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Preface

Fourier analysis is an established subject in the core of pure and applied
mathematical analysis. Not only are the techniques in this subject of funda-
mental importance in all areas of science and technology, but both the integral
Fourier transform and the Fourier series also have significant physical inter-
pretations. In addition, the computational aspects of the Fourier series are
especially attractive, mainly because of the orthogonality property of the se-
ries and of its simple expression in terms of only two functions: sin x and
cos x.

Recently, the subject of "wavelet analysis" has drawn much attention from
both mathematicians and engineers alike. Analogous to Fourier analysis, there
are also two important mathematical entities in wavelet analysis: the "integral
wavelet transform" and the wavelet series". The integral wavelet transform
is defined to be the convolution with respect to the dilation of the reflection of
some func t ion , called a "basic wavelet", while the wavelet series is expressed
in terms of a single function , called an "R-wavelet" (or simply, a wavelet)
by means of two very simple operations: binary dilations and integral transla-
tions. However, unlike Fourier analysis, the integral wavelet transform with a
basic wavelet and the wavelet series in terms of a wavelet are intimately
related. In fact, if is chosen to be the "dual" of, then the coefficients of
the wavelet series of any square-integrable function / are precisely the values
of the integral wavelet transform, evaluated at the dyadic positions in the cor-
responding binary dilated scale levels. Since the integral wavelet transform
of / simultaneously localizes / and its Fourier transform / with the zoom-in
and zoom-out capability, and since there are real-time algorithms for obtaining
the coefficient sequences of the wavelet series, and for recovering / from these
sequences, the list of applications of wavelet analysis seems to be endless. On
the other hand, polynomial spline functions are among the simplest functions
for both computational and implementational purposes. Hence, they are most
attractive for analyzing and constructing wavelets.

This is an introductory treatise on wavelet analysis with an emphasis on
spline-wavelets and time-frequency analysis. A brief overview of this subject,
including classification of wavelets, the integral wavelet transform for time-
frequency analysis, multiresolution analysis highlighting the important prop-
erties of splines, and wavelet algorithms for decomposition and reconstruction
of functions, will be presented in the first chapter. The objective of this chap-
ter is not to go into any depth but only to convey a general impression of what,
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wavelet analysis is about and what this book aims to cover.
This monograph is intended to be self-contained. The only prerequisite is

a basic knowledge of function theory and real analysis. For this reason, pre-
liminary material on Fourier analysis and signal theory is covered in Chapters
2 and 3, and an introductory study of cardinal splines is included in Chapter
4. It must be pointed out, however, that Chapters 3 and 4 also contribute as
an integral part of wavelet analysis. In particular, in Chapter 3, the notion of
"frames", and more generally "dyadic wavelets", is introduced in the discus-
sion of reconstruction of functions from partial information of their integral
wavelet transforms in time-frequency analysis.

The common theme of the last three chapters is "wavelet series". Hence,
a general approach to the analysis and construction of scaling functions and
wavelets is discussed in Chapter 5. Spline-wavelets, which are the simplest
examples, are studied in Chapter 6. The final chapter is devoted to an inves-
tigation of orthogonal wavelets and wavelet packets.

The writing of this monograph was greatly influenced by the pioneering
work of A. Cohen, R. Coifman, I. Daubechies, S. Mallat, and Y. Meyer, as
well as my joint research with X. L. Shi and J. Z. Wang. In learning this
fascinating subject, I have benefited from conversations and correspondence
with many colleagues, to whom I am very grateful. In particular, I would
like to mention P. Auscher, G. Battle, A. K. Chan, A. Cohen, I. Daubechies,
D. George, T. N. T. Goodman, S. Jaffard, C. Li, S. Mallat, Y. Meyer, C. A.
Micchelli, E. Quak, X. L. Shi, J. Stockier, J. Z. Wang, J. D. Ward, and R.
Wells. Among my friends who have read portions of the manuscript and made
many valuable suggestions, I am especially indebted to C. Li, E. Quak, X. L.
Shi, and N. Sivakurnar. As usual, I have again enjoyed superb assistance from
Robin Campbell, who TEXed the entire manuscript, and from Stephanie Sellers
and my wife, Margaret, who produced the manuscript in camera-ready form.
Finally, to the editorial office of Academic Press, and particularly to Charles
Glaser, who has complete confidence in me, I wish to express my appreciation
of their efficient assistance and friendly cooperation.

College Station, Texas Charles K. Chui
October, 1991

Preface to the second printing

The second printing gave me an opportunity to make some corrections and
append two tables of weights for implementing spline-wavelet reconstruction
and decomposition. The inclusion of these numerical values was suggested by
David Donoho to whom I am very grateful. I would also like to thank my
student Jun Zha for his assistance in producing these two tables.

April, 1992 C. K. C.



1 An Overview

"Wavelets" has been a very popular topic of conversations in many scien-
tific and engineering gatherings these days. Some view wavelets as a new basis
for representing functions, some consider it as a technique for time-frequency
analysis, and others think of it as a new mathematical subject. Of course, all
of them are right, since "wavelets" is a versatile tool with very rich mathe-
matical content and great potential for applications. However, as this subject
is still in the midst of rapid development, it is definitely too early to give a
unified presentation. The objective of this book is very modest: it is intended
to be used as a textbook for an introductory one-semester course on "wavelet
analysis" for upper-division undergraduate or beginning graduate mathemat-
ics and engineering students, and is also written for both mathematicians and
engineers who wish to learn about the subject. For the specialists, this volume
is suitable as complementary reading to the more advanced monographs, such
as the two volumes of Ondelettes et Operateurs by Yves Meyer, the edited
volume of Wavelets-A Tutorial in Theory and Applications in this series, and
the forthcoming CBMS volume by Ingrid Daubechies.

Since wavelet analysis is a relatively new subject and the approach and
organization in this book are somewhat different from that in the others, the
goal of this chapter is to convey a general idea of what wavelet analysis is about
and to describe what this book aims to cover.

1.1. From Fourier analysis to wavelet analysis
Let L2 (0, 2p) denote the collection of all measurable functions / defined

on the interval (0, 2p) with

For the reader who is not familiar with the basic Lebesgue theory, the sacrifice
is very minimal by assuming that / is a piecewise continuous function. It will
always be assumed that functions in L2(0, 2p) are extended periodically to the
real line

namely: f(x) — f(x — 2p) for all x. Hence, the collection L2(0, 2p) is often
called the space of 2p -periodic square-integrable functions. That L2(0,27p) is
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a vector space can be verified very easily. Any / in L2 (0,27p) has a Fourier
series representation:

where the constants cn, called the Fourier coefficients of /, are defined by

The convergence of the series in (1.1.1) is in L2(0,2p), meaning that

There are two distinct features in the Fourier series representation (1.1.1).
First, we mention that / is decomposed into a sum of infinitely many mutually
orthogonal components gn(x) :— cne inx;, where orthogonality means that

with the "inner product" in (1.1.3) being defined by

That (1.1.3) holds is a consequence of the important, yet simple fact that

is an orthonormal (o.n.) basis of L2(0, 2p). The second distinct feature of the
Fourier series representation (1.1.1) is that the o.n. basis {wn} is generated by
"dilation" of a single function

that is, wn(x) = w(nx) for all integers n. This will be called integral dilation.
Let us summarize this remarkable fact by saying that every 2p -periodic

square-integrable function is generated by a "superposition" of integral dilations
of the basic function w(x) = eix.

We also remark that from the o.n. property of {wn}, the Fourier series
representation (1.1.1) also satisfies the so-called Parseval Identity:
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Let I2 denote the space of all square-summable bi-infinite sequences; that is,
{cn} € t2 if and only if

Hence, if the square-root of the quantity on the left of (1.1.7) is used as
the "norm" for the measurement of functions in L 2(0,2) , and similarly, the
square-root of the quantity on the right of (1-1.7) is used as the norm for £2,
then the function space £ 2 (0 ,2) and the sequence space l2 are "isometric" to
each other. Returning to the above mentioned observation on the Fourier series
representation (1.1.1), we can also say that every 2-periodic square-integrable
function is an £2-linear combination of integral dilations of the basic function
w(x) = elx.

We emphasize again that the basic function

which is a "sinusoidal wave", is the only function required to generate all 2-
periodic square-summable functions. For any integer n with large absolute
value, the wave wn(x) = w(nx] has high "frequency", and for n with small
absolute value, the wave wn has low frequency. So, every function in £ 2 ( 0 , 2 )
is composed of waves with various frequencies.

We next consider the space L2(IR) of measurable functions /, defined on
the real line R, that satisfy

Clearly, the two function spaces L 2 ( 0 , 2 ) and L2(IR) are quite different. In
particular, since (the local average values of) every function in L2(R) must
"decay" to zero at ±00, the sinusoidal (wave) functions wn do not belong to
L2(R). In fact, if we look for "waves" that generate L2(R), these waves should
decay to zero at ±00; and for all practical purposes, the decay should be very
fast. That is, we look for small waves, or "wavelets'", to generate L2(R). As in
the situation of L 2 (0 ,2 ) , where one single function w(x) = ix generates the
entire space, we also prefer to have a single function, say to generate all of
L2(R). But if the wavelet has very fast decay, how can it cover the whole
real line? The obvious way is to shift along R.

Let ZZ denote the set of integers:

The simplest way for to cover all of IR is to consider all the integral shifts of
namely:
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Next, as in the sinusoidal situation, we must also consider waves with differ-
ent frequencies. For various reasons which will soon be clear to the reader,
we do not wish to consider "single-frequency" waves, but rather, waves with
frequencies partitioned into consecutive "octaves" (or frequency bands). For
computational efficiency, we will use integral powers of 2 for frequency parti-
tioning; that is, we now consider the small waves

Observe that (2ix — k) is obtained from a single "wavelet" function (x) by
a binary dilation (i.e. dilation by 2j) and a dyadic translation (of k/2-j).

So, we are interested in "wavelet" functions whose binary dilations and
dyadic translations are enough to represent all the functions in L2(IR). For
simplicity, let us first consider an orthogonal basis generated by . Later in
this chapter (see Section 1.4), we will introduce the more general "wavelet
series" .

Throughout this book, we will use the following notations for the inner
product and norm for the space L2(1R):

where f, g L2(IR). Note that for any j, k € ZZ, we have

Hence, if a function L2(IR) has unit length, then all of the functions j,k
defined by

also have unit length; that is,

In this book, the Kronecker symbol

defined on ZZ x zz, will be often used.

Definition 1.1. A function L2(IR) is called an orthogonal wavelet (or o.n.
wavelet), if the family { j , k } , as denned in (1.1.11), is an orthonormal basis of
L2(IR); that is,
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and every / 6 L2(IR) can be written as

where the convergence of the series in (1.1.15) is in L2(IR), namely:

The simplest example of an orthogonal wavelet is the Haar function
defined by

We will give a brief discussion of this function in Sections 1.5 and 1.6. Other
o.6. wavelets will be studied in some details in Chapter 7.

The series representation of / in (1.1.15) is called a wavelet series. Anal-
ogous to the notion of Fourier coefficients in (1.1.2), the wavelet coefficients
Cj,k are given by

That is, if we define an integral transform W on L2(IR) by

then the wavelet coefficients in (1.1.15) and (1.1.17) become

The linear transformation W is called the "integral wavelet transform" relative
to the "basic wavelet" . Hence, the (j, k)th wavelet coefficient of f is given
by the integral wavelet transformation of f evaluated at the dyadic position
b = k/T with binary dilation a — 2-j, where the same o.n. wavelet is
used to generate the wavelet series (1.1.15) and to define the integral wavelet
transform (1.1.18).

The importance of the integral wavelet transform will be discussed in
the next section. Here, we only mention that this integral transform greatly
enhances the value of the (integral) Fourier transform F, defined by
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The mathematical treatment of this transform will be delayed to the next chap-
ter. As is well known, the Fourier transform is the other important component
of Fourier analysis. Hence, it is interesting to note that while the two compo-
nents of Fourier analysis, namely: the Fourier series and the Fourier transform,
are basically unrelated; the two corresponding components of wavelet analysis,
namely: the wavelet series (1.1.15) and the integral wavelet transform (1.1.18),
have an intimate relationship as described by (1.1.19).

1.2. The integral wavelet transform and time- frequency analysis
The Fourier transform F defined in (1.1.20) not only is a very powerful

mathematical tool, but also has very significant physical interpretations in
applications. For instance, if a function / € L2(IR) is considered as an. analog
signal with finite energy, defined by its norm ||f||2 ,then the Fourier transform

of / represents the spectrum of this signal. In signal analysis, analog signals
are defined in the time-domain, and the spectral information of these signals
is given in the frequency-domain. To facilitate our presentation, we will allow
negative frequencies for the time being. Hence, both the time- and frequency-
domains are the real line R. Analogous to the Parseval Identity for Fourier
series, the Parseval Identity that describes the relationship between functions
in L2(IR) and their Fourier transforms is given by

Here, the notation of inner product introduced in (1.1.9) is used, and as will
be seen in the next chapter, the Fourier transformation F takes L2(1R) onto
itself. As a consequence of (1.2.2), we observe that the energy of an analog
signal is directly proportional to its spectral content; more precisely,

However, the formula

of the Fourier transform alone is quite inadequate for most applications. In
the first place, to extract the spectral information from the analog signal
/(t) from this formula, it takes an infinite amount of time, using both past
and future information of the signal just to evaluate the spectrum at a single
frequency a;. Besides, the formula (1.2.4) does not even reflect frequencies that
evolve with time. What is really needed is for one to be able to determine the
time intervals that yield the spectral information on any desirable range of
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frequencies (or frequency band). In addition, since the frequency of a signal is
directly proportional to the length of its cycle, it follows that for high-frequency
spectral information, the time-interval should be relatively small to give better
accuracy, and for low-frequency spectral information, the time-interval should
be relatively wide to give complete information. In other words, it is important
to have a flexible time-frequency window that automatically narrows at high
'''center-frequency" and widens at low center-frequency. Fortunately, the inte-
gral wavelet transform W^ relative to some "basic wavelet" as introduced
in (1.1.18), has this so-called zoom-in and zoom-out capability.

To be more specific, both and its Fourier transform must have suf-
ficiently fast decay so that they can be used as "window functions". For an
L2(IR) function w to qualify as a window function, it must be possible to
identify its "center" and "width", which are defined as follows.

Definition 1.2. A nontrivial function w € L2(IR) is called a window function
i f x w ( x ) is also in L2(IR). The center t* and radius Aw of a window function
w are denned to be

and

respectively; and the width of the window function w is defined by 2 w

We have not formally defined a "basic wavelet" yet and will not do so
until the next section. An example of a basic wavelet is any orthogonal wavelet
as already discussed in the previous section. In any case, we will see that any
basic wavelet window function must necessarily satisfy:

so that its graph is a small wave.
Suppose that is any basic wavelet such that both and its Fourier trans-

form are window functions with centers and radii given by
respectively. Then in the first place, it is clear that the integral wavelet trans-
form

of an analog signal /, as introduced in (1.1.18), localizes the signal with a
"time window"

where the center of the window is at 6 + at* and the width is given by 2a
This is called "time-localization" in signal analysis. On the other hand, if we
set
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then is also a window function with center at 0 and radius given by
and by the Parseval Identity (1.2.2), the integral wavelet transform in (1.2.8)
becomes

Hence, with the exception of multiplication by a\a\-1/2 and a linear phase-
shift of etbw, determined by the amount of translation of the time- window,
the same quantity (W f)(b, a) also gives localized information of the spectrum
f ( w ) of the signal /(t), with a "frequency window"

whose center is at us* /a and whose width is given by 2 / a . This is called
"frequency-localization" . By equating the quantities (1.2.8) and (1.2.10), we
now have a "time- frequency window" :

for time-frequency analysis using the integral wavelet transform relative to a
basic wavelet with the window conditions described above.

Several comments are in order. First, since we must eventually consider
positive frequencies, the basic wavelet should be so chosen that the center
w of is a positive number. In practice, this positive number, along with
the positive scaling parameter a, is selected in such a way that w*/a is the
"center- frequency" of the "frequency band" of interest.
Then the ratio of the center-frequency to the width of the frequency band is
given by

which is independent of the location of the center-frequency. This is called
"constant-Q" frequency analysis. The importance of the time-frequency win-
dow (1.2.11) is that it narrows for large center-frequency w*/a and widens for
small center-frequency w*/a (cf. Figure 1.2.1), although the area of the win-
dow is a constant, given by 4. This is exactly what is most desirable in
time- frequency analysis. Details will be studied in Chapter 3.
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Figure 1.2.1. Time-frequency windows, a1 < a2.

1.3. Inversion formulas and duals
The integral wavelet transform (W f)(b, a) gives the location (in terms of

b+ at*), the "rate" (in terms of a), and the amount (measured by the value
( w f ) ( b , a)) of change of /, with the zoom-in and zoom-out capability. This
information is extremely valuable in many applications such as time-frequency
analysis. For instance, in data compression, the values of (W f)(b, a) below
a certain tolerance level are removed; and in lowpass filtering, (W f)(b, a) is
replaced by zero for small values of a. In any case, the (new and modified)
function / has to be reconstructed from the values of (W f)(b, a). Any formula
that expresses every / L2(IR) in terms of (W f)(b, a) will be called an
"inverse formula", and the (kernel) function to be used in this formula will
be called a "dual" of the basic wavelet . Hence, in practice can be used as
a basic wavelet, only if an inversion formula exists.

