band 1

Spectral band 2

Spectral band 3

Spectral band 4

1

2

3

4

x

x

x

x

 
 
 =  
 
  

x

(b) Approach used to extract pattern vectors

–

FIGURE 13.37 (a) Starting with the leftmost image: blue, green, red, near infrared, and binary mask images. In the 
mask, the lower region is for water, the center region is for the urban area, and the left mask corresponds to vegeta-
tion. All images are of size 512 512×  pixels. (b) Approach used for generating 4-D pattern vectors from a stack of 
the four multispectral images. (Multispectral images courtesy of NASA.)

Network  
Architecture

[4 2 3] [4 3 3] [4 4 3] [4 5 3] [4 2 2 3] [4 4 3 3] [4 4 4 3] [4 10 3 3] [4 10 10 3]

Recognition 
Rate

95.8% 96.2% 95.9% 96.1% 74.6% 90.8% 87.1% 84.9% 89.7%

TABLE 13.4
Recognition rate as a function of neural net architecture for a = 0 001.  and 1,000 training epochs. The network archi-
tecture is defined by the numbers in brackets. The first and last number inside each bracket refer to the number of 
input and output nodes, respectively. The inner entries give the number of nodes in each hidden layer.
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this parameter to a = 0 1.  resulted in a drop of the best correct recognition rate to 49.1%. Based on the 
preceding results, we used a = 0 001.  and 50,000 epochs to train the network.

The parameters in Fig. 13.38 were the result of training. The recognition rate for the training data 
using these parameters was 97%. We achieved a recognition rate of 95.6% on the test set using the same 
parameters. The difference between these two figures, and the 96.4% and 96.2%, respectively, obtained 
for the same data with the Bayes classifier (see Example 13.6), are statistically insignificant. 

The fact that our neural networks achieved results comparable to those obtained with the Bayes 
classifier is not surprising. It can be shown (Duda, Hart, and Stork [2001]) that a three-layer neural net, 
trained by backpropagation using a sum of errors squared criterion, approximates the Bayes decision 
functions in the limit, as the number of training samples approaches infinity. Although our training sets 
were small, the data were well behaved enough to yield results that are close to what theory predicts. 

13.6 	DEEP CONVOLUTIONAL NEURAL NETWORKS  

Up to this point, we have organized pattern features as vectors. Generally, this 
assumes that the form of those features has been specified (i.e., “engineered” by a 
human designer) and extracted from images prior to being input to a neural network 
(Example 13.13 is an illustration of this approach). But one of the strengths of neural 
networks is that they are capable of learning pattern features directly from training 
data. What we would like to do is input a set of training images directly into a neural 
network, and have the network learn the necessary features on its own. One way to 
do this would be to convert images to vectors directly by organizing the pixels based 
on a linear index (see Fig. 13.1), and then letting each element (pixel) of the linear 
index be an element of the vector. However, this approach does not utilize any spa-
tial relationships that may exist between pixels in an image, such as pixel arrange-
ments into corners, the presence of edge segments, and other features that may help 
to differentiate one image from another. In this section, we present a class of neural 
networks called deep convolutional neural networks (CNNs or ConvNets for short) 
that accept images as inputs and are ideally suited for automatic learning and image 
classification. In order to differentiate between CNNs and the neural nets we stud-
ied in Section 13.5, we will refer to the latter as “fully connected” neural networks. 

A BASIC CNN ARCHITECTURE

In the following discussion, we use a LeNet architecture (see references at the end of 
this chapter) to introduce convolutional nets. We do this for two main reasons: First, 
the LeNet architecture is reasonably simple to understand. This makes it ideal for 
introducing basic CNN concepts. Second, our real interest is in deriving the equa-
tions of backpropagation for convolutional networks, a task that is simplified by the 
intuitiveness of LeNets.

The CNN in Fig. 13.40 contains all the basic elements of a LeNet architecture, 
and we use it without loss of generality. A key difference between this architecture 
and the neural net architectures we studied in the previous section is that inputs to 
CNNs are 2-D arrays (images), while inputs to our fully connected neural networks 
are vectors. However, as you will see shortly, the computations performed by both 
networks are very similar: (1) a sum of products is formed, (2) a bias value is added, 

13.6

To simplify the explana-
tion of the CNN in 
Fig. 13.40, we focus 
attention initially on 
a single image input. 
Multiple input images 
are a trivial extension we 
will consider later in our 
discussion.
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13.6  Deep Convolutional Neural Networks    1111

(3) the result is passed through an activation function, and (4) the activation value 
becomes a single input to a following layer. 

