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Preface

Thismanual containsdetailed solutionsto al problemsin Digital Image Processing, 2nd
Edition. We also include a suggested set of guidelines for using the book, and discuss
the use of computer projects designed to promote a deeper understanding of the subject
matter. The notation used throughout this manua corresponds to the notation used in
the text.

The decision of what material to cover in a course rests with the instructor, and it de-
pends on the purpose of the course and the background of the students. We have found
that the course outlines suggested here can be covered comfortably in the time frames
indicated when the course is being taught in an electrical engineering or computer sci-
ence curriculum. In each case, no prior exposure to image processing is assumed. We
give suggested guidelines for one-semester courses at the senior and first-year graduate
levels. It is possible to cover most of the book in atwo-semester graduate sequence.

The book was completely revised in this edition, with the purpose not only of updating
the material, but just as important, making the book a better teaching aid. To this
end, the instructor will find the new organization to be much more flexible and better
illustrated. Although the book is self contained, we recommend use of the companion
web site, where the student will find detailed solutions to the problems marked with a
dtar in the text, review material, suggested projects, and images from the book. One of
the principa reasons for creating the web site was to free the instructor from having to
prepare materials and handouts beyond what is required to teach from the book.

Computer projects such as those described in the web site are an important part of
a course on image processing. These projects give the student hands-on experience
with algorithm implementation and reinforce the material covered in the classroom.
The projects suggested at the web site can be implemented on almost any reasonably-
equipped multi-user or personal computer having a hard copy output device.



1 Introduction

The purpose of this chapter isto present suggested guidelinesfor teaching materia from
this book at the senior and first-year graduate level. We also discuss use of the book
web site.  Although the book is totally self-contained, the web site offers, among other
things, complementary review material and computer projects that can be assigned in
conjunction with classroom work. Detailed solutions to al problems in the book aso
are included in the remaining chapters of this manual .

Teaching Features of the Book

Undergraduate programs that offer digital image processing typically limit coverage to
one semester. Graduate programs vary, and can include one or two semesters of the ma-
terial. In the following discussion we give genera guidelines for a one-semester senior
course, a one-semester graduate course, and a full-year course of study covering two
semesters. We assume a 15-week program per semester with three lectures per week.
In order to provide flexibility for exams and review sessions, the guidelines discussed
in the following sections are based on forty, 50-minute lectures per semester. The back-
ground assumed on the part of the student is senior-level preparation in mathematical
analysis, matrix theory, probability, and computer programming.

The suggested teaching guidelines are presented in terms of general objectives, and not
as time schedules. There is so much variety in the way image processing materia is
taught that it makes little sense to attempt a breakdown of the material by class period.
In particular, the organization of the present edition of the book is such that it makes it
much easier than before to adopt significantly different teaching strategies, depending
on course objectives and student background. For example, it is possible with the new
organization to offer a course that emphasizes spatia techniques and covers little or no
transform material. Thisis not something we recommend, but it is an option that often
isattractivein programsthat placelittle emphasis on the signal processing aspects of the
field and prefer to focus more on the implementation of spatial techniques.
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The companion web site
www.prenhall.com /gonzalezwoods
or

www.imageprocessingbook.com

isavaluable teaching aid, in the sense that it includes material that previously was cov-
ered in class. In particular, the review material on probability, matrices, vectors, and
linear systems, was prepared using the same notation as in the book, and is focused on
areas that are directly relevant to discussions in the text. This allows the instructor to
assign the material as independent reading, and spend no more than one total lecture pe-
riod reviewing those subjects. Another major feature is the set of solutionsto problems
marked with a star in the book. These solutions are quite detailed, and were prepared
with the idea of using them as teaching support. The on-line availability of projects
and digital images frees the instructor from having to prepare experiments, data, and
handouts for students. The fact that most of the images in the book are available for
downloading further enhances the value of the web site as a teaching resource.