In the following, we will study four different situations, to be considered
in the order of restrictiveness of the domain of information of

Recovery from (W f)(b, a), a,b IR..
In order to reconstruct / from W,f, we need to know the constant

The finiteness of this constant restricts the class of L2(H) functions that can
be used as "basic wavelets" in the definition of the integral wavelet transform.
In particular, if must also be a window function, then is necessarily in
L1(IR), meaning:

so that is a continuous function in IR (see Theorem 2.2 in Chapter 2), and
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hence, it follows from (1.3.1) that must vanish at the origin; that is,

So, the graph of a basic wavelet is a small wave. With the constant C, we
have the following reconstruction formula:

where IR2 = IR x IR. Observe that the same kernel,

with the exception of complex conjugation, is used to define both the integral
wavelet transform in (1.1.18) and its inverse in (1.3.3). Hence, ) may be called
a "dual" of the basic wavelet . Of course, one cannot expect uniqueness of
this dual.

(2°) Recovery from (W,f)(b, a), b € IR. and a > 0.
In time-frequency analysis as discussed in the previous section, we use a

positive constant multiple of a""1 to represent frequency. Hence, since only
positive frequency is of interest, we need a reconstruction formula where the
integration is over IR x (0, ) instead of H2. Therefore, we must now consider
even a smaller class of basic wavelets , namely: wavelets satisfying

where C is defined in (1.3.1). For instance, any real- valued satisfying (1.3.1)
can be used as a basic wavelet in this situation. For any satisfying (1.3.4),
we have the following reconstruction formula:

With the exception of a factor of 2, this formula is the same as the recon-
struction formula (1.3.3). Of course, the basic wavelet in (1.3.5) is more
restrictive. As in (1°), we again call the complex conjugate of a "dual"
of the basic wavelet for the situation (2°). Once again there is no reason to
expect a unique dual.

(3°) Recovery from (W f)(b,a), By restricting our attention to a = 2-j, where j runs over all the integers,
we can consider time-frequency localization with frequency windows
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In particular, if the center w* of the window function is chosen to be

w=3

then the frequency bands Bj, j € ZZ, in (1.3.6) form a disjoint partition of
the whole frequency-axis [0, , with the exception of the end-points of the
intervals Bj. The integral wavelet transform (1.2.8) is used to determine the
time-intervals [b=2-j t t* — 2j b + 2 i t * + 2-j] on which the spectral
content of the signal /, with frequencies in the range Bj, is of some significance,
namely: the value of |(W f)(b,2-j)| is above a certain threshold.

Since only partial information of W f is available, the basic wavelet
must again satisfy a stronger condition than (1.3.1) for a reconstruction for-
mula to be available. The condition we impose on is the following so-called
"stability condition":

where A and B, with 0 < A B < , are constants independent of . It
follows quite easily from (1.3.7) that also satisfies

which implies that C lies between 2 In 2 and 2B In 2. Details will be discussed
in Section 3.4 in Chapter 3. If satisfies (1.3.7), then the basic wavelet has
a "dual" * whose Fourier transform is given by

The reconstruction formula by using this dual may be stated as follows:

Since basic wavelets for this situation have both theoretical and practical
value, they are given the following special name.

Definition 1.3. A function e L2(IR) is called a "dyadic wavelet" if it
satisfies the stability condition (1.3.7) for almost all w 1R for some constants
A and B with 0 < A B < .

It will be seen in Chapter 3 that even dyadic wavelets do not have unique
duals in general. The most interesting examples of dyadic wavelets are proba-
bly the so-called "frames", to be introduced in Section 3.5.
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(4°) Recovery from (W f}(b, a), b = k/2k a = 1/2j
In order to construct efficient algorithms for determining the integral

wavelet transform (W,f)(b, a) and for reconstructing / from (W f)(b, a), only
discrete samples are considered. While it is important to partition the fre-
quency axis into frequency bands by using powers of two for the scale param-
eter a, say, as in (3°), it is much more efficient to consider only the samples at
the dyadic values b = k/2j on the time-axis, when a = 2- j f , j e ZZ, instead of
all 6 € IR. In many applications, there is very minimal, if any, sacrifice by us-
ing this uniform discrete sampling, and as we shall see later, the mathematical
theory of this approach is very attractive.

We first observe that

where, as in (1.1.11),

However, in general we do not require {ij,k} to be an o.n. basis of L2(IR) as in
Section 1.1. Indeed a "stable" basis, as defined in the following, is sufficient.

Definition 1.4. A function £ L2(IR) is called an R-function
defined in (1.3.12), is a Riesz basis of l2(IR), in the sense that the linear span
of i j ) j , k , J, k zZ, is dense in L2(IR) and that positive constants A and B exist,
with 0 < A B < , such that

for all doubly bi-infinite square-summable sequences {cjtk}; that is,

Suppose that is an R-function. Then there is a unique Riesz basis {j,k}
of £ 2 ( ) which is dual to { j , k } in the sense that

Hence, every function / e L2(1R) has the following (unique) series expansion:
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However, although the coefficients are values of the integral wavelet transform
of / relative to the series (1.3.15) is not necessarily a wavelet series. To
qualify as a wavelet series, there must exist some function L2(1R), such
that the dual basis {j,k} in the series (1.3.15) is obtained from by

(1.3.16)

where, as usual, the notation

is used. If {j,k} is an o.n. basis of I/2(IR), as already discussed in (1.1.14),
(1.1.15), and (1.1.17), then it is clear that (1.3.14) holds with jk = or

In general, however, as we will see in the next section, does not exist.
If is so chosen that exists, then the pair is very useful for displaying
values of integral wavelet transforms of / e L2(IR) at the dyadic positions and
different binary scale levels (or octaves) and for recovering / from these values
of its integral wavelet transforms. Precisely, we have

1.4. Classification of wavelets
Let L2(R) be an R-function; that is, { j , k } , as defined in (1.3.12),

is a Riesz basis of L2(IR). The first question we are faced with is if the dual
basis { j , k } , relative to { j , k } , as defined in (1.3.14), is derived from some
function L2(IR) as in (1.3.16)-(1.3.17). Somewhat surprisingly, the answer
is negative in general.

For instance, let n L2(IR) be any orthogonal wavelet as introduced in
Definition 1.1. For each complex number z with \z\ < 1, consider the function

Then it is clear that the family { j , k } , as defined in (1.3.12), is a Riesz basis
of L2(IR). Now, let us consider the dual basis {j,k} relative to { j , k } - It is
easy to verify, in particular, that
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If some function = L2(1R) could be found such that (1.3.16)-(1.3.17)
hold, then we have

or

Since this is manifestly absurd, with the exception of at most a finite number
of values of z in \z\ r, where 0 < r < 1 is arbitrary, we conclude that
does not exist in general.

The above discussion motivates the following definition of "wavelets".

Definition 1.5. An R-function L2(IR) is called an R-wavelet (or wavelet),
if there exists a function if} € L2(IR], such that { j , k } and { j , k } , as defined
in (1.3.12) and (1.3.17), are dual bases of L2(IR). If is an R-wavelet, then
is called a dual wavelet corresponding to .

It is clear that a dual wavelet is unique and is itself an R-wavelet. More
precisely, the pair if is symmetric in the sense that if is the dual wavelet
of also. For convenience, we will simply call a "wavelet" and the "dual"
of As we already remarked infection 1.3, if is an orthogonal wavelet,
then it is self-dual in the sense of

It is important to emphasize once more that every wavelet orthogonal
or not, generates a "wavelet series" representation of any L2(IR), namely:

where each Cjtk is the integral wavelet transform of / relative to the dual of
evaluated at the time-scale coordinate

Let be any wavelet and consider the Riesz basis { j , k } it generates. For
each j 6 zZ, let W j denote the closure of the linear span of { j , k - & £ ZZ}>
namely:



L An Overview

Then it is clear that L2(IR) can be decomposed as a direct sum of the spaces

in the sense that every function L2(R) has a unique decomposition:

where gi € Wj for all j € ZZ. The dots above the summation and plus signs in
(1.4.4) indicate "direct sums".

If is an orthogonal wavelet, then the subspaces Wj of L2(IR) are mutually
orthogonal, meaning:

In this case, we will use the notation

Consequently, the direct sum in (1.4.4) becomes an orthogonal sum:

where the circles around the plus signs in (1.4.8) indicate "orthogonal sums".
The decomposition (1.4.8) is usually called an orthogonal decomposition of
L2(IR). This means that the decomposition (1.4.5) of any / € -L2(IR) as the
(infinite) sum of functions gj €. Wj is not only unique, but these components
of / are also mutually orthogonal, as described by (1.4.6).

So, an orthogonal wavelet generates an orthogonal decomposition of
L2(IR). However, we have not used all the orthogonality properties of {j,k},
namely: for each j, the orthogonality condition ( ' j , k , j , l ) — &k,l is not re-
flected in (1.4.8). This means that there is a larger class of wavelets that can
be used to generate orthogonal decompositions of L2(IR). The available flexi-
bility is important for constructing wavelets with certain desirable properties.
The most important property that can be achieved for compactly supported
wavelets with this flexibility is "symmetry" or "antisymmetry" . Details will
be studied in Chapters 5 and 6.

Definition 1.6. A wavelet in L2(IR) is called a semi-orthogonal wavelet (or
wavelet) if the Riesz basis { j , k } it generates satisfies

Obviously, every s.o. wavelet generates an orthogonal decomposition (1.4.8)
of L2(IR), and every o.n. wavelet is also an s.o. wavelet. A wavelet (or more
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precisely, an "R-wavelet) is called a nonorthogonal (or n.o.) wavelet if it is
not an s.o. wavelet. However, being an K-wavelet, it has a dual , and the
pair satisfies the bi-orthogonality property:

1.5. Multiresolution analysis, splines, and wavelets
Any wavelet, semi-orthogonal or not, generates a direct sum decomposi-

tion (1.4.4) of l2(IR). For each j € ZZ, let us consider the closed subspaces

of L2 (IR). These subspaces clearly have the following properties:

Hence, in contrast to the subspaces Wj which satisfy

the sequence of subspaces Vj is nested, as described by (1°), and has the
property that every function / in L2(IR) can be approximated as closely as
desirable by its projections P if in Vj, as described by (2°). But on the other
hand, by decreasing j, the projections Pjf could have arbitrarily small energy,
as guaranteed by (3°). What is not described by (1°)-(3°) is the most important
intrinsic property of these spaces which is that more and more "variations" of
P j, f are removed as j — > — . In fact, these variations are peeled off, level by
level in decreasing order of the "rate of variations" (better known as "frequency
bands") and stored in the complementary subspaces Wj as in (4°). This process
can be made very efficient by an application of the property (5°).

In fact, if the reference subspace V0, say, is generated by a single function
(f) € Z/2(IR) in the sense that

where

then all the subspaces Vj are also generated by the same (just as the subspaces
Wj are generated by as in (1.4.3)), namely:

Hence, the "peeling-off" process from Vj to Wj-i, Wj-Zf-^Wj-i can be
accomplished efficiently. We will return to this topic in the next section.



1. An Overview 17

Definition 1.7. A function L2(IR) is said to generate a multiresolution
analysis (MRA) if it generates a nested sequence of closed subspaces Vj that
satisfy (1°), (2°), (3°), and (5°) in the sense of (1.5,4), such that {o,k} forms
a Riesz basis of Vo. Here, analogous to Definition 1.4, for {k} to be a Riesz
basis of V0, there must exist two constants A and B, with 0 < A < B ,
such that.

for all bi-infinite square summable sequences {ck}; that is,

If generates an MRA, then is called a "scaling function".

An exact formulation of an MRA will be given in Section 5.1. Typical
examples of scaling functions are the mth order cardinal B-splines Nm, where
m is an arbitrary positive integer. More precisely, the first order cardinal B-
spline N1 is the characteristic function of the unit interval [0,1), and for m 2,
Nm is defined recursively by (integral) convolution:

To describe the space V0 that Nm generates, we need the following notations:

The subspace V0 generated by Nm consists of all functions / € Cm-2 L2(IR)
such that the restriction of each function / to any interval [k, k +1), k ZZ, is
in m _i ; that is,

From the property (5°) of an MRA, we can now identify all the other subspaces
Vj, namely:

Since splines are only piecewise polynomial functions, they are very easy to
implement in the computer. In fact, algorithms for graphically displaying
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spline curves and for computing the polynomial pieces exactly in terms of B-
nets (or Bernstein-Bezier coefficients) are extremely efficient. In addition, since
.B-splines have the smallest possible supports, local interpolation schemes for
approximating functions in C L2(IR) from any desirable spline sub-space Vj
are also available. All the algorithms mentioned above can be implemented in
real-time. Details will be studied in Chapter 4.

Prom the nested sequence of spline subspaces Vj, we have the orthogonal
complementary subspaces Wj, namely:

These subspaces Wj are mutually orthogonal and are orthogonal summands of
L2(R) as described by (1.4.7) and (1.4.8). Just as the B-spline Nm is the min-
imally supported generator of {Vj}, we are interested in finding the minimally
supported m € W0 that generates the mutually orthogonal subspaces Wj1 in
the sense of (1.4.3) with m-j,k in place of j.k, where

These compactly supported functions m will be called "B-wavelets" of order
m. In Chapter 6, explicit formulas for all m and their duals m, m = 1,2,...,
will be derived. It is perhaps interesting to compare the "supports" of the
B-splines and the B-wavelets. By the support of a continuous function /,
which vanishes outside some bounded interval, we mean the smallest closed
set outside which / vanishes identically. The standard notation is supp /. We
will see that

for all m = 1,2, . . . . In addition to having minimum supports, the B-wavelets
m enjoy many other important properties. We only mention three of them

here. Firstly, it is clear from (1.5.9) that each m is an s.o. wavelet. Secondly,
efficient algorithms for computing m and all its derivatives are available. Fi-
nally, the B-wavelets m are symmetric for even m and antisymmetric for odd
m, meaning:

In applications to signal analysis, symmetry and antisymmetry of the wavelet
functions are very important. For instance, they are essential to avoid distor-
tion in reconstruction of compressed data. This will be discussed in Chapter 5.
Other interesting properties of m will be studied in Chapter 6.

1.6. Wavelet decompositions and reconstructions
Let us return to considering the general structure of multiresolution analy-

sis and wavelets as discussed in (1.5.1), where {Vj} is generated by some scaling
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function L2(IR) and {Wj} is generated by some wavelet L2(1R). In this
case, by the property (2°), every function / in L2(1R) can be approximated as
closely as is desired by an FN , for some N € zz. Since Vj — Vj-1+wj-1
for any j, fN has a unique decomposition:

where fN-_i VN-1 and gn-1 WN-1 By repeating this process, we have

where fj € Vj and Wj for any j, and M is so chosen that fN~M is
sufficiently "blurred". The "decomposition" in (1.6.1), which is unique, is
called "wavelet decomposition"; and the "blur" is measured in terms of the
"variation" (or more precisely, frequency or number of cycles per unit length)
of JN-M- A less efficient "stopping criterion" is to require ||fN-M| to be
smaller than some threshold. In the following, we will discuss an algorithmic
approach for expressing /jv as a direct sum of its components 9N-1, • • • > 9N-M•,
and f N - M , and recovering fN from these components.

Since both the scaling function 0 € V0 and the wavelet Wo are in V1,
and since V1 is generated by 1,k (x) = 21(2x-k (2x — k), k € 2Z, there exist two
sequences {pk and {qk} l2 such that

for all x IR. The formulas (1.6.2) and (1.6.3) are called the "two-scale
relations" of the scaling function and wavelet, respectively. On the other hand,
since both (2x) and (2x-1j)(2x — 1) are in Vi and Vi = V0+Wo, there are four l2

sequences which we denote by {a_2k}, {b-2k}, {a1-2k}, and {b1-2k}, k zZ,
such that

for all x € IR. The two formulas (1.6.4) and (1.6.5) can be combined into a
single formula:

which is called the "decomposition relation" of and . Now, we have two
pairs of sequences ({pk}, {qk}) and ({at}, {bk), all of which are unique due
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to the direct sum relationship V\ — Vo+Wo. These sequences are used to
formulate the following reconstruction and decomposition algorithms. Hence,
{pk} and {qk} are called reconstruction sequences, while {ak} and {bk} are
called decomposition sequences.

To describe these algorithms, let us first recall that both ij € Vj and
gi € Wj have unique series representations:

and

where we have intentionally suppressed the normalization coefficient 2J/2, by
writing out 0(2Jx — k) and (2?x — k) instead of using and j,k, in order to
drop the unnecessary multiple of \/2 in the algorithms. In the following decom-
position and reconstruction algorithms, the functions fi and gj are represented
by the sequences ci and dj as defined in (1.6.7) and (1.6.8).

(i) Decomposition algorithm

By applying (1.6.6)-(1.6.8), we have:

Figure 1.6.1. Wavelet decomposition.

Observe that both cj-1 and dj-1 are obtained from c-7 by "moving av-
erage" schemes, using the decomposition sequences as "weights", with the
exception that these moving averages are sampled only at the even integers.
This is called downsampling. Therefore, each of the arrows in Figure 1.6.1
indicates a moving average followed by a downsampling at the even indices,
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(ii) Reconstruction algorithm
By applying (1.6.2), (1.6.3), (1.6.7), and (1.6.8), we have:

Figure 1.6.2. Wavelet reconstruction.