Despite the fact that the computations performed by CNNs and fully connected 
neural nets are similar, there are some basic differences between the two, beyond 
their input formats being 2-D versus vectors. An important difference is that CNNs 
are capable of learning 2-D features directly from raw image data, as mentioned ear-
lier. Because the tools for systematically engineering comprehensive feature sets for 
complex image recognition tasks do not exist, having a system that can learn its own 
image features from raw image data is a crucial advantage of CNNs. Another major 
difference is in the way in which layers are connected. In a fully connected neural net, 
we feed the output of every neuron in a layer directly into the input of every neuron in 
the next layer. By contrast, in a CNN we feed into every input of a layer, a single value, 
determined by the convolution (hence the name convolutional neural net) over a 
spatial neighborhood in the output of the previous layer. Therefore, CNNs are not 
fully connected in the sense defined in the last section. Another difference is that the 
2-D arrays from one layer to the next are subsampled to reduce sensitivity to transla-
tional variations in the input. These differences and their meaning will become clear 
as we look at various CNN configurations in the following discussion.

Basics of How a CNN Operates

As noted above, the type of neighborhood processing in CNNs is spatial convolu-
tion. We explained the mechanics of spatial convolution in Fig. 3.36, and expressed 
it mathematically in Eq. (3-44). As that equation shows, convolution computes a 
sum of products between pixels and a set of kernel weights. This operation is car-
ried out at every spatial location in the input image. The result at each location 
( , )x y  in the input is a scalar value. Think of this value as the output of a neuron in 
a layer of a fully connected neural net. If we add a bias and pass the result through 
an activation function (see Fig. 13.29), we have a complete analogy between the 

We will discuss in the 
next subsection the exact 
form of neural computa-
tions in a CNN, and show 
they are equivalent in 
form to the computations 
performed by neurons in 
a fully connected neural 
net.
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FIGURE 13.40 A CNN containing all the basic elements of a LeNet architecture. Points A and B are specific values 
to be addressed later in this section. The last pooled feature maps are vectorized and serve as the input to a fully 
connected neural network. The class to which the input image belongs is determined by the output neuron with the 
highest value.
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and

	 a h zx y x y, ,( ) ( ) = ( ) 	 (13-92)

for  …= 1 2, , , ,Lc  where Lc  is the number of convolutional layers, and ax y, ( )  
denotes the values of pooled features in convolutional layer .  When  = 1,  

	 ax y, ( )0 = { }values of pixels in the input image(s) 	 (13-93)

When  = Lc ,

	 ( ),a Lx y c = values of pooled features in last layer of the CNNN{ } 	 (13-94)  

Note that   starts at 1 instead of 2, as we did in Section 13.5. The reason is that we are 
naming layers, as in “convolutional layer .” It would be confusing to start at convo-
lutional layer 2. Finally, we note that the pooling does not require any convolutions. 
The only function of pooling is to reduce the spatial dimensions of the feature map 
preceding it, so we do not include explicit pooling equations here.

Equations (13-91) through (13-94) are all we need to compute all values in a 
forward pass through the convolutional section of a CNN. As described in Fig. 13.40, 
the values of the pooled features of the last layer are vectorized and fed into a fully 
connected feedforward neural network, whose forward propagation is explained in 
Eqs. (13-54) and (13-55) or, in matrix form, in Table 13.2.

THE EQUATIONS OF BACKPROPAGATION USED TO TRAIN CNNs

As you saw in the previous section, the feedforward equations of a CNN are similar 
to those of a fully connected neural net, but with multiplication replaced by convo-
lution, and notation that reflects the fact that CNNs are not fully connected in the 
sense defined in Section 13.5. As you will see in this section, the equations of back-
propagation also are similar in many respects to those in fully connected neural nets.

As in the derivation of backpropagation in Section 13.5, we start with the defini-
tion of how the output error of our CNN changes with respect to each neuron in the 
network. The form of the error is the same as for fully connected neural nets, but 
now it is a function of x and y instead of j:

	 dx y
x y

E
z,

,

( )
( )




= ∂
∂

	 (13-95)

As in Section 13.5, we want to relate this quantity to dxy( ), + 1  which we again do 
using the chain rule:
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	 (13-96)
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significant variability in the characters—and this is just a small sampling of the 70,000 characters avail-
able for experimentation.

Figure 13.49 shows the architecture of the CNN we trained to recognize the ten digits in the MNIST 
database. We trained the system for 200 epochs using a = 1 0. . Figure 13.50 shows the training MSE as a 
function of epoch for the 60,000 training images in the MNIST database.

Training was done using mini batches of 50 images at a time to improve the learning rate (see the dis-
cussion in Section 13.7). We also classified all images of the training set and all images of the test set after 
each epoch of training. The objective of doing this was to see how quickly the system was learning the 
characteristics of the data. Figure 13.51 shows the results. A high level of correct recognition performance 
was achieved after relatively few epochs for both data sets, with approximately 98% correct recognition 
achieved after about 40 epochs. This is consistent with the training MSE in Fig. 13.50, which dropped 
quickly, then began a slow descent after about 40 epochs. Another 160 epochs of training were required 
for the system to achieve recognition of about 99.9%. These are impressive results for such a small CNN.