One Semester Senior Course

A basic strategy in teaching a senior course isto focus on aspects of image processing in
which both the inputs and outputs of those processes areimages. In the scope of a senior
course, this usually means the material contained in Chapters 1 through 6. Depending
on instructor preferences, wavelets (Chapter 7) usually are beyond the scope of coverage
inatypical senior curriculum). However, we recommend covering at least some material
on image compression (Chapter 8) as outlined below.

We have found in more than two decades of teaching this material to seniorsin electrical
engineering, computer science, and other technical disciplines, that one of the keys to
success is to spend at least one lecture on motivation and the equivalent of one lecture
on review of background material, as the need arises. The motivational material is
provided in the numerous application areas discussed in Chapter 1. This chapter was
totally rewritten with this objective in mind. Some of this material can be covered in
class and the rest assigned as independent reading. Background review should cover
probability theory (of one random variable) before histogram processing (Section 3.3).
A brief review of vectors and matrices may be required later, depending on the material
covered. The review material included in the book web site was designed for just this
purpose.
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Chapter 2 should be covered in its entirety. Some of the material (such as parts of
Sections 2.1 and 2.3) can be assigned as independent reading, but a detailed explanation
of Sections 2.4 through 2.6 is time well spent.

Chapter 3 servestwo principal purposes. It coversimage enhancement (atopic of signif-
icant appeal to the beginning student) and it introduces a host of basic spatial processing
tools used throughout the book. For a senior course, we recommend coverage of Sec-
tions 3.2.1 through 3.2.2; Section 3.3.1; Section 3.4; Section 3.5; Section 3.6; Section
3.7.1, 3.7.2 (through Example 3.11), and 3.7.3. Section 3.8 can be assigned as indepen-
dent reading, depending on time.

Chapter 4 also discusses enhancement, but from a frequency-domain point of view. The
instructor has significant flexibility here. As mentioned earlier, it is possible to skip
the chapter altogether, but this will typically preclude meaningful coverage of other
areas based on the Fourier transform (such as filtering and restoration). The key in
covering the frequency domain is to get to the convolution theorem and thus develop
atie between the frequency and spatial domains. All this material is presented in very
readable form in Section 4.2. “Light” coverage of frequency-domain concepts can be
based on discussing all the material through this section and then selecting afew simple
filtering exampl es (say, low- and highpassfiltering using Butterworth filters, as discussed
in Sections 4.3.2 and 4.4.2). At the discretion of the instructor, additional material can
include full coverage of Sections 4.3 and 4.4. 1t is seldom possible to go beyond this
point in a senior course.

Chapter 5 can be covered as a continuation of Chapter 4. Section 5.1 makesthisan easy
approach. Then, itis possible give the student a“flavor” of what restoration is (and still
keep the discussion brief) by covering only Gaussian and impulse noisein Section 5.2.1,
and a couple of spatial filtersin Section 5.3. This latter section is a frequent source of
confusion to the student who, based on discussions earlier in the chapter, is expecting to
see a more objective approach. It is worthwhile to emphasize at this point that spatial
enhancement and restoration are the same thing when it comes to noise reduction by
spatia filtering. A good way to keep it brief and conclude coverage of restoration
is to jump at this point to inverse filtering (which follows directly from the model in
Section 5.1) and show the problems with this approach. Then, with a brief explanation
regarding the fact that much of restoration centers around the instabilities inherent in
inverse filtering, it is possible to introduce the “interactive” form of the Wiener filter in
Eq. (5.8-3) and conclude the chapter with Examples 5.12 and 5.13.

Chapter 6 on color image processing is a new feature of the book. Coverage of this
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chapter aso can be brief at the senior level by focusing on enough material to give the
student afoundation on the physics of color (Section 6.1), two basic color models (RGB
and CMY/CMY K), and then concluding with abrief coverage of pseudocolor processing
(Section 6.3).