Here, cj is obtained from cj 1 and dj x by two moving averages, using the
reconstruction sequences as "weights", with the exception that an upsampling
is required before the moving averages are performed. More precisely, the
samples and are used at the even indices m — 2l and zeros are used
at the odd indices m = 2£+1, when the (discrete) convolutions are taken with
respect to {pm} and {qm}-

We end this section with some remarks on the two algorithms given above.
Firstly, if a weight sequence {ak}, {bk}, {Pk}, or {<qk}, is finite, then the mov-
ing average is a very simple FIR (finite impulse response) filter. If, however,
the weight sequence is infinite, then the moving average is an IIR (infinite
impulse response) filter. As is well known, IIR filters can be implemented as
ARMA (autoregressive-moving average) filters, provided that the symbol (or
"z-transform") of the weight sequence is a rational function. We will call such
weight sequences "ARMA sequences". Otherwise, the infinite weight sequence
has to be truncated to give an FIR filter. Secondly, if the weight sequence con-
sists of terms with irrationals or long decimal representations, rounding-off (or
"quantization") of these numbers is necessary. Of course, both truncation and
quantization induce errors which should be estimated a priori. Finally, since
the scaling function and wavelet pair are used as "mirror filters", sym-
metry (or at least antisymmetry) is important in many applications in signal
analysis. In reconstructing compressed images, for instance, non-symmetry
and non-antisymmetry induce distortion. As will be seen in Chapter 5 the
symmetric properties of are reflected by the symmetry of the decom-
position and reconstruction sequences. A brief discussion of signal and image
processing will be given in Chapter 3.

In Chapter 6, we will see that when spline-wavelets m (with minimal
supports) are used as , the reconstruction sequences are finite and the de-
composition sequences are ARMA. All these sequences are symmetric for even
order m and antisymmetric for odd order m. In addition, modulo a common
factor of the reciprocal of an integer, all of these sequences consist of integer
terms only.

On the other hand, when compactly supported orthogonal wavelets are
considered, both the reconstruction and decomposition sequences are finite.
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However, for continuous , neither symmetry nor antisymmetry is possible,
and the corresponding reconstruction and decomposition sequences have to
be quantized. A detailed account of the structural analysis and constructive
schemes of scaling functions and wavelets will be given in Chapter 5. In par-
ticular, the relationship between linear-phase filtering and symmetric scaling
functions and wavelets will be studied there. The final two chapters will be
devoted to semi-orthogonal and orthogonal wavelets, respectively. More pre-
cisely, a fairly complete analysis of cardinal spline-wavelets will be given in
Chapter 6, and the topic of orthogonal wavelets, with emphasis on those with
compact supports, will be presented in Chapter 7. Also included in this chap-
ter will be a brief discussion of orthogonal wave packets which are introduced
for better time-frequency localization.



Fourier Analysis

The subject of Fourier analysis is one of the oldest subjects in mathemat-
ical analysis and is of great importance to mathematicians and engineers alike.
Prom a practical point of view, when one thinks of Fourier analysis, one usually
refers to (integral) Fourier transforms and Fourier series. A Fourier transform
is the Fourier integral of some function / defined on the real line R. When /
is thought of as an analog signal, then its domain of definition IR is called the
continuous time-domain. In this case, the Fourier transform / of / describes
the spectral behaviour of the signal /. Since the spectral information is given in
terms of frequency, the domain of definition of the Fourier transform /, which
is again IR, is called the frequency domain. On the other hand, a Fourier series
is a transformation of bi-infinite sequences to periodic functions. Hence, when
a bi-infinite sequence is thought of as a digital signal, then its domain of def-
inition, which is the set 2Z of integers, is called the discrete time-domain. In
this case, its Fourier series again describes the spectral behaviour of the digital
signal, and the domain of definition of a Fourier series is again the real line IR,
which is the frequency domain. However, since Fourier series are 27-periodic,
the frequency domain IR in this situation is usually identified with the unit
circle. To a mathematician, this identification is more satisfactory, since the
"dual group" of ZZ is the "circle group".

The importance of both the Fourier transform and the Fourier series stems
not only from the significance of their physical interpretations, such as time-
frequency analysis of signals, but also from the fact that Fourier analytic tech-
niques are extremely powerful. For instance, in the study of wavelet analysis,
the Poisson summation formula, Parseval's identities for both series and in-
tegrals, Fourier transforms of the Gaussian, convolution of functions, and the
delta distribution, etc., are often encountered. Since this monograph is in-
tended to be self-contained, preliminary materials on the basic knowledge of
Fourier analysis such as the above mentioned topics will be discussed in this
chapter.

2.1. Fourier and inverse Fourier transforms
Throughout this text, all functions / defined on the real line 1R are as-

sumed to be measurable. For the reader who is not familiar with the basic
Lebesgue theory, but is willing to believe some of the standard theorems, the
sacrifice is very small in assuming that / is piecewise continuous, and by this we
mean the existence of points {xj} in 1R with no finite accumulation points, such

23
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that Xj < X j + 1 f o r all j, and that / is continuous on each of the open intervals
(xj,Xj+i) as well as the unbounded intervals ( , m i n xj) and ( m a x i ) ,
if min xj or maxxj exist. For each p, 1 p < let LP(IR) denote the class
of measurable functions / on IR, such that the (Lebesgue) integral

is finite. Abo, let L°°(IR) be the collection of almost everywhere (a.e.) bounded
functions; that is, functions bounded everywhere except on sets of (Lebesgue)
measure zero. Hence, endowed with the "norm"

each Lp(IR), 1 p <, is a Banach space. Since we do not require any
knowledge of the Banach space structure in understanding wavelet and time-
frequency analyses in this introductory monograph, the reader only has to
know a few elementary properties of the LP(IR) norms, such as the Minkowski
Inequality:

and the Holder Inequality:

where p(p — I)"1 should be replaced by 1 when p = A consequence of
(2.1.2) is the Schwarz Inequality:

Hence, in view of (2.1.3), we may define the "inner product"

Endowed with this inner product, the Banach space L2(IR) becomes a Hilbert
space. Of course, it is clear that

In the following, we first concentrate our attention on functions in L1(IR).
As usual (to a mathematician), the imaginary unit will be denoted by i The
electrical engineer might want to replace i by j throughout the entire text.
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Definition 2.1. The Fourier transform of a function / f L1(IR) is defined by

Some of the basic properties of /(w), for every / f l1(IR), are summarized
in the following.

Theorem 2.2. Let / L1(IR). Then its Fourier transform f satisfies:

(ii) / is uniformly continuous on IR ;
(iii) if the derivative f of f also exists and is in Ll(IR], then

Proof. Assertion (i) is obvious. To prove (ii), let 8 be chosen arbitrarily and
consider

Now, since \e~i6x-l\\f(x}\ 2\f(x)\ € L1(IR) and | e - ix l | 0 as -> 0, the
Lebesgue Dominated Convergence Theorem implies that the quantity above
tends to zero as 6 — 0.

To establish (iii), we simply apply another standard theorem in Lebesgue
integration theory to integrate (2.1.6) by parts, using the fact that f ( x ) — 0
as x — > ±

Finally, the statement in (iv) is usually called the "Riemann-Lebesgue
Lemma" . To prove it, we first observe that if /' exists and is in L1(IR), then
by (iii) and (i), we have, indeed,

as w — » ±. In general, for any given > 0, we can find a function g such
that g,g' e L1 and ||f — g\\i < . Then by (i), we have

completing the proof of (iv).
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Although f(w) —> 0, as w —> ±00, for every f E L1(IR), it does not
mean that / is necessarily in L1(IR). To demonstrate this remark with a
counterexample, we need the notion of the so-called "Heaviside unit step"
function:

where a € IR-

Example 2.3. The function

is in L1(IR), but its Fourier transform, which is

is not in

Proof. From ei twx — cos wx — i sin wx, we have

which behaves like O(/w/-1) at , and hence, is not in L1(1R). •

If it happens that / is in L1(IR,), then we can usually "recover" / from /,
by using the "inverse Fourier transform" defined as follows.

Definition 2.4. Let / L1(IR) be the Fourier transform of some function
f L1(1R). Then the inverse Fourier transform of f is denned by

So, the important question is: When can / be recovered from / by using
the operator f-1, or when is ( F - 1 f ) ( x ) = f ( x } ? The answer is: At every
point x where / is continuous. That is, we have the following.

Theorem 2.5. Let / Ll(IR) such that its Fourier transform f is also in
Ll(R}. Then

at every point x where / is continuous.

We will delay the proof of this theorem to the next section. Instead, we
end this section by deriving the Fourier transform of the so-called "Gaussian
function" .
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Example 2.6. Let a > 0. Then

In particular, the Fourier transform of the Gaussian function

Proof. Consider the function

By completing squares, we have

Now, since both f(y) as defined in (2.1.12) and the function

can be extended to be entire (analytic) functions, and since they agree on IR
as shown in (2.1.13), they must agree on the complex plane C. In particular,
by setting y to be —iw, we have

2.2. Continuous-time convolution and the delta function
Let / and g be functions in L1(IR). Then the (continuous-time) convolu-

tion of / and g is also an L1 (IR) function h defined by

It is clear that h e L1(IR), and in fact,

since
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A change of the variable of integration in (2.2.1) yields:

That is, the convolution operation is "commutative". Since / * g is in (IR)
we can again convolve / * g with another function u € i1(IR); that is, we may
consider (/ * g) * u. It is easy to see that

Hence, the convolution operation is "associative" .
Now, the question is: Does there exist some function, say d € L1(IR), such

that

The answer is negative, and this can be shown by using a Fourier transform
argument. First, let us record the following important property of the Fourier
transform operator.

Theorem 2.7. Let / and g be in Ll(M). Then

Since the proof is a trivial application of the Fubini Theorem, it is omitted
here.

Now, if a function d £. Ll(IR) exists such that (2.2.5) holds, then by
applying Theorem 2.7, we have

That is, we must have d(w) — 1, and this violates the Riemann-Lebesgue
Lemma as stated in Theorem 2.2 (iv).

However, we still wish to "approximate" d in (2.2.5), since even an " ap-
proximation of the convolution identity" (or simply "approximate identity" ) is
a very important tool in Fourier analysis.

From the preceding discussion, we see that the first requirement for such
a family {da} C L1(IR) that seeks to approximate the identity is

as a — » 0, say. In particular, we may use the normalization da(0) — 1, or
equivalent ly,

An excellent candidate is the family of Gaussian functions
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Figure 2.2.1. Gaussian functions ga, a = 1, 1/4

Indeed, by applying (2.1.11) in Example 2.6 with a = l/4a, we have

which clearly satisfies (2.2.7) and (2.2.8). The graphs of ga for a sequence of
decreasing values of a > 0 is shown in Figure 2.2.1.

Observe that if ga is used as the "weight" function in taking the mean
of a continuous function / in L1(IR), then the concentration of the weight
approaches the origin as a — 0+; that is,

which is the same as

More precisely, we have the following.

Theorem 2.8. Let / € L(IR). Then

at every point x where / is continuous.

Proof. Let / be continuous at x and e > 0 be arbitrarily given. We select
77 > 0 such that

for all y € R with |y| < 77. Then in view of (2.2.8) with da = ga, we have
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Since both ga(n} and the last term obviously converge to zero as a ~-» 0+, this
completes the proof of the theorem. •

Now, let us consider the collection C of continuous functions in L1(IR).
Then for any fixed a; € IR, each ga may be considered a "linear functional" on
C, defined by

Similarly, we consider the linear functional 6 on C, defined by

Then (2,2.11) in Theorem 2.8 indeed says that

Since 6*f = f, is the "convolution identity"; and hence, {ga} is an approxi-
mation of the convolution identity. Recall that 8 is not an L1(IR) function. In
fact, it is not a function at all, since it satisfies

Although this linear functional 8 is usually called the "delta function", it is
really a "generalized function" or "distribution". As we remarked earlier, since
5 * / = / for all / £ C, we could assign the Fourier transform of 8 to be the
constant 1, namely:
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To end this section, we demonstrate the power of the approximate identity
{ga} by returning to establish Theorem 2.5 in the previous section. Let us first
introduce the identity:

Note that since / and g are in L(IR) as shown in Theorem 2.2 (i), both
integrals in (2.2.16) are finite in view of the Holder inequality (2.1.2) with
p = 1. A trivial application of the Fubini Theorem yields (2.2.16).

Proof of Theorem 2.5. Let x € IR be fixed and set

Then by applying (2.1.11) in Example 2.6, we have

where g was defined in (2.2.9). Hence, it follows from (2.2.16) and (2.2.17)
that

Now, if / is continuous at x, then by Theorem 2.8, the left-hand side of (2.2.18)
converges to f ( x ) as a —> 0+. Therefore, since the right-hand side of (2.2.18)
tends to (F-1f)(x) , we have
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2,3. Fourier transform of square-integrable functions
In this section, we introduce the definition of the Fourier transform of

functions in L2(IR). To do so, the notion of "autocorrelation" is needed.

Definition 2.9. The autocorrelation function of an f L2(IR) is denned by

Note that in view of the Schwarz Inequality (2.1.3), the integrand in (2.3.1)
is in L1(IR.), so that F(x) is a finite value for every x IR. In fact, we can say
a little more as in the following.

Lemma 2.10. Let F be the autocorrelation function of f € L2(IR). Then
(i) \F(x)\ , all x € IR; and

(ii) F is uniformly continuous on R.

Proof. As mentioned above, (i) is a consequence of the Schwarz Inequality

To prove (ii), we consider an arbitrary real number 77 and again apply the
Schwarz Inequality to obtain

Since L2(IR), by a basic property in Lebesgue integration theory, the
integral inside the braces, which is independent of x, tends to zero as n — 0
0.

The following result is instrumental in extending the notion of Fourier
transform to include L2(IR) functions.

Theorem 2.11. Let f E Ll(IR) L2(IR). Then the Fourier transform f of f is
in L2(IR), and satisfies the following "Parseval Identity":
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Proof. Since / is continuous and tends to zero at infinity as assured by
Theorem 2.2, the family {ga} introduced in (2.2.10) can be used as weight
functions, so that ga\f\

2 L R ) . Observe that

where, with the exception of a multiple of ( 2 ) - 1 , the term inside the brackets
is the inverse Fourier transform of ga. Hence, by Theorem 2.5, we have

where ga is given in (2.2.9). So, by using the notion of autocorrelation intro-
duced in (2.3.1), the identity (2.3.2) becomes

Since F is continuous and {ga} is an approximation of the 6 distribution, we
have

Now, by Fatou's lemma, we have / € L2(IR); and because of
the Lebesgue Dominated Convergence Theorem allows us to interchange limit
and integration in (2.3.3), yielding

This completes the proof of Theorem 2.11. •

As a consequence of Theorem 2.11, we observe that the Fourier transform
f may be considered as a "bounded linear operator" on L1(IR) L2(R) with
range in L2(H); that is,

such that f = 2. Since L1(IR) L2(IR) is dense in £2(1R), F has a norm-
preserving extension to all of L2(IR). More precisely, if / € £2(IR), then its
truncations:
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where N = 1,2,..., are in Ll(IR) L2(IR), so that fN € L2(IR). In fact, it is
easy to see that {fN} is a Cauchy sequence in L2(IR), and by the completeness
of L?(IR), there is a function f € L2(IR), such that

Definition 2.12. The Fourier transform / of a function / € L2(JR) is defined
to be the Cauchy limit f of {fN}, and the notation

which stands for "limit in the mean of order two", will be used.

Of course, the definition of f, for / 6 L2(1R), should be independent of
the choice of fa € L1(R) I/2(IR). In other words, any other Cauchy sequence
from LI(IR) L2(1R) that approximates / in L2(IR) can be used to define /.
But in view of their simplicity, the truncations of / as in (2.3.4) are often
chosen, particularly in signal analysis. We also remark that the extension of
F from L1(R) L2(IR) to L2(IR) is consistent with F originally defined on
L1(IR). This can be easily verified by using basic Lebesgue theory. Finally, we
must emphasize that the Parseval Identity (2.3.2) extends to all of L2(IR). In
fact, a little more can also be said, as follows.

Theorem 2.13. For all f,g l2(IR), the following- relation holds:

The relation in (2.3.6) is also called the Parseval Identity.

Proof. It is clear from the foregoing discussions that

Hence, (2.3.6) follows by setting h to be each of the four functions

in the inner product identity
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Recall that when the inverse Fourier transform F-1l was introduced in
Definition 2.4, we had to restrict F-1 to the intersection of L1(IR) with the
image of T because F- does not map L1(IR) into L1(IR). In addition, we could
not even write

unless / was continuous at x. The L2(IR) theory, on the other hand, is much
more elegant. We have seen that F maps L2(IR) into itself. In the following,
we will show that this map is actually one-one and onto, so that the inverse
Fourier transform F-l can be easily formulated.

Before we proceed any further, we need the following preliminary lemma
and some notation.

Lemma 2. 14. Let f,g L2 (IR) . Then

Proof. Since (2.3.8) holds for /, g € Ll(1R) as shown in (2.2.16), and L1(IR)
L2(IR) is dense in L2(IR), it is easy to see that (2.3.8) also holds for /, g
L2(IR).

Definition 2.15. For every / defined on IR, the function f~ is defined as
follows:

We call f~ the "reflection" of f (relative to the origin).

The following observation is trivial.

Lemma 2.16. Let f L2(IR). Then

We are now ready to establish the invertibility of the Fourier transform
operator on L2(IR).