6 feature maps 
of size 24 � 24

6 pooled 
feature 
maps of 

size 12 � 12
Image of size 28 � 28

12
feature 
maps of 

size 8 � 8

12
pooled 
feature

maps of 
size 4 � 4 Fully connected

two-layer neural net

10 
output

 neurons

V
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to
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FIGURE 13.49  CNN used to recognize the ten digits in the MNIST database. The system was trained with 60,000 
numerical character images of the same size as the image shown on the left. This architecture is the same as the 
architecture we used in Fig. 13.42. (Image courtesy of NIST.)

FIGURE 13.48
Samples  
similar to those 
available in the 
NIST and MNIST  
databases. Each 
character  
subimage is 
of size 28 28×  
pixels.(Individual 
images courtesy 
of NIST.)
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FIGURE 13.54 Kernels of the second layer after 200 epochs of training, displayed as images of size 5 5× .  There are six 
inputs (pooled feature maps) into the second layer. Because there are twelve feature maps in the second layer, the 
CNN learned the weights of 6 12 72× =  kernels.

FIGURE 13.53
Kernels of the 
first layer after 
200 epochs of 
training, shown as 
images.

FIGURE 13.55
Results of a for-
ward pass for one 
digit image through 
the CNN in Fig. 
13.49 after training. 
The feature maps 
were generated 
using the kernels 
from Figs. 13.53 and 
13.54, followed by 
pooling. The neural 
net is the two-layer 
neural network 
from Fig. 13.49. The 
output high value 
(in white) indicates 
that the CNN rec-
ognized the input 
properly. (This 
figure is the same 
as Fig. 13.44.)
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FIGURE 13.56
Mini images 
of size 32 32×  
pixels,  
representative of 
the 50,000  
training and 
10,000 test images 
in the CIFAR-10 
database (the 10 
stands for ten 
classes). The class 
names are shown 
on the right. 
(Images courtesy 
of Pearson  
Education.)
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FIGURE 13.57
Training mean 
squared error 
as a function of 
the number of 
epochs for a train-
ing set of 50,000 
CIFAR-10 images.
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in the second layer is 6, and that the size of 
the pooling neighborhoods is again 2 2× . 
What are the dimensions of the vectors that 
result from vectorizing the last layer of the 
CNN? Assume that vectorization is done 
using linear indexing. 

13.31	 Suppose the input images to a CNN are padded 
to compensate for the size reduction caused by 
convolution and subsampling (pooling). Let P  
denote the thickness of the padding border, let V  
denote the width of the (square) input images, let 
S  denote the stride, and let F  denote the width of 
the (square) receptive field. 

(a)	 Show that the number, N,  of neurons in 
each row in the resulting feature map is

	 N
V P F

S
= + − +2

1

(b) *	How would you interpret a result using this 
equation that is not an integer?

13.32 *	Show the validity of Eq. (13-106).

13.33	 An experiment produces binary images of blobs 
that are nearly elliptical in shape, as the following 
example image shows. The blobs are of three siz-
es, with the average values of the principal axes 
of the ellipses being (1.3, 0.7), (1.0, 0.5), and (0.75, 
0.25). The dimensions of these axes vary ±10% 
about their average values. 

Develop an image processing system capable of 
rejecting incomplete or overlapping ellipses, then 
classifying the remaining single ellipses into one 
of the three given size classes. Show your solu-
tion in block diagram form, giving specific details 
regarding the operation of each block. Solve the 
classification problem using a minimum distance 
classifier, indicating clearly how you would go 
about obtaining training samples, and how you 
would use these samples to train the classifier.

13.34	 A factory mass-produces small American flags 
for sporting events. The quality assurance team 
has observed that, during periods of peak pro-
duction, some printing machines have a tendency 
to drop (randomly) between one and three stars 
and one or two entire stripes. Aside from these 
errors, the flags are perfect in every other way. 
Although the flags containing errors represent a 
small percentage of total production, the plant 
manager decides to solve the problem. After 
much investigation, she concludes that automatic 
inspection using image processing techniques is 
the most economical approach. The basic specifi-
cations are as follows: The flags are approximate-
ly 7.5 cm by 12.5 cm in size. They move length-
wise down the production line (individually, but 
with a ±15% variation in orientation) at approxi-
mately 50 cm/s, with a separation between flags of 
approximately 5 cm. In all cases, “approximately” 
means ± 5%. The plant manager employs you to 
design an image processing system for each pro-
duction line. You are told that cost and simplicity 
are important parameters in determining the via-
bility of your approach. Design a complete sys-
tem based on the model of Fig. 1.23. Document 
your solution (including assumptions and speci-
fications) in a brief (but clear) written report 
addressed to the plant manager. You can use any 
of the methods discussed in the book.

Projects 
MATLAB solutions to the projects marked with an asterisk (*) are in the DIP4E Student Support Package (consult 
the book website: www.ImageProcessingPlace.com). 

13.1	 Minimum-distance classifier.

(a)	 Write a function minDistClass4e that imple-
ments the minimum-distance classifier dis-
cussed in Section 13.3. Your function should 

have two modes of operation: 'train', in which 
the function computes the mean (prototype) 
vector of each class using a set of training 
patterns, and 'classify', in which the function 
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