We typically conclude a senior course by covering some of the basic aspects of image
compression (Chapter 8). Interest on thistopic hasincreased significantly as aresult of
the heavy use of images and graphics over the Internet, and students usually are easily
motivated by the topic. Minimum coverage of this material includes Sections 8.1.1 and
8.1.2, Section 8.2, and Section 8.4.1. In this limited scope, it is worthwhile spending
one-half of alecture period filling in any gaps that may arise by skipping earlier parts of
the chapter.

One Semester Graduate Course (No Background in DIP)

The main difference between a senior and a first-year graduate course in which neither
group has formal background in image processing is mostly in the scope of material
covered, in the sense that we simply go faster in a graduate course, and feel much freer
in assigning independent reading. 1n addition to the materia discussed in the previous
section, we add the following materia in a graduate course.

Coverage of histogram matching (Section 3.3.2) is added. Sections 4.3, 4.4, and 4.5
are covered in full. Section 4.6 is touched upon briefly regarding the fact that imple-
mentation of discrete Fourier transform techniques requires non-intuitive concepts such
as function padding. The separability of the Fourier transform should be covered, and
mention of the advantages of the FFT should be made. In Chapter 5 we add Sections 5.5
through 5.8. In Chapter 6 we add the HSI model (Section 6.3.2) , Section 6.4, and Sec-
tion 6.6. A nice introduction to wavelets (Chapter 7) can be achieved by a combination
of classroom discussions and independent reading. The minimum number of sectionsin
that chapter are 7.1, 7.2, 7.3, and 7.5, with appropriate (but brief) mention of the exis-
tence of fast wavelet transforms. Finally, in Chapter 8 we add coverage of Sections 8.3,
8.4.2, 8.5.1 (through Example 8.16), Section 8.5.2 (through Example 8.20) and Section
8.5.3.

If additional time is available, a natural topic to cover next is morphological image
processing (Chapter 9). The materia in this chapter begins a transition from methods
whose inputs and outputs are images to methods in which the inputs are images, but
the outputs are attributes about those images, in the sense defined in Section 1.1. We
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recommend coverage of Sections 9.1 through 9.4, and some of the algorithmsin Section
9.5.

One Semester Graduate Course (with Background in DIP)

Some programs have an undergraduate course in image processing as a prerequisite to
a graduate course on the subject. Inthiscase, it is possible to cover material from the
first eleven chapters of the book. Using the undergraduate guidelines described above,
we add the following material to form a teaching outline for a one semester graduate
course that has that undergraduate material as prerequisite. Given that students have the
appropriate background on the subject, independent reading assignments can be used to
control the schedule.

Coverage of histogram matching (Section 3.3.2) is added. Sections 4,3, 4.4, 4.5, and 4.6
are added. This strengthens the student’s background in frequency-domain concepts.
A more extensive coverage of Chapter 5 is possible by adding sections 5.2.3, 5.3.3,
54.3, 5.5, 5.6, and 5.8. In Chapter 6 we add full-color image processing (Sections 6.4
through 6.7). Chapters 7 and 8 are covered as in the previous section. As noted in the
previous section, Chapter 9 begins atransition from methods whose inputs and outputs
are images to methods in which the inputs are images, but the outputs are attributes
about those images. As a minimum, we recommend coverage of binary morphology:
Sections 9.1 through 9.4, and some of the agorithms in Section 9.5. Mention should
be made about possible extensions to gray-scale images, but coverage of this material
may not be possible, depending on the schedule. In Chapter 10, we recommend Sections
10.1,10.2.1 and 10.2.2, 10.3.1 through 10.3.4, 10.4, and 10.5. |In Chapter 11wetypically
cover Sections 11.1 through 11.4.

Two Semester Graduate Course (No Background in DIP)

Projects

A full-year graduate course consists of the material covered in the one semester under-
graduate course, the material outlined in the previous section, and Sections 12.1, 12.2,
12.3.1,and 12.3.2.