Theorem 2.17. The Fourier transform F is a one-one map of L2(IR) onto
itself. In other words, to every g € L?(IR), there corresponds one and only one
f L2(IR) such that f = g; that is,

is the inverse Fourier transform of g.

Proof. Let g e L2(IR). Then its reflection g- as defined in (2.3.9) is also in
I2(IR). We will first show that the L2(IR) function
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satisfies / = g a.e.
Indeed, by applying (2.3.10), Lemma 2.14, (2.3.12), (2.3.10) again, and

the Parseval Identity, consecutively, we have

so that f=g,a.e.
Showing that /, as defined in (2.3.12), is the only function in L2(IR) that

satisfies f = g, is equivalent to showing that / = 0 implies g= 0, a.e. and this
is an immediate consequence of the Parseval Identity in Theorem 2.13. •

The L2(IR) theory of Fourier transform as discussed above is usually known
as the Plancherel theory.

2.4. Fourier series
We now turn to the study of 2-periodic functions. For each p, 1 p ,

the following notation will be used:

For each p, Lp(0, 2) denotes the Banach space of functions / satisfying
f(x + 2) = f ( x ) a.e. in IR, and | | f | |Lp(0,2) < . Sometimes the subspace
C*[0, 2] of L ( 0 , 2) consisting of only continuous functions is more useful
than the whole space l(0, 2). Here, the asterisk * is used to remind us that

The inequalities of Minkowski, Holder, and Schwarz for LP(1R) in (2.1.1),
(2.1.2), and (2.1.3) are also valid for LP(0, 2). In particular, for p = 2, we can
again define the "inner product"
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where the asterisk is used to distinguish this inner product from that in L2(1R).
Later, we will also need the following generalized Minkowski Inequality:

where the generalization is simply replacing a finite sum by a definite (Lebesgue)
integral. Also, note that, in contrast to the spaces LP(IR) which are not nested,
we have

This can be easily verified by applying the Holder Inequality.
The companions of the spaces L p ( 0 , 2 ) are the (sequence) spaces

of bi-infinite sequences {ak}, k € ZZ, that satisfy: ||{ak}||, where

Again, the inequalities of Minkowski, Holder, and Schwarz remain valid for the
sequence spaces. Analogous to the Hilbert spaces L2(B,) and L2(0, 2), the
space I2 — l2(ZZ) is also a Hilbert space with the inner product:

Recall that the (integral) Fourier transform is used to describe the spectral
behavior of an analog signal / with finite energy (i.e., / € L2(IR)). Here, we
introduce the "discrete Fourier transform" F-* of a "digital signal" {ck} € lp

to describe its spectral behavior, as follows:

That is, the discrete Fourier transform of {ck} is the "Fourier series" with
"Fourier coefficients" given by {ck}. We have not discussed the convergence
of the Fourier series in (2.4.6) yet; but for {ck} € l1, it is clear that the series
converges absolutely and uniformly for all x IR. In general, the formal series
(2.4.6) may be viewed simply as the "symbol" of the sequence {ck}.

Since eix = cosx + isinx, the Fourier series in (2.4.6) can also be written
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with

The formulas in (2.4.8) can be easily derived by using the following identities:

The function notation f ( x ) in (2.4.7) is only used as a notation for the Fourier
series. It may not even be a function. In any case, we can always consider the
trigonometric polynomials

where is a nonnegative integer. These are called "partial sums" of the
Fourier series /.

The Nth degree trigonometric polynomial

is of special importance. It is called the "Dirichlet kernel" of degree N. Ob-
serve that, at least formally, the Nth partial sum SNf of a Fourier series /
can be obtained by the "convolution" of / with the Dirichlet kernel of degree
N, namely:

The integration in (2.4.11) is certainly meaningful if / € Ll(0, 2).
On the other hand, if / is any function in lp(0, 2), 1 < p <, then we

can define the "inverse discrete Fourier transform" F*-1 of / by:

That is, T*-l takes / L p ( 0 , 2 ) to a bi-infinite sequence (c
This sequence, of course, defines a Fourier series

and is called the sequence of "Fourier coefficients" of the Fourier series. A
fundamental question is if this series "converges" to the original function /. A
discussion of this topic is delayed to the next section. In the following, we will
only study the £2(0, 2) theory.
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Theorem 2.18. Let / e L2(0, 2). Then the sequence {ck(f)| of Fourier
coefficients of / is in l2 and satisfies the Bessel Inequality:

Proof. Let SN(f) denote the Nth partial sum of the Fourier series (2.4.13).
Then we have

where it is easy to verify that

and

Hence, putting (2.4.16) and (2.4.17) into (2.4.15), we have

Since this inequality holds for any N, we have established (2.4.14)

The converse of Theorem 2.18 is the following so-called Riesz-Fischer The-
orem.

Theorem 2.19. Let {ck} l2. Then there exists some / € L2(0, 2) such that
Ck is the kth Fourier coefficient of f. Furthermore,

This theorem asserts that the discrete Fourier transform F maps L2 into
L 2 ( 0 , 2 ) and the identity (2.4.18) holds for all / in the image of l2 under F*.

Proof. For each positive integer N, consider the trigonometric polynomial
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Since {ak} is in l2, the sequence

is a Cauchy sequence of real numbers. Hence, by considering an identity similar
to (2.4.17) for \\SN — Sm 2l2(0,2), it is a Cauchy sequence in
L2(0, 2). Let / e £2(0, 2) be the limit of this sequence. Then by the Bessel
Inequality (2.4.14), the Fourier coefficients Ck(f) of / satisfy the estimate

Hence, taking N — , we obtain

Furthermore, in view of (2.4.16) and (2.4.17), we have

which, as TV —» , yields (2.4.18

We emphasize again that Theorem 2.19 only asserts that the identity
(2.4.18) is valid for all functions / in the image of the space l2 under the
discrete Fourier transform operation. That (2.4.18) can indeed be extended to
all of £2(0, 2) is a consequence of the Weierstrab Theorem, which says that
the set of all trigonometric polynomials is dense in L2(0, 2). The identity
(2.4.18), so extended to all of L2(0, 2) is called the "Parseval Identity" for
£2(0, 2). A simple way to establish the Weierstrab Theorem is to consider
the Cesaro means of the sequences of partial sums of the Fourier series of
f L 2 (0 ,2 ) .

Let / € £2(0, 2) and denote by Snf the nth partial sum of the Fourier
series (2.4.7) as defined in (2.4.9). Then the Nth Cesaro means of {Snf} is
given by

Since Snf is the convolution of / with the Dirichlet kernel Dn as defined in
(2.4.11) (for f L 2 (0 ,2) L1(0, 2 ) ) , it follows that N f is the convolution
of / with the so-called "Fejer kernel" , defined by
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namely:

Observe that the trigonometric polynomial KN differs from DN(X} in that
KN(X) > 0 for all x. This property is crucial in establishing the following
polynomial density result.

Theorem 2.20. Let / € L2(0, 2). Then

Before we prove this result, we find it convenient to introduce the notation
of "Lp(0,2) modulus of continuity" :

Note that L (0, 2) is replaced by its subspace C* [0, 2] . We also remark that
wp(f; n) and w;(f; n) are nondecreasing functions of n and that

Let us now turn to the proof of the Theorem 2.20.

Proof. Since

we have, by the generalized Minkowski Inequality in (2.4.3) and the definition
of w2(f:/t/ ) consecutively, that



42 2. Fourier Analysis

Let > 0 be arbitrarily given. Choose M > 0 so that

Since w2 (f:.) < 2||f | |l2(0 ,2.) and W 2 ( f ; •) is a nondecreasing function, it follows
that, for (N + I) 2M,

as N —» . This completes the proof of Theorem 2.20.

By using the preceding result on the density of trigonometric polynomials
in L 2 (0 ,2) , we can now establish the following main result of this section.

Theorem 2.21. The discrete Fourier transform F* defined in (2.4.6) is an
isometric isomorphism of l2 onto L 2 (0 ,2) . In other words, F* maps I2 one-
one onto L2(0, 27) , such that the Parseval Identity

holds, where Ck = Ck(f) is the kth Fourier coefficient of f.

Proof. Theorem 2.19 already says that F* maps £2 into L 2 (0 ,2) . To prove
that the map is onto, let f L 2 ( 0 , 2 } be arbitrarily chosen and let {ck}
denote the sequence of Fourier coefficients of /. Then by the Bessel Inequality
in Theorem 2.18, we have
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On the other hand, by the definition of N f in (2.4.20), and referring to Snf
in (2.4.9), it is clear that

so that

That is, we have

N

Hence, by applying Theorem 2.20, the Parseval Identity (2.4.45) is established.
This identity of course guarantees that F* is one-one, since if all the Fourier
coefficients of / are zero, then ||/||L2(o,2) = 0, or / = 0 a.e..

2.5. Basic convergence theory and Poisson's summation formula
Although the theory of convergence of Fourier series is a very fascinating

subject, a detailed study is beyond the scope of this book. We will only discuss
two basic tests of convergence and omit their derivations.

First, let us mention that there exists a 2-periodic continuous function
whose Fourier series diverges at every rational number. In addition, there
even exists a function in L 1 (0 ,2) whose Fourier series diverges everywhere.
Hence, certain conditions must be imposed to guarantee convergence. The
convergence result that requires the weakest assumption is a very deep result
which says that the Fourier series of every function / in l p ( 0 , 2 ) , where
1 < p < converges to / almost everywhere. In the following, we are
interested in uniform convergence, or at least, convergence at certain specific
points.

The following result is called the Dini-Lipschitz Test of convergence. The
notation w;(f; n) for uniform modulus of continuity introduced in (2.4.23) will
be used here.

Theorem 2.22. Let / € C*[0,27r] such that
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for some a > 0. Then the Fourier series off converges uniformly to f; that is,

For instance, if w(f; n) = O(na) for some a > 0, then the condition in
(2.5.1) certainly holds.

The second convergence test to be stated below is called the Dirichlet-
Jordan Test. It is valid for functions which do not oscillate too drastically.
Such functions are said to be of "bounded variation". It is well known (and
not too difficult to derive from the definition) that every function of bounded
variation on an interval [a, 6] can be written as the difference of two non-
decreasing functions. Hence, if / is of bounded variation on [a, b], then both
of the one-sided limits

exist at every x, a < x < b.

Theorem 2.23. Let f be a 2:-periodic function of bounded variation on [0 ,2] .
Then the Fourier series of f converges to (f(x+) + f ( x - ) / 2 everywhere; that
is,

for every x e St. Furthermore, if f is also continuous on any compact interval
[a, 6], then the Fourier series of f converges uniformly to f on [a, b].

While the (integral) Fourier transform studied in the first three sections
of this chapter is defined on LP(IR), the Fourier series represents only periodic
functions. To periodize a function f LP(IR), the simplest way is to consider

The first question that arises is whether or not a function. The answer is
positive for p = 1, as shown in the following.

Lemma 2.24. Let f L1(IR). Then the series as defined in (2.5.4) converges
a.e. to some 2-periodic function f. Furthermore, the a.e. convergence is
absolute, and f/ € l i ( 0 , 2 ) with

Proof. The almost everywhere absolute convergence will be established, once
we have



2. Fourier Analysis 45

But this, along with (2.5.5), follows immediately from the simple observation
that

In view of this lemma, we may consider the Fourier series of f, namely:

where

2

Hence, if the Fourier series of converges to f, then the two quantities

and

can be equated. Unfortunately, since f is only l1 L1(0, 2), its Fourier series
may even diverge everywhere. So, some conditions must be imposed on f or
/ in order to be able to insure that (2.5.6) and (2.5.7) are the same. We first
settle for a very general statement.

Theorem 2.25. Let f L1(IR) satisfy the following two conditions:
(i) the series (2.5.6) converges everywhere to some continuous function, and

(ii) the Fourier series (2.5.7) converges everywhere.

Then the following "Poisson Summation Formula" holds:

,
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Before we give some sufficient conditions on / to guarantee both (i) and
(ii), let us remark that Poisson's summation formula (2.5.8) or (2.5.9) can be
formulated a little differently. To do so, we simply observe that if fa(x) :—
/(ax) where a > 0, then fa(x) = a-1/(f )• Hence, (2.5.8) and (2.5.9) become:

In particular, by choosing a = (2) - 1 , we have

Now, we list some conditions under which both (i) and (ii) in Theorem 2.25
hold.

Corollary 2.26. Let f be a measurable function satisfying:

for some a > 1. Then Poisson's summation formula (2.5.8) holds for all x IR.

Observe that since / satisfies (2.5.12), / is necessarily continuous, and it
is clear that both (i) and (ii) are valid.

Corollary 2.27. Let f e L1(IR) and suppose that the series in (2.5.4) converges
everywhere to a continuous function of bounded variation on [0, 2] . Then
Poisson's summation formula (2.5.8) holds for every x € IR.

If f is a continuous function of bounded variation on [0,2], then by
Theorem 2.23, its Fourier series, which is (2.5.7), converges everywhere to f.
That is, (2.5.6) and (2.5.7) are identical.

The most important example is any compactly supported continuous func-
tion / of bounded variation. For such an /, the series (2.5.4) is only a finite
sum, and hence, f is also a continuous function and is of bounded variation
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on [0, 2]. All B-splines of order at least 2, to be studied in detail in Chapter 4,
are typical examples.

We end this chapter by applying Poisson's summation formula to study the
Fourier transform of the autocorrelation function F of a function f L2(1R)
as defined in (2.3.1). This will better prepare us to study the construction
of semi-orthogonal wavelets in Chapter 5. By using the notation f- for the
reflection of / as introduced in (2.3.9), we may reformulate F as

Hence, by applying Lemma 2.16, we obtain

Now, since / is in L2(1R), so is / by the Parseval Identity. Hence, F € L1(IR)
and by Lemma 2.24,

converges a.e. and f L1(0, 2).
To study the Fourier series of f;, let us impose the extra condition,

namely: / € L1(IR). Then (f)~ is also in L1(IR), and so is the convolution
F = f * (f)". Therefore, by Theorem 2.5, we have

and hence, the Fourier coefficients of f are given by

That is, the Fourier series of f can be written as:

So, we have:
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where z = e~ix, and the right-hand side of (2.5.17) is called the "symbol" of the
sequence {F(k)}. If / happens to have compact support, then so does its au-
tocorrelation function F; and the symbol of {F(k}} is a "Laurent polynomial".
This Laurent polynomial is also called the "Euler-Frobenius polynomial" gen-
erated by /. Hence, (2.5.17) gives a very important relation between the
Euler-Frobenius polynomial generated by a compactly supported function /
and a nonnegative function F in (2.5.14), which is instrumental to the study
of unconditional basis, orthogonalization, and duality. Details on these topics
will be studied in later chapters, particularly in Chapter 5.

Returning to (2.5.17) without assuming that / is of compact support, we
only have equality a.e. for / e L1(IR) L2(IR). In the following, we give three
different sets of conditions that ensure the validity of (2.5.17) for all x IR.

Theorem 2.28. Let / € L2(IR) satisfy any one of the following three condi-
tions:
(i) f(x) = O(\x\-b], b > 1; and f(x) = O ( \ x \ - a ) , a > 1/2, as \x\ ->

(ii) / Is of compact support and belongs to class Lip(y) for some 7 > 0,
meaning:

(in) f is a continuous function of compact support, and is of bounded variation
in its support.

Then it follows that

for all x IR.

We remark that each of the conditions in (i)-(iii) already implies that the
left-hand side of (2.5.19) is a 2-periodic continuous function whose Fourier
series is given by the right-hand side. This is obvious for (i), but requires a
little more work for (ii) and (iii). The convergence of the Fourier series at every
x IR for each of (i), (ii), and (iii) follows from Corollary 2.26, Theorem 2.22.
and Theorem 2.23, respectively. •



3 Wavelet Transforms and
Time-Frequency Analysis

In order to study the spectral behavior of an analog signal from its Fourier
transform, full knowledge of the signal in the time-domain must be acquired.
This even includes future information. In addition, if a signal is altered in a
small neighborhood of some time instant, then the entire spectrum is affected.
Indeed, in the extreme case, the Fourier transform of the delta distribution
8(t — to), with support at a single point t0> is e~itow, which certainly covers
the whole frequency domain. Hence, in many applications such as analysis of
non-stationary signals and real-time signal processing, the formula of Fourier
transform alone is quite inadequate.

The deficiency of the formula of Fourier transform in time-frequency anal-
ysis was already observed by D. Gabor, who, in his 1946 paper, introduced a
time-localization "window function" g(t — b), where the parameter 6 is used to
translate the window in order to cover the whole time-domain, for extracting
local information of the Fourier transform of the signal. In fact, Gabor used
a Gaussian function for the window function g. Since the Fourier transform
of a Gaussian function is again a Gaussian, the inverse Fourier transform is
localized simultaneously.

The first section in this chapter is devoted to a study of the Gabor trans-
form. A discussion of this so-called "short-time Fourier transform" (STFT) in
general and the Uncertainty Principle that governs the size of the window will
be the content of the second section. In particular, it will be observed there
that the time-frequency window of any STFT is rigid, and hence, is not very
effective for detecting signals with high frequencies and investigating signals
with low frequencies. This motivates the introduction of the integral wavelet
transform (IWT) in Section 3. Instead of windowing the Fourier and inverse
Fourier transforms as the STFT does, the IWT windows the function (or signal)
and its Fourier transform directly. This allows room for a dilation (or scale)
parameter that narrows and widens the time-frequency window according to
high and low frequencies. Inverting the IWT is required for reconstructing the
signal from its decomposed local spectral information. Information on both
continuous and discrete time observations will be considered. This leads to the
study of frames and wavelet series in the last two sections of the chapter.

49
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3.1. The Gabor transform
A function / in L2(IR) is used to represent an analog signal with finite

energy, and its Fourier transform

reveals the spectral information of the signal. Here and throughout this chap-
ter, t and w; will be reserved for the time and frequency variables, respectively.
Unfortunately, the formula (3.1.1) alone is not very useful for extracting in-
formation of the spectrum / from local observation of the signal /. What is
needed is a "good" time-window.

The "optimal" window for time-localization is achieved by using any Gaus-
sian function

where a > 0 is fixed, as the window function (see Figure. 2.2.1). Here, opti-
mality is characterized by the Uncertainty Principle to be discussed in the next
section. For any fixed value of a > 0, the "Gabor transform" of an / L2(IR)
is defined by

that is, (gabf)(w) localizes the Fourier transform of / around t — b. The
"width" of the window is determined by the (fixed) positive constant a to be
discussed below. Observe that from (2.1.11) in Example 2.6 with w = 0 and
a = (4a)-1, we have

so that

That is, the set

of Gabor transforms of / decomposes the Fourier transform / of / exactly, to
give its local spectral information. To select a measurement of the width of the
window function, we employ the notion of standard deviation, or root mean
square (RMS) duration, defined by

Note that since ga is an even function, its center, defined by (1.25), is 0, and
hence, 3a agrees with the general notion of "radius" introduced in Defini-
tion 1.2. In particular, the width of the window function ga is 2ga.
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Theorem 3.1. For each a > 0,

That is, the width of the window function ga is 2a.

Proof. By setting a; = 0 in (2.1.11), we have

and differentiating both sides with respect to the parameter a yields

Hence, by setting a = (2a)"1 in (3.1.7) and (3.1.8), it follows that
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and consequently,

We may interpret the Gabor transform gabf in (3.1.3) somewhat differ-
ently, namely: by setting

we have

In other words, instead of considering gabf as localization of the Fourier trans-
form of /, we may interpret it as windowing the function (or signal) / by using
the window function Gab,w in (3.1.10). We will follow this point of view in
comparing it with the "integral wavelet transform" later. Graphs of the real
and imaginary parts of Gab,w for b = 0, w= 2, and a = 1, 1/4,1/16, are shown in
Figures 3.1.1-3.1.2.

Figure 3.1.1. ReGao, 2 = 0.2925.
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Figure 3.1.2.

One advantage of the formulation (3.1.11) is that the Parseval Identity
in (2.3.6) can be applied to relate the Gabor transform of / with the Gabor
transform of /. In fact, since

which follows from (2.2.10), we have

Let us interpret (3.1.13) from two different points of view. First, we consider

1

2^

which says that, with the exception of the multiplicative term , the
"window Fourier transform" of / with window function ga at t — b agrees with
the "window inverse Fourier transform" of / with window function g1/4a at
77 — w. By Theorem 3.1, the product of the widths of these two windows is
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On the other hand, by considering

we have

53

This identity says that the information obtained by investigating an analog
signal f ( t ) at t = b by using the window function Gab,w as defined in (3.1.10)
can also be obtained by observing the spectrum f ( n ) of the signal in a neigh-
borhood of the frequency 57 = w; by using the window function Hab,w as defined
in (3.1.16). Again the product of the width of the time-window Gabw and that
of the frequency-window Hab.w is

The Cartesian product

of these two windows is called a rectangular time-frequency window. It is usu-
ally plotted in the time-frequency domain to show how a signal is localized.
The width 2/a of the time-window is called the "width of the time-frequency
window", and the width 1/a of the frequency window is called the "height of
the time-frequency window". A plot of this window is shown in Figure 3.1.3.
Observe that the width of the time-frequency window is unchanged for observ-
ing the spectrum at all frequencies. That this restricts the application of the
Gabor transform to study signals with unusually high and low frequencies will
be discussed in Section 3.3.

Figure 3.1.3. Gabor window.
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3.2. Short-time Fourier transforms and the Uncertainty Principle
The Gabor transform is a window Fourier transform with any Gaussian

function ga as the window function. For various reasons such as computational
efficiency or convenience in implementation, other functions may also be used
as window functions instead. For a non-trivial function w € L2(IR) to qualify
as a window function, it must satisfy the requirement that

so that \ t \ l / 2w(t) L2(1R) also. From (3.2.1) and by an application of the
Schwarz Inequality to the product o f f l + /t/))-1 and (1 + |t|)w(t), it is clear that
w € L1(IR) also. Hence, by Theorem 2.2, its Fourier transform w is continuous.
However, although it follows from the Parseval Identity that w is also in L2(IR),
it does not necessarily satisfy (3.2.1), and hence, may not be a (frequency)
window function. Recall from the previous section that the importance of a
Gaussian function ga is that its Fourier transform is also a Gaussian function,
so that ga and ga can be used for time-frequency localization.

Example 3.2. Both the first order B-spline

and the Haar function

as already defined in (1.5.7) and (1.1.16), are window functions; but their
Fourier transforms NI and 1 do not satisfy (3.2.1), and hence N1 and 1
cannot be used for time-frequency localization.

Proof. Since both N1 and have compact support, they certainly satisfy
(3.2.1). On the other hand, in view of Theorem 2.5 and Theorem 2.2, (ii), since
N1 and 1 are not continuous, NI and cannot be in l1(IR) Consequently,
they do not satisfy (3.2.1). •

In general, for any w L2(IR) that satisfies (3.2.1), we define the center
and radius of w, as in Definition 1.2, by

and
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We also use the value 2W to measure the width of the window function w.
In signal analysis, if w is considered as an analog signal itself, then w is
called the root mean square (RMS) duration of the analog signal, and w is
called its RMS bandwidth, provided that w also satisfies (3.2.1). The Gabor
transform (3.1.3), can be generalized to any "window Fourier transform" of an
/ € L2(IR), by using a function w that satisfies (3.2.1) as the window function,
as follows:

Hence, by setting

so that ( G a f ) ( w ] gives local information of / in the time-window

Now, suppose that the Fourier transform w of w also satisfies (3.2.1). Then
we can determine the center w* and radius w, of the window function w, by
using formulas analogous to (3.2.4) and (3.2.5). By setting

which is also a window function with center at w* +w and radius equal to w
we have, by the Parseval Identity,

Hence, ( G b f ) ( w ) also gives local spectral information of / in the frequency-
window:

In summary, by choosing any w € L2(IR) such that both w and w satisfy (3.2.1)
to define the window Fourier transform in (3.2.6), we have a time-frequency
window

with width 2 Aw (as determined by the width of the time-window) and constant
window area
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Again, the width of the time-frequency window remains unchanged for
localizing signals with both high and low frequencies.

Definition 3.3. If w € L2(IR) is so chosen that both w and its Fourier trans-
form w satisfy (3.2.1), then the window Fourier transform introduced in (3,2.6),
by using w as the window function, is called a "short-time Fourier transform"
(SIFT).

As observed earlier, since both w and w satisfy (3.2.1), they must be
continuous functions. In addition to the Gaussian functions, every B-spline of
order higher than one can be used to define an STFT.

Example 3.4. The mth order cardinal B-spline

where m > 2, as defined recursively in (1.5.7) with NI given in (3.2.2), is a
window function that defines an STFT. Furthermore,

Proof. Since Nm is the m-fold convolution of NI and NI(U) = (1 — e~M)/w,
the result in (3.2.16) follows from an application of Theorem 2.7. Hence, it is
clear that Nm satisfies (3.2.1). That Nm itself satisfies (3.2.1) is trivial because
it has compact support. •

For accurate time-frequency localization, one chooses a window function
w such that the time-frequency window has sufficiently small area 4 w wWe
have already seen in (3.1.18) that if w is any Gaussian function ga, a > 0, then
the window area is 2. So, the first question to be answered is whether a smaller
area can be achieved. In the following theorem, known as the "Uncertainty
Principle" , we will see that it is not possible to find a window with size smaller
than or equal to that of the Gaussian functions.

Theorem 3.5. Let w € L2(IR) be chosen such that both w and its Fourier
transform w satisfy (3.2.1). Then

Furthermore, equality is attained if and only if

where c 0, a > 0, and a, b IR.
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Remark. In the engineering literature, if w is considered as an analog signal
with t as the variable in the time-domain, then the domain of definition of its
spectrum w is expressed in terms of the frequency (variable) / = w/2 (in
Hertz). Hence, if we replace w by 2 in the definition of A—, then a factor of
2 is introduced. More precisely, by setting

as usually found in the engineering literature, the Uncertainty Principle (3.2.17)
now states that

where equality holds if and only if the signal w is a Gaussian.

To facilitate our proof of Theorem 3.5, we need the following result.

Lemma 3.6. Let f be a nontrivial almost everywhere differentiable function
such that both (1 + \x\)f(x) and f(x) belong to L2(IR). Then

Furthermore, equality holds if and only if f ( x ) is a Gaussian function.

Proof. The inequality in (3.2.20) is a trivial application of the Schwarz
Inequality. Now, if equality in (3.2.20) holds, then it follows that

for some positive constant a. (Here, as we will see later, the other possibility
Rexf(x)f'(x) = \xf(x)f'(x)\ is ruled out, since / must be in L2(IR). Also,
that a 0 follows from the assumption that / is a nontrivial function in
L2(R,).) From the second identity in (3.2.21), we have

for some real-valued function 0(x}. The first identity in (3.2.21) then implies
that

so that

which in turn implies that 1. Hence, we conclude that
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so that /' is continuous, and

for some constant c 0. That is, / is a nonconstant multiple of the Gaussian
function ga defined in (2.2.9).

Before we turn to the proof of Theorem 3.5, we first observe that

and that if each of the functions f(x), f'(x), and x f ( x ) , is in L2(IR), then

The reason for (3.2.23) to hold is that under our assumptions, we have

Proof of Theorem 3.5.
Let us first assume that the centers of w and w are at the origin. Then

by applying Theorem 2.2 (iii), the Parseval Identity, (3.2.20), (3.2.22), and
(3.2.23), consecutively, we have

Furthermore, by Lemma 3.6, the only inequality in the preceding derivation
becomes equality, if and only if w is a Gaussian function.

In general, if the centers of w and w are at t = b and u) = a, respectively,
then by a simple change of variables, the above derivation shows that w w— =
| only if
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where a > 0 and c / 0. •

Hence, the Gabor transform introduced in the previous section is the
STFT with the smallest time-frequency window. In some applications, a larger
window must be chosen in order to achieve other desirable properties. For in-
stance, a second or higher order B-spline introduced in Example 3.4 facilitates
computational and implementational effectiveness. The most important prop-
erty not possessed by the Gabor transform is the additional condition:

where is the window function. This property gives us an extra degree of free-
dom for introducing a dilation (or scale) parameter in order to make the time-
frequency window flexible. With this dilation parameter, the time-localization
integral transform to be discussed in the next section will be called an "integral
wavelet transform" (IWT), and any window function for defining the IWT will
be called a "basic wavelet" .

Before we end this section, let us derive a formula for recovering any
finite-energy signal from its STFT values.

Theorem 3.7. Let w € L2(IR) be so chosen that \\w\\2 = 1 and both w and w
satisfy (3.2.1). Also, let Wb,w(t) be as defined in (3.2.7). Then

v
Proof. For any / € L2(IR), let / denote the inverse Fourier transform of /;

v
that is, f ( x ) — Then by the Parseval Identity and (3.2.6), we have

Therefore, it follows from the assumption | w\\2 = 1 that
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By selecting g to be the Gaussian function ga(- — x] and letting a — > 0+,
we arrive at the following result.

Corollary 3.8. Let w satisfy the hypotheses stated in Theorem 3.7 and let,
/ € L2(IR). Then at every point x where f is continuous,

3.3. The integral wavelet transform
We have seen that in analyzing a signal with any STFT, the time-frequency

window is rigid, in the sense that its width is unchanged in observing any
frequency band (or octave)

with center frequency w* + w. Since frequency is directly proportional to the
number of cycles per unit time, it takes a narrow time-window to locate high-
frequency phenomena more precisely and a wide time-window to analyze low-
frequency behaviors more thoroughly. Hence, the STFT is not suitable for
analyzing signals with both very high and very low frequencies. On the other
hand, the integral wavelet transform (IWT) relative to some basic wavelet, to
be defined below, provides a flexible time-frequency window which automat-
ically narrows when observing high-frequency phenomena and widens when
studying low-frequency environments.

Definition 3.9. If € L2(IR) satisfies the "admissibility" condition:

then is called a "basic wavelet". Relative to every basic wavelet, the
integral wavelet transform (IWT) on L2(IR) is denned by

(3.3.2)

where a, 6 € M with a 0.

Remark. If, in addition, both and satisfy (3.2.1), then the basic wavelet
provides a time-frequency window with f i n i t e area given b y 4 . I n

addition, under this additional assumption, it follows that is a continuous
function, so that the finiteness of C in (3.3.1) implies (0) = 0, or equivalentiy,
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This is the reason that is called a "wavelet" . We will see later in this section
that the admissibility condition (3.3.1) is needed in obtaining the inverse of
the IWT.

By setting

the IWT denned in (3.3.2) can be written as

In the following discussion, let us assume that both and satisfy (3.2.1).
Then if the center and radius of the window function are given by t* and

, respectively, the function b:a is a window function with center at 6 + at*
and radius equal to a,. Hence, the IWT, as formulated in (3.3.5), gives local
information of an analog signal / with a time- window

This window narrows for small values of a and widens for allowing a to be
large.

Next, consider

and suppose that the center and radius of the window function are given by

to
Now from (3.3.5) and (3.3.7), and applying the Parseval Identity, we have

w and , respectively. Then by setting

we have a window function n with center at the origin and radius equal to

Since it is clear that the window function r) ( a ( w ) — w/a) ) = n(aw; — w) =

(out) has radius given by, the expression in (3.3.9) says that, with the

exception of a multiple of 2 and a linear phase-shift of elbw, the IWT
W f also gives local information of / with a frequency- window
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In the following discussion, the center w of is assumed to be positive. In
doing so, we may think of this window as a frequency band (or octave) with
center-frequency w*/a and bandwidth 2 - ? / a . The importance of this identi-
fication is that the ratio

is independent of the scaling a. Hence, if the frequency variable is identified as
a constant multiple of a"1, then an adaptive bandpass filter, with pass-band
given by (3.3.10), has the property that the center-frequency to bandwidth
ratio is independent of the location of the center-frequency. This is called
"constant-Q filtering" .

Now, if w*/a is considered to be the frequency variable w>, then we may
consider the t-w) plane as the time-frequency plane. Hence, with the time-
window in (3.3.6) and the frequency- window in (3.3.10), we have a rectangular
time-frequency window

in the t-u plane, with width 2a (determined by the width of the time-
window). Hence, this window automatically narrows for detecting high-frequency
phenomena (i.e., small a > 0), and widens for investigating low-frequency be-
havior (i.e. large a > 0). (See Figure 1.2.1.)

We next derive a formula for reconstructing any finite-energy signal from
its IWT values. For completeness, we first allow the scaling a to be negative,
and later restrict our attention to positive values of a in order to apply the
IWT to time- frequency analysis.

Theorem 3.10. Let be a basic wavelet which defines an IWT W. Then

for all /, g & L2(IR). Furthermore, for any f L2(IR) and x 1R at which f is
continuous,

where b:a is defined in (3.3.4).

Proof. By applying the Parseval Identity and (3.3.7), and using the notation
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we have

where the Parseval Identity is applied again to arrive at the last equality.
Hence, by substituting (3.3.15) into the above expression, integrating with
respect to da/a2 on , and recalling the definition of C from (3.3.1),
we obtain

Furthermore, if / is continuous at x, then using the Gaussian function ga(- —x)
for the function g and allowing a to tend to 0 from above, we arrive at

This completes the proof of the theorem. •

In signal analysis, we only consider positive frequencies w. Hence, if the
frequency variable w is identified as a positive constant multiple of the recipro-
cal of the dilation parameter a, such as w; = w* /a (where the center w of is
always assumed to be positive), then we must only consider positive values of
a. Consequently, in reconstructing / from the IWT of /, we are only allowed
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to use the values (W f)(b, a), a > 0. As one might expect, the basic wavelet
must be somewhat more restrictive for this to be possible. The extra condition
on is:

Theorem 3.11. Let be a basic wavelet that satisfies (3.3.17). Then

for all f,g L2(IR). Furthermore, for any f L2(1R) and x IR at which f is
continuous,

where b;a is defined in (3.3.4).

We remark that for the left-hand side of (3.3.18) to be equal to C(f, g) for
all f , g l2(IR), the assumption (3.3.17) is necessary, and it is also necessary
that C = 1/2C

Proof of Theorem 3.11.
Under the assumption (3.3.17), it is easy to verify that

Hence, by following the same derivation as in (3.3.16) (with the only excep-
tion being that the integral with respect to da/a2 is over (0, ) instead of
(— oo, oo)), we obtain (3.3.18). The proof of (3.3.19) is the same as that of
(3.3.14) in Theorem 3.10. •

3.4. Dyadic wavelets and inversions
In signal analysis, it is sometimes necessary to partition the (positive)

frequency axis into disjoint frequency bands (or octaves). For computational
efficiency and convenience in discussions, we will only consider "binary parti-
tions", namely:

where 0 is the radius of the Fourier transform of a basic wavelet .