One of themost interesting aspects of a coursein digital image processing isthe pictorial
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nature of the subject. It has been our experience that students truly enjoy and benefit
from judicious use of computer projects to complement the material covered in class.
Since computer projects are in addition to course work and homework assignments, we
try to keep the formal project reporting asbrief aspossible. In order to facilitate grading,
we try to achieve uniformity in the way project reports are prepared. A useful report
format is as follows:

Page 1: Cover page.

- Project title

- Project number

- Course number

- Student’s name

- Date due

- Date handed in

- Abstract (not to exceed 1/2 page)

Page 2: One to two pages (max) of technical discussion.
Page 3 (or 4): Discussion of results. One to two pages (max).

Results: Image results (printed typically on alaser or inkjet printer). All images must
contain a number and title referred to in the discussion of results.

Appendix: Program listings, focused on any original code prepared by the student. For
brevity, functions and routines provided to the student are referred to by name, but the
code isnot included.

Layout: The entire report must be on a standard sheet size (e.g., 8.5 x 11 inches),
stapled with three or more staples on the left margin to form a booklet, or bound using
clear plastic standard binding products.

Project resources available in the book web site include a sample project, alist of sug-
gested projects from which the instructor can select, book and other images, and MAT-
LAB functions. Instructors who do not wish to use MATLAB will find additional soft-
ware suggestionsin the Support/Software section of the web site.
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Problem 2.1

The diameter, x, of the retinal image corresponding to the dot is obtained from similar

triangles, asshownin Fig. P2.1. That is,
d/2) _ (x/2)

02  0.014
which givesz = 0.07d. From the discussion in Section 2.1.1, and taking some liberties

of interpretation, we can think of the fovea asasquare sensor array having on the order of
337,000 elements, which translates into an array of size 580 x 580 elements. Assuming
equal spacing between elements, this gives 580 elements and 579 spaces on aline 1.5
mm long. The size of each element and each space is then s = [(1.5mm)/1,159] =
1.3 x 10~ m. If the size (on the fovea) of theimaged dot isless than the size of asingle
resolution element, we assume that the dot will be invisible to the eye. In other words,
the eye will not detect adot if its diameter, d, is such that 0.07(d) < 1.3 x 107 m, or
d < 18.6 x 10~ m.

— Edge view of dot
/
1t Image of the dot on %2
the fi
an e fovea \i o+
d T T

“

02m

(14 mm instead of 17 mm because
the dot is close to the eye)

Figure P2.1
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Problem 2.3

Problem 2.6

Problem 2.9

Problem 2.11

A= c/v=2.998 x 108(M/s)/60(L/s) = 4.99 x 106m = 5000 Km.

One possible solution is to equip a monochrome camera with a mechanical device that
sequentially placesared, agreen, and ablue passfilter in front of thelens. The strongest
camera response determines the color. If all three responses are approximately equal,
the objectiswhite. A faster system would utilize three different cameras, each equipped
with an individual filter. The analysis would be then based on polling the response of
each camera. This system would be a little more expensive, but it would be faster and
more reliable. Note that both solutions assume that the field of view of the camera(s) is
such that it is completely filled by auniform color [i.e., the camera(s) is(are) focused on
apart of the vehicle where only its color is seen. Otherwise further analysis would be
required to isolate the region of uniform color, which is all that is of interest in solving
this problem].

(8) The total amount of data (including the start and stop bit) in an 8-bit, 1024 x 1024
image, is (1024)? x [8 + 2] bits. Thetotal time required to transmit this image over a
At 56K baud link is (1024)? x [8 + 2]/56000 = 187.25 sec or about 3.1 min. (b) At
750K this time goes down to about 14 sec.

Let p and g beasshown in Fig. P2.11. Then, (a) S; and Sz are not 4-connected because
g isnot in the set Ny(p); (b) S1 and Sy are 8-connected because g isin the set Ns(p);
(c) Sy and S, are m-connected because (i) ¢ isin Np(p), and (ii) the set Ny(p) N Ny(q)
is empty.
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R
0i0 0 0 0:0 0 1 1.0
| ! !
| ! |
1/0 0 1 0!0 1 0 0;1
| P |
1tio 0o 1 oi(1)1 0 00
| | |
0;0 1 1p@5000050

______________________________________

Figure P2.11

Problem 2.12

The solution to this problem consists of defining all possible neighborhood shapes to
go from adiagonal segment to a corresponding 4-connected segment, as shown in Fig.
P2.12. The algorithm then simply looks for the appropriate match every time a diagonal
segment is encountered in the boundary.

— or
= or
— or
= or

Figure P2.12

Problem 2.15

(@ When V' = {0, 1}, 4-path does not exist between p and ¢ because it isimpossible to
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Problem 2.16

get from p to ¢ by traveling along points that are both 4-adjacent and also have values
from V. Figure P2.15(&) shows this condition; it isnot possibleto get to ¢. The shortest
8-path is shown in Fig. P2.15(b); its length is 4. In this case the length of shortest m-
and 8-paths is the same. Both of these shortest paths are unique in this case. (b) One
possibility for the shortest 4-path when V' = {1, 2} is shown in Fig. P2.15(c); its length
is6. It iseadly verified that another 4-path of the same length exists between p and q.
One possibility for the shortest 8-path (it is not unique) is shown in Fig. P2.15(d); its
lengthis4. Thelength of a shortest m-path similarly is4.

3 1 2 1 (@ 3 1 2 1 (g
/4
2 2 0 2 2 2 0 2
t t
1 2 1 1 1 2 1 1
t
»1l—0—1 2 @1—0 1 2
@ ®
3 1 2 1 (g 3 1 2—1 (g
t S
2 2 0 2 2 2 0 2
t t
1—2—1—1 1 2 1 1
t S
@1 0 1 2 @1 0 1 2
© (d

Figure P2.15

(8) A shortest 4-path between a point p with coordinates (z, y) and a point ¢ with coor-
dinates (s, t) isshown in Fig. P2.16, where the assumption is that all points along the
path are from V. The length of the segments of the path are |+ — s| and |y — ¢|, respec-
tively. Thetotal path length is |« — s| + |y — t|, which we recognize as the definition
of the D, distance, asgiven in Eq. (2.5-16). (Recall that this distance isindependent of
any pathsthat may exist between the points.) The D, distance obviously is equal to the
length of the shortest 4-path when the length of the path is |« — s| + |y — ¢|. Thisoc-
curs whenever we can get from p to ¢ by following a path whose e ements (1) are from
V, and (2) are arranged in such away that we can traverse the path from p to ¢ by mak-
ing turns in at most two directions (e.g., right and up). (b) The path may of may not be
unique, depending on V' and the values of the points along the way.
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p -
(x, )
Figure P2.16

Problem 2.18

With reference to Eq. (2.6-1), let H denote the neighborhood sum operator, let S; and
S, denote two different small subimage areas of the samesize, and let S; .55 denctethe
corresponding pixel-by-pixel sum of the elementsin .S; and S, as explained in Section
2.5.4. Note that the size of the neighborhood (i.e., number of pixels) is not changed by
this pixel-by-pixel sum. The operator H computes the sum of pixel valuesis a given
neighborhood. Then, H(aS; + bS>) means. (1) multiplying the pixels in each of the
subimage areas by the constants shown, (2) adding the pixel-by-pixel valuesfrom S; and
So (which produces a single subimage area), and (3) computing the sum of the values
of all the pixelsin that single subimage area. Let ap, and bp, denote two arbitrary (but
corresponding) pixelsfrom aS; 4 bS5. Then we can write

H(aSi +bSy) = > api+ips
p1 €Sy and p2 €S,

= Y apm+ ) bp

p1E€SL p2€S2
= a E p1t+0b E P2
p1E€SL p2€S2

= aH(S1) +bH(S,)

which, according to Eq. (2.6-1), indicatesthat H isalinear operator.
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Problem 3.2

Problem 3.4

Problem 3.5

Problem 3.8

@

(8 The number of pixels having different gray level values would decrease, thus causing
the number of components in the histogram to decrease. Since the number of pixels
would not change, this would cause the height some of the remaining histogram peaks
toincreasein general. Typically, lessvariability in gray level valueswill reduce contrast.