Here, we have again assumed that satisfies (3.2.1). Observe that for any
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basic wavelet a phase-shift of by a is equivalent to the corresponding
forward-shift in frequency of by the same a; that is

Hence, since Ao = A and A = A, we may always assume, without loss

of generality, that the center of is at 3 = 3 In doing so, we have

(3.4.3)

provided that

The center-frequency of the frequency band described in (3.4.3) is given by

So, by using w*/a to represent the frequency variable w, where a > 0 is the di-
lation (or scale) parameter, the disjoint union in (3.4.1) indeed gives a partition
of the (positive) frequency domain (0, ).

In this section, we study the problem of recovering any finite-energy signal
/ (i.e. any f L2(IR)) from its integral wavelet transform (W f)(b, a), only
at the discrete set of frequencies:

,

(or using only the scale samples a = % := 1/2j zZ). For this problem to have
a solution, one naturally expects the basic wavelets to be more restrictive
than the admissibility condition in (3.3.1).

Definition 3.12. A function L2(IR) is called a dyadic wavelet if there exist
two positive constants A and B, with 0 < A < B < , such that

The condition in (3.4.6) is called the "stability" condition imposed on
To account for this terminology, let us make use of the notation (2.3.9) of the
reflection of a function to introduce the following "normalized" IWT:

(3.4.7)
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Then we see that (3.4.6) is equivalent to

for the same constants A and B. Indeed, by the Parseval Identity and the
first identity in (2.3.10) of Lemma 2.16, the set of inequalities in (3.4.8) can be
written as

which is equivalent to

By choosing g/g/2 to be the Gaussian functions ga(- — w>) and allowing a —>
0+, we see that (3.4.9) yields (3.4.6). Since (3.4.6) clearly implies (3.4.9), these
two sets of inequalities are equivalent.

In the following, we will see that the stability condition of implies that
any dyadic wavelet must be a basic wavelet.

Theorem 3.13. Let satisfy the stability condition (3.4.6). Then is a basic
wavelet satisfying

Furthermore, if A and B in (3.4.6) agree, then

Proof. We first note that

Hence, dividing each term in (3.4.6) by and integrating over the interval
(1,2), we have

Similarly, dividing by —w and integrating over (—2, — 1) yields
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The stability condition is instrumental for recovering any / € L2(IR) from
its IWT values (Wf)(b,2-j ' ) , j . The approach we take is to introduce
another dyadic wavelet which we define by considering its Fourier transform:

With this function , it follows from (3.4.7) that for any / €

where we have applied the formula h1 h2 = F-1 l(h1h2), (3.4.7), Lemma 2.16,
and (3.4.12), consecutively. This leads to the following notion of "dyadic du-
als".

Definition 3.14. A function € L2(IR) is called a dyadic dual of a dyadic
wavelet if every f L2(IR) can be expressed as

Hence, in (3.4.13) we have established the following result.

Theorem 3.15. Let be a dyadic wavelet. Then the function , whose
Fourier transform is given by (3.4.12), is a dyadic dual . Furthermore, is also a dyadic wavelet with

We remark that dyadic duals of a given dyadic wavelet may not be
unique. A discussion of nonuniqueness is delayed to Section 3.6. It will depend
on the following characterization result.
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Theorem 3.16. Let be a dyadic wavelet and be any function in
that satisfies

Then is a dyadic dual of if and only if the following identity is satisfied:

Proof. Following the same derivation as in (3.4.13), we observe that is a
dyadic dual of if and only if for any f E L2(IR), we have

where the a.e. convergence of the infinite series is assured by the hypothesis
(3.4.16) and the definition of a dyadic wavelet . It is obvious that (3.4.17)
and (3.4.18) are equivalent. •

3.5. Frames
In the previous section, we partitioned the (positive) frequency axis into

disjoint frequency bands by choosing the dilation pa-
rameter a to be while the translation parameter was allowed
to vary over all of IR. In doing so, we considered semi-discrete information on
the IWT of an f E L2(IR), namely:

For computational efficiency, let us also discretize the translation parameter b
by restricting 6 to the discrete set of sampling points

where 60 > 0 is a fixed constant, called the "sampling rate". Hence, by intro-
ducing the notation

(see (3.3.4) for the definition of the values of the IWT of any
we are going to consider are given by
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Analogous to the semi-discrete setting in the previous section, we are also
interested in recovering any from the values of its IWT in (3.5.3).
The "stability" condition for this reconstruction is the existence of positive
constants A and B, with such that

In other words, the stability condition on the function requires that gen-
erates a "frame" of L2(R) with sampling rate b0, as follows.

Definition 3.17. A function L2(R) is said to generate a frame
of L2(R) with sampling rate 60 > 0 if (3.5.4) holds for some positive constants
A and B, which are called frame bounds. If A = B, then the frame is called a
tight frame.

Under the stability condition (3.5.4); that is, under the condition that
generates a frame, we are assured that any L2(H) can be recovered from
its IWT values in (3.5.3). To see this, let us consider the linear operator T on
L2(R), defined by

From the stability condition in (3.5.4), it is clear that T is a one-one bounded
linear operator. In fact, because of the lower bound in (3.5.4), T also maps
L2(R) onto its range, and by the Interior Mapping Principle, its inverse T-1

is bounded. In our setting, we can even include the following simple argument.
For any g = Tf, where £2(R), since

, we have

so that

or Hence, every £2(R) can be reconstructed from its IWT
values in (3.5.3) by applying the formula

By setting
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the reconstruction formula (3.5.7) may be written as

for all f,g € L2(R). We may call the "dual" of the frame
However, the reconstruction formula (3.5.7), or (3.5.9), is not useful unless
we have some knowledge of the dual. Unfortunately, in general, the dual

may not be generated by some € L2(R) the same way as is
generated by. We will return to a discussion of this topic in the next section.

In the following, we see that a frame may not be a linearly independent
family.

Example 3.18. Let be the Haar function defined in (3.2.3) and consider the
sampling rate b0 =1/3. Then the linearly dependent family

is a frame of L2(R).

Proof. Let us use the notation

and decompose the family S into a disjoint union of three subfamilies:

and

Since is the Haar function, S1 is already an o.n. basis of L2(R) (see Sec-
tion 1.5 and also Chapters 5 and 6 for more details). Hence, 5 is a linearly
dependent family. It is also easy to verify that both S2 and S3 are o.n. families,
so that the (generalized) Bessel Inequality applies (see (2.4.14) for the Bessel
Inequality for trigonometric polynomials). Consequently, we have



3. Wavelet Transforms 71

Hence, the stability condition (3.5.4) is weaker than the requirement that
generates a Riesz basis, defined as follows.

Definition 3.19. A function € L2(R) is said to generate a Riesz basis (or
unconditional basis) with sampling rate bo if both of the following
two properties are satisfied:

(i) the linear span

is dense in L2(R); and
(ii) there exist positive constants A and B, with 0 < A < B < such that

for all Here, A and B are called the Riesz bounds of

If generates a Riesz basis with sampling rate 60 = 1, then is called an
R-function (see Definition 1.4).

Remark. Throughout this book, we will always use the notation

This notation should not be confused with the notation b;a introduced in
(3.3.4).

The following result clarifies the difference between a frame and a Riesz
basis.

Theorem 3.20. Let E L 2(R) and 60 > 0. Then the following two statements
are equivalent.

(i) is a Riesz basis of L2(R).
(ii) is a frame of L2(R), and is also an l2-linearly independent family,

in the sense that if and { c j , k } E P then Cjtk = 0.
Furthermore, the Riesz bounds and frame bounds agree.

Proof. It is clear from (3.5.11) that any Riesz basis is l2-linearly independent.
Let be a Riesz basis with Riesz bounds A and B, and consider the
"matrix operator"

where the entries are defined by
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By (3.5.11), we have

so that M is positive definite. We denote the inverse of M by

which means that both

and

are satisfied. This allows us to introduce

Clearly, € L2(R); and it follows from (3.5.13) and (3.5.14) that

which means that is the basis of L2(R) which is dual to
Furthermore, from (3.5.14) and (3.5.15), we conclude that

and that the Riesz bounds of are B-1 and A-1 In particular, for any
f € L2(R), we may write

and

Since it is clear that (3.5.17) is equivalent to (3.5.4), we have established that
statement (i) implies statement (ii).

To establish the converse, we have to rely on two basic results in functional
analysis, namely: the Banach-Steinhaus Theorem and the Open Mapping The-
orem, which are, unfortunately, beyond the scope of this book. We only give
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a very brief outline without going into any details. Recall from (3.5.5) that if
is a frame of L 2(R), then for any g E L2(R) and / = T-1g, we have

Also, by the l2-linear independence of this representation is unique.
It can also be shown that in using this "basis" to represent functions
in L2(R), a series

converges in L2(R) if and only if the coefficient sequence is in l2. Then,
as mentioned above, the Banach-Steinhaus Theorem and the Open Mapping
Theorem can be applied to conclude that is a Riesz basis of L2(R)

We end this section by showing that if E L2(R) generates a frame of
L2(R), then it must be a dyadic wavelet.

Theorem 3.21. Let E L2(R) generate a frame of L2(R) with
frame bounds A and B, and sampling rate bo > 0. Then its Fourier transform

satisfies:

Partial Proof. Let f £ L2(R). By introducing the notation

and applying the Parseval Identities both to and in the circle setting,
we have

JO
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Hence, the frame (or stability) condition (3.5.4) becomes:

2

IT)

Now, if the summation over j were a finite sum, say — M < j < M, then for
any w € ER and sufficiently small e > 0, the choice of

in the above inequalities readily yields:

and consequently the inequalities in (3.5.18) may be obtained by taking
0+. Unfortunately, the sum over j is not finite. Nevertheless, since any finite
truncation preserves the upper bound, the second inequality in (3.5.18) cer-
tainly holds. To derive the first inequality in (3.5.18), the "tails" of the sum
over j must be estimated very carefully before the preceding argument to a
finite sum can be applied. We omit the technical details here. •

3.6. Wavelet series
We continue our discussion of time-frequency analysis by considering dis-

crete time-scale samples of the IWT as in the previous section. To simplify
our discussion, we only consider the sampling rate bo = 1 and use the notation

as introduced in (3.5.12). We further restrict our attention to
functions in the sense that is a Riesz basis of L2(R), as in Defi-

nition 3.19. Hence, by Theorems 3.20 and 3.21, respectively, is a frame
of L2(R) and is a dyadic wavelet. Let be the dual basis relative to
the Riesz basis as defined in (3.5.13). When is considered as a
frame of L2(R), we may consider to be the dual of
this frame, as discussed in (3.5.7)-(3.5.8).

There are two very important subclasses of R-functions that constitute the
central theme of our study in this text. They are "semi-orthogonal wavelets"
and, more restrictively, "orthogonal wavelets", to be defined below. For these
two classes of functions, it is quite easy to characterize their "duals".

Definition 3.22. Let E L 2 (R) be an 'R.-function that generates as in
(3.5.12). Then
(i) is called an orthogonal wavelet (or o.n. wavelet), if satisfies the

orthonormality condition:
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(ii) is called a semi-orthogonal wavelet (or s.o. wavelet), if satisfies
the condition:

It is obvious that an o.n. wavelet is "self-dual" in the sense that

To determine the dual of an s.o. wavelet, let us first discuss the following
equivalent statements of orthogonality.

Theorem 3.23. For any function E L2(R), the following statements are
equivalent:
(i) is an orthonormal family in the sense that

(ii) The Fourier transform of satisfies

(iii) The identity

holds for almost all x.

Proof. Since is in L1(R), it follows from Lemma 2.24 that the infinite
series

that defines the function G, converges a.e. to G, and that Now,
for each j E ZZ, the j'th Fourier coefficient of G is
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This establishes the equivalence of (ii) and (iii). The equivalence of (i) and (ii)
follows by a direct application of the Parseval Identity with j = k — l, namely:

A somewhat weaker property than the property of orthonormality in the
previous theorem is the uRiesz (or unconditional) condition", which we study
in the following.

Theorem 3.24. For any function E L2(R) and constants 0 < A < B < ,
the following two statements are equivalent:
(i) satisfies the Riesz condition with Riesz bounds A and

B; that is, for any

(ii) The Fourier transform of satisfies

a.e.

Proof. For any let denotes its symbol; that is,

(3.6.8)

(3.6.9)

Then by the Parseval Identity, we may write

(3.6.10)
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Let us make use of the notation

introduced in (2.5.4). Then by considering

and appealing to the Parseval Identity

from (1.1.7), it follows from (3.6.10) that (3.6.7) can be formulated as:

It is clear that (3.6.8) implies (3.6.12). To see that (3.6.12) also implies (3.6.8),
we again use the Gaussian function ga(x — w) in place of g(x) and allow a to
tend to 0. •

With the aid of the two theorems presented above, we can now formulate
the dual of an s.o. wavelet.

Theorem 3.25. Let € L 2 (R) be an s.o. wavelet and define via its Fourier
transform:

Then is the dual of , in the sense that

where

In other words, the dual basis relative to is given

Proof. Since is an s.o. wavelet, is a Riesz basis of L2(R) with Riesz
bounds A and B, say. Hence, by considering sequences € £2(ZZ2) of the
form we see that (3.6.7) holds for in
place of . By Theorem 3.24, the denominator in (3.6.13) is bounded a.e. by
A and B as in (3.6.8). This implies t h a t , as defined in (3.6.13), is in L2(R)
and satisfies
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where

So, since is an s.o. wavelet, the hypothesis in (3.6.2), with the notation
in (3.6.15), immediately yields

For j = I, it follows from (3.6.13), by setting p = k — m, that

This completes the proof of the theorem. •

The foregoing result also indicates how an s.o. wavelet is changed to an
o.n. wavelet. Indeed, by setting

the dual is given by

that is, is self-dual.
The formula in (3.6.18) is usually called an "orthonormalization proce-

dure". However, if is any 72.-function which is not an s.o. wavelet, this
orthonormalization procedure is not effective in constructing o.n. wavelets. In
fact, as already discussed in Section 1.4, there are R-functions that do not have
duals, in the sense that the dual basis relative to the Riesz basis
is not given by for some E L2(R), where the notation in (3.6.15) is
used. Since every Riesz basis is a frame, the dual of a frame may not be gen-
erated by a single L2(R) function either. This leads to the following definition
of "wavelets".
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Definition 3.26. An R- function E L2(R) is called an K-wavelet (or wavelet),
if it has a dual € L2(R), in the sense that and as defined by
(3,5.12) and (3.6.15), satisfy the duality relationship (3.6.14).

Since the duality relationship (3.6.14) is commutative, the dual of a
wavelet is itself a wavelet, with as its dual. That is, with the exception
of o.n. wavelets which are self-duals, when we consider wavelets, we always
consider pairs of wavelets.

If is a wavelet with dual then by the definition of Riesz basis, every
/ € L2(R) can be written as

These two (doubly) infinite series are called "wavelet series" and the conver-
gence is in L2(R) (see Definition 3.19). By the duality relationship (3.6.14), it
follows that

Hence, we have the following scheme for reconstructing finite-energy signals
from discrete samples of their integral wavelet transforms.

Theorem 3.27. Let be a wavelet with dual. For any f £ L2(R), consider
its IWT, using both and as basic wavelets, evaluated at (b, a) namely:

Then f can be reconstructed from either or by using one of
the two wavelet series in (3.6.19). Furthermore, the inner product of any two
L2 (R) functions can also be recovered from the analogous discrete samples of
their IWT, by using the formula:

We now return to the discussion of dyadic duals of dyadic wavelets intro-
duced in Section 3.4. First, we must emphasize that dyadic wavelets are not
necessarily wavelets in the sense of R-wavelets, and dyadic duals are usually
not dual wavelets.

Let be an s.o. wavelet with Riesz bounds A and B. We have seen from
the proof of Theorem 3.25 that satisfies the inequalities
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for the same bounds A and B. When is considered as a frame of L2(R)
with sampling rate 60 = 1, it follows from Theorems 3.20 and 3.21 that also
satisfies the condition

(3.6.23)

again for the same constants A and B. The conclusions in (3.6.22) and (3.6.23)
allow us to introduce two L2(R) functions and with Fourier transforms
given by

(3.6.24)

Let be the o.n. wavelet obtained by orthonormalization of using (3.6.18).
Then is an R-function with Riesz bounds A — B = 1. Hence, it follows
from Theorems 3.20 and 3.21 that

Since we also have

So, in view of the fact that

which is a consequence of the mutual orthogonality among all of the
it follows from Theorem 3.16 that is a dyadic dual of . Hence,

by appealing to Theorem 3.15, we conclude that both and are dyadic

one cannot expect these two dyadic duals to be the same, unless, of course,
is an o.n. wavelet.
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In using basic wavelets such as dyadic wavelets, dyadic duals, frames, and
R-wavelets (which are simply called wavelets), for time-frequency analysis and
other applications, several important points must be taken into consideration.
Among them are: size of the time-frequency window, computational complex-
ity and efficiency, simplicity in implementation, smoothness and symmetry of
the basic wavelet, and order of approximation. One of the basic methods for
constructing wavelets involves the use of "cardinal B-spline functions". These
are probably the simplest functions with small supports that are most efficient
for both software and hardware implementation. In addition, they possess a
very nice property, called "total positivity", that controls zero-crossings and
shapes of the "spline curves". This topic will be discussed in Chapter 6, where
we will even see that minimally supported wavelets which are constructed by
using a (finite) linear combination of translates of a cardinal B-splirie produce
time-frequency windows with "near-minimal" size as governed by the Uncer-
tainty Principle. The present chapter is devoted to a study of cardinal spline
functions with emphasis on their basic properties that are crucial to computa-
tion, graphical display, real-time (or on-line) processing of discrete data, and
construction of wavelets.