All that histogram equalization does is remap histogram components on the intensity
scale. To obtain auniform (flat) histogram would require in general that pixedl intensities
be actually redistributed so that thereare L groups of n/ L pixelswith the same intensity,
where L is the number of allowed discrete intensity levels and n is the total number of
pixelsin the input image. The histogram equalization method has no provisions for this
type of (artificial) redistribution process.

We are interested in just one example in order to satisfy the statement of the problem.
Consider the probability density function shown in Fig. P3.8(a). A plot of the trans-
formation T'(r) in Eq. (3.3-4) using this particular density function is shown in Fig.
P3.8(b). Because p,-(r) is a probability density function we know from the discussion
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in Section 3.3.1 that the transformation 7'(r) satisfies conditions (&) and (b) stated in

that section. However, we see from Fig. P3.8(b) that the inverse transformation from s

back to r is not single valued, as there are an infinite number of possible mappings from

s = 1/2 back to r. It is important to note that the reason the inverse transformation

function turned out not to be single valued isthe gap in p,.(r) intheinterval [1/4, 3/4].
p(r)

i

2

0 1/4 12 3/4 1

172

0 /4 " 34 1
(b)
Figure P3.8.

Problem 3.9

(c) If none of thegray levelsry, k =1,2,...,L — 1, are 0, then T'(rx) will be strictly
monotonic. Thisimpliesthat the inverse transformation will be of finite ope and this
will be single-valued.

Problem 3.11

Thevalue of the histogram component corresponding to the kthintensity level in aneigh-

borhood is
() =+
DPr(Tk n
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fork=1,2,..., K — 1,wheren; isthe number of pixels having gray level valuery, n
isthe total number of pixelsin the neighborhood, and K isthe total number of possible
gray levels. Suppose that the neighborhood is moved one pixel to the right. This deletes
the leftmost column and introduces a new column on the right. The updated histogram
then becomes

1
P(re) = E[n"' —nr, +ng,]

fork=0,1,...,K — 1, whereny, isthe number of occurrences of level r;, on the |eft
columnand ng, isthesimilar quantity on theright column. The preceding equation can
be written also as

1
P (1) = pp(rg) + E[”Rk —nr,]

fork = 0,1,..., K — 1. The same concept applies to other modes of neighborhood
motion:

) = () + b — )

fork=0,1,..., K —1, where a; isthe number of pixelswith value r;. in the neighbor-
hood area deleted by the move, and b, is the corresponding number introduced by the
move.

1
2 2 2 2 2
%*‘U*T(z[%+0n2+"'+0nK]

Thefirst term on the right side is 0 because the elements of f are constants. The various
o2 are simply samples of the noise, which is has variance 2. Thus, o7 = o7 and we

have % )
o2 R

TR T K
which provesthe validity of Eq. (3.4-5).

Let g(x,y) denote the golden image, and let f(x,y) denote any input image acquired
during routine operation of the system. Change detection via subtraction is based on
computing the simple difference d(x,y) = g(x,y) — f(z,y). The resulting image
d(x,y) can be used in two fundamental ways for change detection. One way is use a
pixel-by-pixel analysis. Inthiscasewesay that f(x,y) is”’close enough” to the golden
image if all the pixelsin d(z,y) fall within a specified threshold band [T, Tinaz)
where T,,,;,, is negative and T;,,,.. is positive. Usualy, the same value of threshold is
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Problem 3.17

used for both negative and positive differences, in which case we have aband [T, T
in which all pixes of d(x,y) must fall in order for f(x,y) to be declared acceptable.
The second major approach is simply to sum all the pixelsin |d(x, y)| and compare the
sum against athreshold S. Note that the absolute val ue needs to be used to avoid errors
cancelling out. Thisisamuch cruder test, so wewill concentrate on the first approach.

There are three fundamental factors that need tight control for difference-based inspec-
tion to work: (1) proper registration, (2) controlled illumination, and (3) noise levels
that are low enough so that difference values are not affected appreciably by variations
due to noise. The first condition basically addresses the requirement that comparisons
be made between corresponding pixels. Two images can be identical, but if they are
displaced with respect to each other, comparing the differences between them makes
no sense. Often, special markings are manufactured into the product for mechanical or
image-based alignment

Controlled illumination (note that “illumination” is not limited to visible light) obviously
is important because changes in illumination can affect dramatically the values in a
difference image. One approach often used in conjunction with illumination control is
intensity scaling based on actual conditions. For example, the products could have one
or more small patches of atightly controlled color, and the intensity (and perhaps even
color) of each pixelsin the entire image would be modified based on the actua versus
expected intensity and/or color of the patchesin the image being processed.

Finally, the noise content of a difference image needs to be low enough so that it does
not materially affect comparisons between the golden and input images. Good signal
strength goes a long way toward reducing the effects of noise. Another (sometimes
complementary) approach is to implement image processing techniques (e.g., image
averaging) to reduce noise.

Obvioudly there are a number if variations of the basic themejust described. For exam-
ple, additional intelligencein theform of tests that are more sophisticated than pixel-by-
pixel threshold comparisons can be implemented. A technique often used in thisregard
is to subdivide the golden image into different regions and perform different (usually
more than one) testsin each of the regions, based on expected region content.

(8) Consider a3 x 3 mask first. Since all the coefficients are 1 (we are ignoring the 1/9
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scale factor), the net effect of the lowpass filter operationisto add all the gray levels of
pixels under the mask. Initially, it takes 8 additionsto produce the response of the mask.
However, when the mask moves one pixel location to the right, it picks up only one new
column. The new response can be computed as
Rnew = Rold - Cl + 03

where C isthe sum of pixels under the first column of the mask before it was moved,
and Cs is the similar sum in the column it picked up after it moved. This is the basic
box-filter or moving-average equation. For a3 x 3 mask it takes 2 additions to get Cs
(Cy was dready computed). To this we add one subtraction and one addition to get
Rnew. Thus, atotal of 4 arithmetic operations are needed to update the response after
one move. Thisisarecursive procedure for moving from left to right along one row of
the image. When we get to the end of arow, we move down one pixel (the nature of the
computation is the same) and continue the scan in the opposite direction.

For amask of sizen x n, (n — 1) additions are needed to obtain C5, plus the single
subtraction and addition needed to obtain Rnqy, Which gives a total of (n + 1) arith-
metic operations after each move. A brute-force implementation would require n? — 1
additions after each move.

(@) There are n? points in an n x n median filter mask. Since n is odd, the median
value, ¢, is such that there are (n? — 1)/2 points with vaues less than or equal to ¢
and the same number with values greater than or equal to (. However, since the area
A (number of points) in the cluster is less than one half n2, and A and n are integers,
it follows that A is always less than or equal to (n? — 1)/2. Thus, even in the extreme
case when all cluster points are encompassed by the filter mask, there are not enough
points in the cluster for any of them to be equa to the value of the median (remember,
we are assuming that all cluster points are lighter or darker than the background points).
Therefore, if the center point in the mask is a cluster point, it will be set to the median
value, which is a background shade, and thus it will be “eliminated” from the cluster.
This conclusion obviously applies to the less extreme case when the number of cluster
points encompassed by the mask isless than the maximum size of the cluster.
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Problem 3.20

Problem 3.22

(@ Numerically sort the n? values. The median is
¢ = [(n? +1)/2]-th largest value.