4.1. Cardinal spline spaces
When we talk about "cardinal splines", we mean "polynomial spline func-

tions with equally spaced simple knots". For convenience, let us first consider
the set ZZ of all integers as the "knot sequence". As in (1.5.8), denotes the
collection of all algebraic polynomials of degree at most n and Cn = Cn(IR),
the collection of all functions / such that are continuous every-
where, with the understanding that C = C°, and C-1 is the space of piecewise
continuous functions as defined in the beginning of Section 2.1.

Definition 4.1. For each positive integer m, the space Sm of cardinal splines of
order m and with knot sequence ZZ is the collection of all functions f E Cm-2

such that the restrictions of to any interval [k, k + 1), k € ZZ, are in
that is,

The space S1 of piecewise constant functions is easy to understand. The
most convenient basis to use is where N1 is the character-
istic function of [0,1) defined in (3.2.2). To give a basis of SM,, m > 2, let us

81
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first consider the space Sm;N consisting of the restrictions of functions f e Sm

to the interval [ — N , N ] , where N is a positive integer. In other words, we may
consider Sm;N as the subspace of functions f € Sm such that the restrictions

of / are polynomials in This subspace is easy to characterize. Indeed,
for an arbitrary function f in Sm,N, by setting

we have, in view of the fact that

That is, by considering the "jumps" of f(m-1) at the knot sequence ZZ, namely:

the adjacent polynomial pieces of / are related by the identity

Hence, by introducing the notation

i t follows from (4.1.2), that f o r a l l ,

This holds for every with the constants given by (4.1.1). Conse-
quently, the collection

of m + 2N — 1 functions is a basis of Sm,N. This collection consists of both
monomials and "truncated powers". Since we restrict our attention to the
interval it is also possible to replace the monomials l,... i n
(4.1.5) by the truncated powers:
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That is, the following set of truncated powers, which are generated by using
integer translates of a single function, is also a basis of Sm,N:

This basis is more attractive than the basis in (4.1.5) for the following reasons.
Firstly, each function vanishes to the left of j; secondly all the
basis functions in (4.1.7) are generated by a single function which is
independent of N. Moreover, since

it follows that the basis in (4.1.7) can also be extended to be a "basis" T of
the infinite dimensional space 5m, simply by taking the union of the bases in
(4.1.7); that is, we have

However, we must be more careful when we deal with infinite dimensional
spaces. In this book, since we are mainly concerned with the Hilbert space
L2(R), we are especially interested in cardinal splines that are in L2(R). Un-
fortunately, there is not a single function in T that qualifies to be a function in
L2(R), and in fact, each grows to infinity fairly rapdily as
To create L2(R) functions from TN, we must tame the polynomial growth of

The only operation that is allowed in working with vector spaces
is taking (finite) linear combinations. For instance, taking derivatives is not
allowed but taking "differences" is certainly permissible. Since the effect of
differences is the same as that of derivatives in taming polynomial growth, we
will consider differences. More precisely, we will use "backward differences",
defined recursively by

Observe that just like the mth order differential operator, the mth order differ-
ence of any polynomial of degree m — 1 or less is identically zero, that is,

This motivates the following definition.

Definition 4.2. Let M1 := NI be the characteristic function of [0,1) as defined
in (3.2.2), and for m > 2, let
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It is clear from the definition that Mm is a linear combination of the basis
functions in (4.1.8). In fact, it is easy to verify that

Prom (4.1.10), it follows that Mm(x) = 0 for all x > m. Since Mm(x) clearly
vanishes for x < 0, we have supp Mm C [0, m]. By working a little harder, we
can even conclude that

So, Mm is certainly in L2(R). But is the collection

of integer-translates of Mm a "basis" of Sm? Let us again return to Sm,N

which, according to (4.1.5) or (4.1.7), has dimension m + 2N — 1. Now, by
using the support property (4.1.13), each function in the collection

is nontrivial on the interval [— N, N] and Mm(x — k) vanishes identically on
)

is a linearly independent set, we have obtained another basis of So,
analogous to (4.1.8), if we take the union of the bases in (4.1.15), N = 1 ,2 , . . . ,
we arrive at B in (4.1.14). One advantage of B over T in (4.1.8) is that we can
now talk about a spline series

without worrying too much about convergence. Indeed, for each fixed x e R,
since Mm has compact support, all except for a finite number of terms in the
infinite series (4.1.16) are zero.

As mentioned earlier, we are mainly interested in those cardinal splines
that belong to L2(R), namely: Let denote its L2(R)-closure.
That is the smallest closed subspace of L2(R) that contains
Since Mm has compact support, we see that the next section, we
will even show that B is a Riesz (or unconditional) basis of

So far, we have only considered cardinal splines with knot sequence ZZ.
More generally, we will also consider the spaces of cardinal splines with
knot sequences Since a spline function with knot sequence

is also a spline function with knot sequence whenever j1 < ;j2,
we have a (doubly-infinite) nested sequence
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of cardinal spline spaces, with Analogous to the definition of
we will let denote the L2(R)-closure of L2(R). Hence, we have a
nested sequence

of closed cardinal spline subspaces of L2 (R). It will be clear that this nested
sequence of subspaces satisfies:

Furthermore, it is clear that once we have shown that B is a Riesz basis of
then for any, the collection

is also a Riesz basis of V™ with the same Riesz bounds as those of B.

4.2. B-splines and their basic properties
Let us return to the definition

of the mth order cardinal B-spline introduced in (1.5.7), where NI is the char-
acteristic function of the interval (0,1). In Definition 4.2, we set MI = N1; and
in the following, we will see that Mm = Nm for all m > 2 also. Hence, Nm is
an mth order cardinal spline function in While the definition of Mm
in (4.1.11) is explicit, the advantage of the definition of Nm in (4.2.1) is that
many important properties of Nm can be derived from it very easily. Among
them are the first seven of the eight properties listed in the following.

Theorem 4.3. The mth order cardinal B -spline Nm satisfies the following prop-
erties:

(i) For every

(ii) For every g e Cm,

-
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(viii) The cardinal B -splines Nm and Nm-1 are related by the identity:

(ix) Nm is symmetric with respect to the center of its support, namely:

Proof. (i) Assertion (4.2.2) certainly holds for m = 1. Suppose it also holds
for m— 1, then by the definition of Nm in (4.2.1) and this induction hypothesis.
we have

(ii) Assertion (4.2.3) follows from (4.2.2) since

by direct integration.
(iii) Fix x E R.. By selecting

the right-hand side of (4.2.3) agrees with the formula of Mm(x) in (4.1.12).
Since
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where 6 is the delta distribution (see (2.2.12) and (2.2.14)), the left-hand side
of (4.2.3) becomes Nm(x). That is, Nm(x) = Mm(x} for any (fixed) x € R. Of
course, one could avoid using the delta distribution to derive (iii) by relying
on an induction argument without even appealing to (4.2.3), for instance.

Assertions (iv), (v), (vi) and (ix) can be easily derived by induction, using
the definition of Nm in (4.2.1).

(vii) Using (4.2.1) again, we have

(viii) To verify the identity in (viii), we use the definition of Mm in (4.1.11)
instead. Of course, we have already shown in (iii) that Nm — Mm. The idea
is to represent as the product of a monomial and a truncated power,
namely:

and then apply the following "Leibniz Rule" for differences:

This identity for differences can be easily established by induction. It is almost
exactly the same as the Leibniz Rule for derivatives. Now, if we set f ( x ) = x
and recall that
we then have

This completes the proof of Theorem 4.3. •

We next show that the cardinal B-spline basis

which is the same as the basis introduced in (4.1.14), is a Riesz (or uncondi-
tional) basis of V™ in the sense of (3.6.7). By Theorem 3.24, this is equivalent
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to investigating the existence of lower and upper bounds A, B in (3.6.8). From
(4,2.1), we see that so that

(see (3.2.16)). Hence, replacing w by 2x, we have

Recall from complex analysis that

which immediately yields

Therefore, substituting (4.2.9) into (4.2.7), we obtain

Example 4.4. For the first and second order cardinal B-splines
follows from (4.2.10) that

and

Hence, is orthonormal (see Theorem 3.23), and

and N2, it
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where both the upper and lower (Riesz) bounds in (4.2.13) are best possible.

Although the formula in (4.2.10) is explicit and provides a tool for finding
optimal Riesz bounds, the algebra in manipulating the trigonometric (sine and
cosine) polynomials is quite involved for larger values of the spline order m,
Another approach is to apply Theorem 2.28 to f ( x ) — Nm(x). This requires
knowledge of the values of

The identity in (4.2.14) is an easy consequence of the definition (4.2.1), while
the values of N2m at the knot sequence ZZ can be easily determined recursively,
by applying (4.2.4) in Theorem 4,3, namely:

Note that Hence, by applying (2.5.19) in
Theorem 2.28, we have

application of (v) and (vi) in Theorem 4.3 now yields

and the Riesz bound B = 1 here is the smallest possible.
To determine the greatest lower bound of the expression in (4.2.16), we

consider the so-called "Euler-Frobenius polynomials"

of order 2m — 1 (or degree 2m — 2). In Chapter 6, we will show that all the
2m — 2 roots, are simple, real and in fact, negative;
and furthermore, when they are arranged in decreasing order, say,

these simple roots are in reciprocal pairs; that is,
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Hence, we have
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Now, from (4.2.16) and (4.2.18), we may write

whence it is clear that

2m -2

We have thus proved the following result.

Theorem 4.5. For any integer m > 2, let Am be the positive number defined
in (4,2.21). Then the cardinal B-spline basis B in (4.2.6) is a Riesz basis of
V™ with Riesz bounds A = Am and B = 1. Furthermore, these bounds are
best possible.

4.3. The two-scale relation and an interpolatory graphical display
algorithm

Let us first return to Section 4.1 and study the relationship between any
two consecutive subspaces of the nested sequence of closed
subspaces of L2(R) as discussed in (4.1.17)-(4.1.19). In view of the fact that
Mm = Nm, we may and will always use the notation Nm instead of Mm.
Observe that the following result, via a simple change of variables, is a trivial
consequence of Theorem 4.5.

Corollary 4.6. For any pair of integers m and j, with m>2, the family

is a Riesz basis of V™ with Riesz bounds A Am and B = I. Furthermore,
these bounds are optimal.

Note that the basis Bj defined above reduces to B for j = 0, and in the
construction of computational algorithms, it is more convenient to drop the
normalization constant. This only changes the Riesz bounds by a



4. Cardinal Spline Analysis 91

factor of Hence, for each j, since
have, from Corollary 4.6, that

where is some sequence in l2. Now, replacing by y and
taking the Fourier transform on both sides of (4.3.1), we obtain the following
equivalent formulation of (4.3.1):

This formula can be applied to determine the sequence In-
deed, since

we have

and this yields

Consequently, the precise formulation of (4.3.1) is given by

which is called the "two-scale relation" for cardinal B-splines of order m.
As already discussed in Section 1.6, this two-scale relation for cardinal

B-splines (and more generally, in (1.6.2), for any scaling function is one
of a pair of two-scale relations that gives rise to the so-called (wavelet) recon-
struction algorithm described by (1.6.10) and Figure 1.6.2. (The other formula
describes the relation between the wavelet ,as in
(1.6.3).) Observe that in the wavelet decomposition (1.6.1), if all the wavelet
components of fN are identically zero, then we do not need
the formula (1.6.3) to write any In other
words, "half" of the reconstruction algorithm in (1.6.10) can be used to ex-
press any function fN-M at the (N — M)th "resolution level" (with 2 N - M
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pixels per unit length) as a function fN at the (higher) Nth resolution level
(with 2N pixels per unit length). Of course, fN-M = fN identically; but we
obtain a "better picture" of the same function at a higher resolution.

We now restrict our attention to cardinal splines and incorporate this
procedure with the algorithm in (4.2.15) for calculating B-spline values at the
knots to give a very efficient algorithm for displaying the graph of any cardinal
spline function at any desirable resolution level, exactly. Let us first formulate
the objective of this "interpolatory graphical display algorithm" precisely, as
follows:

Consider a cardinal spline function

of order m and with knot sequence , where jo is any (fixed) integer,
Suppose that is a "causal" sequence of (known) real numbers, where
causality means that for all say. The objective is to compute
all the values of the sequence

exactly , for any pre-assigned integer in "real-time", meaning that
the sequence in (4.3.6) is computed for increasing values of k as soon as the
coefficient "data" sequence has been registered in increasing values of

Observe that to display the graph of it is adequate to display the
sequence, provided that the (fixed) integer is sufficiently
large. Of course the size of j1 is limited by the performance of the available
equipment.

For each j > jo, let us use the notation

By applying the two-scale relation (4.3.1), we see that the identity
is equivalent to the identity
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Hence, since the collection Nm(2j+lx - a), E Z, is a Rjesz basis of <TI, the 
identity f,+l(z) = fj(z) is precisely described by the formula 

where a3 = {a t ’ }  and a3+’ = {a$+’)} are the coefficient sequences of f 3 ( x )  
and f3+1(z) in (4.3.7), respectively. Finally, from the sequence a31 = { u ~ ” , ) ,  
we still have to  compute the values of f (k /231) ,  k E 23. This is possible by 
convolving the sequence ajl with the sequence { N m ( k ) } ,  k E ZZ. Recall that 
the values of N,(k) can be computed by applying the algorithm in (4.2.15). 
Indeed, for any k 6 22, we have 

Note that both (4.3.8) and (4.3.9) are only “moving average” (MA) formulas, 
except that the sequence a2 in (4.3.8) needs “upsampling”. This means that 
a zero term must be inserted in between any two consecutive terms of the 
sequence d. To be precise, let us set 

Then the formula in (4.3.8) becomes an MA formula: 

We summarize the procedure derived above as follows. 

Algorithm 4.7 (Interpolatory graphical display algorithm). 
Let fjo be a cardinal spline function with causal coefficient sequence 

as in (4.3.5). Select any j1 2 j o .  Then for j = j o ,  . . . , j 1  - 1, compute 
(lo) 5j using (4.3,11), and 
(2”) aJ+l using (1”) and (4.3.12). 
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Finally, compute

This algorithm can be described by the following schematic diagram,
where means upsampling by applying (4.3.11), \ means MA with weight
sequence MA with weight sequence Since the
weight sequences {pm,k} and {wmik} are very simple symmetric finite sequences
whose terms are integer multiples of 2-m+1 and l/(rn — 1)!, respectively, the
implementation of this algorithm is indeed very simple.

Figure 4.3.1. Interpolatory graphical display.

Example 4.8. To display graphically a cubic spline curve

at the resolution level of 1024 pixels per unit length without any error, we use
m = 4, jo = 0, and j1 = 10 (since 210 = 1024) in Algorithm 4.7.
Furthermore, the weight sequences {p4,k} and {w4,k} can be easily computed
by applying (4.3.3) and (4.2.15). The nonzero values are given by

and

(Observe that the sum of the sequence {p4,k} is 2 instead of 1, since the data
sequence has to be upsampled. Of course, the sum of the other weight
sequence In applying (4.3.12) and (4.3.9) in Steps (2°) and (3°)
in Algorithm 4.7, the common denominators 8 and 6 in (4.3.14) and (4.3.15),
respectively, could be dropped in order to achieve integer operations. Of course
the final output must then be divided by

Symmetry of the sequences in (4.3.14) and (4.3.15) should also be applied in
implementation to save processing time.
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4.4. B-net representations and computation of cardinal splines
The interpolatory graphical display algorithm described in the previous

section can also be applied to determine all the polynomial pieces of any cardi-
nal spline function exactly. It requires an additional operation such as matrix
inversion to calculate the polynomials. In this section we introduce a more
direct scheme to compute these analytical expressions. By using the Bernstein
representation of a polynomial, the values of the Bernstein coefficients (or bet-
ter known as "B-nets") do not change with the position and length of the
interval to which the polynomial is confined. This is a very important feature
in implementation with cardinal spline functions, since it is often necessary to
shift a cardinal B-spline series and to scale the series to different resolution
levels.

Let n be any nonnegative integer. We first observe that the collection of
polynomials

is a basis of the polynomial space. This basis is used to define the nth

degree Bernstein polynomial operator:

If / is a continuous function on the interval [0,1], then it is clear that Bnf
interpolates / at the end-points of this interval, namely:

However, Bnf does not interpolate / at the interior points of the
interval in general. Instead, the graph of the polynomial curve y = (Bnf)(x)
lies in the convex hull of the set

More precisely, this set "controls" the graph of y = (Bnf)(x). We do not
intend to go into any details in this direction, but only wish to point out that
the "shape" of the graph of y — (Bnf)(x) is governed by the "control net"
(4.4.4), which is in turn governed by the graph of y = f ( x ) . In particular, we
have:
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The two main reasons for (i)-(iii) to hold are:

(1°) Bnf is a positive linear operator that preserves all linear polynomials
in the sense that

B

(2°) the "Descartes Rule of Signs" applies to the monomial basis {1,x,...xn}
xn} on the interval (0, ).