(b) Oncethe values have been sorted onetime, we simply delete thevaluesin thetrailing
edge of the neighborhood and insert the values in the leading edge in the appropriate
locations in the sorted array.

From Fig. 3.35, the vertical bars are 5 pixels wide, 100 pixels high, and their separation
is20 pixels. The phenomenonin questionisrelated to the horizontal separation between
bars, so we can simplify the problem by considering a single scan line through the bars
intheimage. The key to answering this question lies in the fact that the distance (in
pixels) between the onset of one bar and the onset of the next one (say, toitsright) is 25
pixels. Consider the scan line shown in Fig. P3.22. Also shown is a cross section of a
25 x 25 mask. The response of the mask isthe average of the pixelsthat it encompasses.
We note that when the mask moves one pixel to theright, it loses on value of the vertical
bar on the left, but it picks up an identical one on the right, so the response doesn’t
change. In fact, the number of pixels belonging to the vertical bars and contained
within the mask does not change, regardiess of where the mask is located (aslong as it
is contained within the bars, and not near the edges of the set of bars). The fact that the
number of bar pixels under the mask does not change is due to the peculiar separation
between bars and the width of the lines in relation to the 25-pixel width of the mask
This constant response is the reason no white gaps is seen in the image shown in the
problem statement. Note that this constant response does not happen with the 23 x 23
or the 45 x 45 masks because they are not ”’synchronized”” with the width of the bars and
their separation.
Mask responsc

Center of

L/ mask

[« 25 ﬁixcls — ]

5 20 5 20 5
Figure P3.22
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Problem 3.25

The Laplacian operator is defined as
o2f  0°f

2 _— —— —
vf78x2+8y2

for the unrotated coordinates and as
Vif =
for rotated coordinates. It is given that

oA f  O%f
927 " oy

r=2a"cosf—y'sinf and y=2a'sinf + gy cosd
where 6 is the angle of rotation. We want to show that the right sides of the first two

equations are equal. We start with
of _ ofow  of oy
ox! Ox 0x' 0Oy Ox'
_of 9
= 5 cosf + By sin 0

Taking the partial derivative of this expression again with respect to 2’ yields
2

82f782f 9 o [(of\ . o (Of . o°f . o
5072 f@cos 9+8_x <8_y> s1n900s9+8—y <%> cosHs1n9+a—y2s1n 0

Next, we compute
of _ ofow  of oy
oy 0xdy = Oyody
_ 90y O
= o sin 6 + Dy cosf

Taking the derivative of this expression again with respect to y’ gives

PfPf g (of . 9 (Of\ . Pf o,
3y f@sm 98_::3(8_3;) cosﬁsmﬁfa—y <%> s1n900s9+8—y200s 0

Adding the two expressions for the second derivatives yields

o2f  0f  0°f Of

Ox'? 3@/2 T Oox2 33/2
which proves that the Laplacian operator is independent of rotation.

Problem 3.27

Consider the following equation:
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fla,y) =Vif(z,y) = flzy) = [fle+Ly) + fl@—1y) + flz.y+1)

+f(z,y—1) = 4f(z,y)]

= 6f(z,y)—[fl@+ Ly + fla -1y + flz,y+1)
+f(z,y—1) + f(z,9)]

= 5{1l.2f(x,y)—
S L)+ fe = Ly)+ Sy + 1)
+f(z,y = 1)+ f(,9)l}

= 5[12f(x,y) — f(zy)]

where f(z,y) denotes the average of f(x,y) in a predefined neighborhood that is cen-

tered at (z, y) and includes the center pixel and its four immediate neighbors. Treating
the constants in the last line of the above equation as proportionality factors, we may
write

fla,y) = V2 f(z,y) ~ f(,y) = Fz,y).
Theright side of this equation is recognized as the definition of unsharp masking given

in Eq. (3.7-7). Thus, it has been demonstrated that subtracting the Laplacian from an
imageis proportiona to unsharp masking.