In general, the Bernstein polynomial operator in (4.4.2) can be replaced
by any Bernstein polynomial

with coefficient sequence

without losing any of the nice geometric properties of Bn f, simply by consid-
ering / to be the piecewise linear (or second order cardinal spline) interpolant

of the data in (4.4.6) at {k/n}. The graph of y = f&
n(x) (or for simplicity, the

coefficient sequence an = {akn} itself) is called the B-net representation of the
Bernstein polynomial Pn in (4.4.5).

In the following, we will make use of the operations:

to differentiate and integrate Bernstein polynomials. Here and throughout, an
empty sum is always assumed to be zero.

Theorem 4.9. For each n e , n 0, let Pn be an nth degree Bernstein
polynomial with B-net a.n as defined in (4.4.5) and (4.4.6). Then the derivative
of Pn is given by

and if P'n+l(x] = Pn(x], then the integral of Pn is given by
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Proof. By using the notation

we have, from (4.4.1),

for k = 0, . . . , n. Hence,

This verifies (4.4.9). By applying this formula to Pn+1 and using the hypothesis
Pn+1 = Pn, we have

Hence, the assertion in (4.4.10) follows from the integral formula

completing the proof of the theorem.

We now turn to the study of B-net representation of the mth order cardinal
B-splines Nm. Recall that Nm consists of m nontrivial polynomial pieces of
degree m — 1 , which we denote by

Also, observe that the restriction of Nm(x — 1) to the same interval [k — 1, k)
is the polynomial Pm_1,k-1(x). So, if we let am-1(k) = (alm-1(k))}, 0 l
m — 1, denote the B-net of Pm-1,k, then the restriction of Nm(x) — Nm(x — 1)
to the interval [k — l,k) is given by the Bernstein polynomial
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Therefore, by applying the identity in (vii) of Theorem 4.3, or equivalently,

pm,k(x) = Pm_i1-k,(x)-pm-1,k1(x), x [k-l,k), (4.4.14)

we have

m-l

Now, if we integrate both sides over the interval [0, x] and apply (4.4.11) and
(4.4.10), we obtain the following relation between the B-nets of Nm and Nm+1,
namely:

l = 0, . . . ,m. For m 2, since Nm is continuous, we even have aom(k )=
Pm,k(k — 1) = Pm,k-1(k — 1) = amm(k -1)• Thus, we have derived the following
scheme for computing the B-nets of all the polynomial pieces of Nm for any
integer m 2.

Algorithm 4.10. (Cardinal B-spline B-net algorithm)
Let m 2 be any integer and set

k = 1,... ,m. Also set

and consider the initial conditions

Compute (1°) and (2°) below by using (4.4.17) and (4.4.18) for m = 2, and
then repeat the same process by using (4.4.17) and the previous result for
m = 3 ,4 , . . . ; where

for j = 0 , . . . , m — 1 and k = 1 , . . . , m + 1; and
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for i = 0, . . . , m, and k= 1,..., m + 1.
The schematic diagram for Algorithm 4.10 is shown in Figure 4.4.1, where

the condition (4.4.17) is used in each step to compute the blj(k) values.

Figure 4.4.1. Computation of B-nets for Nm.

Example 4.11. The B-nets for the quadratic (m = 3), cubic (m = 4), and
quartic (m = 5) cardinal B-splines are given below.

(i) For m = 3, a2(l), . . . ,a2(3)

(ii) For m = 4, a3(l),... ,a3(4)

(iii) For m = 5, a4(l),... ,a4(5)

Once the B-nets for Nm are known, it is easy to determine the B-nets for
any cardinal spline function fj as shown in (4.3.7). By a change of variable,
we may restrict our attention to cardinal spline functions
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with knot sequence ZZ. Let k ZZ and consider the restriction

m-l

of f0 on the interval [k — 1, k). By applying (4.4.16) and (4.4.19), we also have

Consequently, equating (4.4.20) and (4.4.21) yields

since alm-1(k — j) — 0 for j > k or j < k — m. Let us summarize the preceding
derivation by stating that, for each fixed k 6 ZZ and L = 0, . . . , m — 1, the
moving average (MA) formula in (4.4.22), with weight sequence

(whose terms can be computed by applying Algorithm 4.10, and are given in
Example 4.11 for m = 3, 4, 5), can be used to compute the B-net

of the restriction, on the interval [fc — 1, k), of the cardinal spline series fo with
coefficient sequence {cj}.

4.5. Construction of spline approximation formulas
We begin by writing down a useful formula on Fourier transforms which

can be easily verified by taking the jth order derivatives of both sides of (2.1.6),
namely:

where the notation

is used. Applying this formula to a monomial multiple of the mth order cardinal
B-spline Nm and a shift of its reflection N-m by some x & IR yields
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and

On the other hand, from the formula

it is clear that Nm satisfies the property

Hence, since (4.5.3) and (4.5.4) certainly agree at w; = 0, an application of
(4.5.5) to these two formulas gives:

As a consequence of (4.5.6), the following result can be easily derived by ap-
plying a version of the Poisson Summation Formula in (2.5.11).

Theorem 4.12. Let m 1 be any integer. Then

k= —

The identity in (4.5.7) says that if the coefficient sequence {ck} of a car-
dinal B-spline series of order m is a "polynomial sequence" of degree m - 1,
in the sense that Ck — p(k) for some p rm_1, then the cardinal spline func-
tion reduces to a polynomial in rm_1. We remark that the lower limit on the
right-hand side of (4.5.7) can be changed to 1 for m 2.

Let us now digress from the above discussion for the time being and con-
sider the following problem of "cardinal spline interpolation" using the "cen-
tered" cardinal B-spline -Nm(x +m/2), namely: For any given "admissible" data
sequence {fj} determine the solution {ck} in
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Here, {fj} is said to be admissible if it has at most polynomial growth. Using
the "symbol" notation:

we may write (4.5.8), at least formally, as

Observe that Nm is a symmetric Laurent polynomial. Also, note that as a
consequence of Theorem 4.3, (vi), the cosine polynomial

is rionnegative for all u). The introduction of D allows us to rewrite (4.5.10) as

So, at least formally, we have

(We remark here without proof that since we do have 0 D(w) < 1, the
"Neumann series" in (4.5.13) actually converges. More details will be discussed
in Section 4.6.) In any event, the formal expression in (4.5.13) motivates the
consideration of the finite sequences k = (j(k) }, defined by:

Each of these sequences, in turn, defines a convolution operator on the data
sequence (fj), namely:

whose symbol is given by
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Now suppose that the data sequence {f,j} is obtained from the measure-
ment of some continuous function /; that is, fj = f ( j ) . Then to simplify the
notation in (4.5.15), it is more convenient to write

3

This sequence defines a linear spline operator

(

that maps C = C(IR) to the cardinal spline space Sm. We must emphasize
that since k = {j(k) } is a finite sequence, each ( k f ) ( l ) depends only on the
values of f(j) in a neighborhood of j = l and this neighborhood is independent
of t. In other words, Qk is a "bounded linear local spline operator" defined on
C. The importance of Qk is that it preserves all polynomials in rm_i for any
sufficiently large k. Precisely, we have the following result.

Theorem 4.13. Let m 1 be any integer. Then for each k > m-3/2, the linear
operator Qk denned in (4.5.17) satisfies

Proof. Let p 6 rm_1. Then since {kj} is a finite sequence, kP is a polynomial
sequence of degree m — 1. More precisely, (Akp)(l) = q( l ) where q is the
polynomial

3

Furthermore, for each j , we have

and using the symbol notation, it follows from (4.5.14) and (4.5.11) that

where P is the symbol of {p(j)}. Now, recall from (4.5.11) and (4.5.9) that D
is the symbol of the sequence {dj}, where
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so that Dk+1 is the symbol of the (k + l)-fold convolution of {dj}. Since
Nm(m/2 +1) = Nm(m/2-l ) for all £ ZZ, we have

(4.5.22)

where [x] denotes the greatest integer not exceeding x, and the property
Nm(m/2 — j) = 1 has been used. The importance of the formulation in
(4.5,22) is that the convolution of {dj} with {p(j}} is written as a (finite) lin-
ear combination of second central differences of p(j). Hence, Dk+lP is the
symbol of a (finite) linear combination of 2(k + l)st order differences of {p(j)},
so that for any p rm_i, we have

Putting (4.5.23) into (4.5.20), we obtain

Consequently, since kp in (4.5.19) is a polynomial sequence of degree m — 1,
it follows from Theorem 4.12 that (Qkp)(x) is a polynomial in m-1. Hence,
(4.5.18) immediately follows by applying (4.5.24). •

Example 4.14. For m = 4, we may choose k = 1. Then the linear local cubic
spline operator Q1 is given by

By Theorem 4.13, we have

( Q 1 p ) ( x ) = p(x), p (x ) = 1, a:, x2, x3.

Proof. Prom (4.5.14) and (4.5.11), it follows that 1 = 2 - N4 so that
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Since N4(2) = 2/3 , N4(1) = N4(3) = 1/6, and N4(l) = 0 for all other integers l,
we have, from (4.5.16),

This gives (4.5.25).

The operators Qk are called "quasi-interpolation" operators. More gener-
ally, we will adopt the following definition. Throughout the following discus-
sion, we will consider the space

Definition 4.15. A bounded linear operator Q that maps Cb,(IR) into the car-
dinal spline space Sm is called a quasi-interpolation operator, if on one hand,
it preserves all of rm_1, in the sense that (Qp)(x) = p(x) for all p rm_1, and
on the other hand, it is local, in the sense that a compact set J exists such
that for any f C and x € IR, (Qf)(x) depends only on f(y] for y in

Remark. In the previous definition, when Q is defined to be a bounded linear
operator on Cb(IR), it is implicit that only function-value data are consid-
ered. To handle data consisting of certain derivative values, we must consider
bounded linear operators Q on a corresponding sub-class of smooth functions,
such as some "Sobolev space".

In Theorem 4.13, we have formulated a sequence of quasi-interpolation
operators Qk whose local supports J increase in size as k increases. We point
out, without going into any details here, that {Qk} actually converges to the
cardinal spline interpolation operator , which is uniquely determined by
the interpolation property:

(

for any / € C (see the next section for a discussion of cardinal spline inter-
polation). The reason for studying quasi-interpolation operators is that they
provide simple and computationally efficient schemes for constructing cardinal
spline approximants that provide the highest order of approximation, namely:
the order m is achieved, when mth order cardinal splines are used. In addition,
the local structure of a quasi-interpolation operator makes it possible for being
adopted for real-time (or on-line) applications.

To see how a quasi-interpolation operator is used to give optimal-order
approximation, we simply scale the B-splines from the "zeroth resolution level"
(that is, x = fc, k ZZ) to the "jth resolution level" (that is, x = k/2j,
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k ZZ). In the L2(IR) setting, this means that we process the discrete data in
a high-resolution spline space V™ where the sampling period can be as small
as h = 2-j. In general, we may consider any small scaling parameter h > 0,
and measure the order of approximation in terms of the power m of h, viz.,
O(hm), which means that the approximation error is bounded by a constant
multiple of hm as h —> 0+, when the data samples represent a sufficiently
smooth function. Let us use the notation

to describe the scaling process. Then any quasi-interpolation operator Q, as
described in Definition 4.15, gives rise to an "approximation formula", using
the composition of scalings and quasi-interpolation, namely:

Theorem 4.16. Suppose that Q is a quasi-interpolation operator from C(,(IR)
to Sm, K any compact set in IR, and any open set containing K. Then for
each f Cb(lR) Cm, there exists some positive constant C, depending
only on f and K, such that

for all sufficiently small h > 0.

Proof. From the definition of Q, it is easy to see that Qhp = p for all p rm_i
and \\Qh\\ = ||Q||, h > 0. Let

and suppose that

so that

Then by the local nature of Q and Nm, we have
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where p is any polynomial in m_i. Noting that / € Cm and is an open
set containing Xo X, and selecting the (m — l)st degree Taylor polynomial of
/ at xo to be the polynomial p in the above estimate, we obtain (4.5.31) with

where is any open set containing K such that the closure of Q° lies in O. •

In order to give a more general scheme for constructing quasi-interpolation
formulas, let us return to Theorem 4.13, where Qk, as defined in (4.5.17), is
determined by the convolution of the finite sequence & = {kj} with the data
sequence {fj}. Let k be fixed and consider the bounded linear functional A*
defined on C by

For any fixed l ZZ, if /(• + L) is considered as a function of the variable
represented by the dot, it is clear that

That is, the quasi-interpolation formula (4.5.17) is determined by a single linear
functional A* on C, namely:

To generalize this formulation, let us examine if we can use a family of
bounded linear functionals l, ZZ, on C to replace ; for instance, we try
to replace f(- + l) by l f/(- + l) in (4.5.32). That is, we are interested in
studying the conditions on the family { l} , such that the linear spline operator
Q°, defined by

is a quasi-interpolation operator. For Q° to be a bounded operator, it is
sufficient to assume that the norms A||l|| of these linear functionals satisfy

For instance, if {e} is a finite family, then (4.5.34) is certainly satisfied. On
the other hand, it is more difficult to demonstrate the local nature for a
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general Q°. Since only translation-invariant bounded linear functionals are of
interest in many applications, we will consider those X£ of the form

where {cj(l) }, l € ZZ, are finite sequences. Hence, if the union of the supports
of these sequences is a finite set, then Q° also has the local property. Again,
this property is certainly possessed by any finite family {l}. Finally, how is
polynomial reproduction achieved by Q°l A very simple assumption on the
l,s to yield this property is to require each l to satisfy

We remark that (4.5.35) may be replaced by a more general formula that
involves derivative data information, if we are willing to consider bounded
linear operators Q° on the corresponding subspace of differentiable functions.

We end this section with an example to demonstrate the effectiveness of
the freedom achieved by allowing more than one e.

Example 4.17. Observe that any of the quasi-interpolation operators Qk in
(4.5.17) requires the data information of (l), for all l ZZ. We have already
formulated the cubic spline operator Q1 in Example 4.14, where

Let us derive a cubic spline quasi-interpolation operator Q° that only requires
data information f ( 2 l ) , l € 2Z.

Solution. We consider two bounded linear functionals e and 0 defined by

Then by setting:

we have



4. Cardinal Spline Analysis

Hence, the only required data on / in the quasi-interpolation formula
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(4.5.39)

are f(2l), l € 2Z. To determine and {cf(2)}, we apply (4.5.36). First, we
must calculate X*pn where pn(x) = xn, n = 0 , . . . , 3. These values are

Hence, to satisfy (4.5.36), we have to solve two sets of linear equations:

and

Of course there are no unique solutions, but solutions of (4.5.40) and (4.5.41)
with smallest supports are given by:

and

These are the coefficients in (4.5.39).

4.6. Construction of spline interpolation formulas
The general scheme for constructing approximation formulas introduced

in the previous section does not produce spline functions that interpolate the
given discrete data in general. To construct a spline interpolation operator, it is
also very important to require the operator to reproduce polynomials at least
up to some desirable degree. This requirement not only helps in achieving
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a tolerable order of approximation, but is also critical in preserving certain
shapes of the given data. After all, to interpolate a set of constant data, one
expects to use a (horizontal) straight line.

We will first give a brief discussion of the cardinal spline interpolation
problem introduced in (4.5.8) and point out that although the highest order
of approximation is achieved in this case, the corresponding spline interpo-
lation operator cannot be local. This limits its applications to many engi-
neering problems, such as real-time (or on-line) data interpolation. The main
objective of this section is to introduce a constructive scheme that produces
quasi-interpolation operators which have the additional interpolation property.

Central to our discussion is the goal of constructing so-called "fundamen-
tal splines" that interpolate the data {j,o}- With a fundamental spline on
hand, an interpolation operator may be readily obtained by using any given
data sequence as the coefficient sequence of the spline series formed by integer
translates of the fundamental spline.

Let us first investigate the cardinal spline interpolation problem stated in
(4.5.8) with data sequence {j ,0}- By solving the bi-infinite system

for {ck(m)][. }, we have an mth order "fundamental cardinal spline function"

that has the interpolation property

as given by (4.6.1). In contrast to the cardinal B-spline Nm which has compact
support, we will see that the coefficient sequence (cm(k)., } is not finite for each
m 3, so that the fundamental cardinal spline Lm does not vanish identically
outside any compact set. Hence, when it is applied to interpolate a given data
sequence {f,j}, where fj = f(j) for some / C, say, one has to be careful
about the convergence of the infinite spline series

Fortunately, as we will see in a moment, {cmk} decays to zero exponentially
fast as k — » . This implies that the fundamental cardinal spline function
Lm(x) also decays to zero at the same rate as x — » ±00. Thus, if {/(k)} is °f
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at most polynomial growth, then the spline series in (4.6.4) certainly converges
at every x IR; and in view of the interpolation property (4.6.3), we have

That is, the interpolation spline operator Jm gives a spline function Jmf that
interpolates the given data function / at every x — j, j 2Z.

To study the fundamental cardinal spline functions Lm(x), we must return
to the system (4.6.1) of linear equations whose coefficients are given by the B-
spline values Nm(^ + fc). As in (4.5.9), we consider the symbol

and note that this symmetric Laurent polynomial can be easily transformed
into an algebraic polynomial with integer coefficients by considering

where, as before, [x] denotes the largest integer not exceeding x. This notion
generalizes the definition of Euler-Frobenius polynomials from even-order car-
dinal B-splines to those of arbitrary orders. (See (4.2.18) and the next two
chapters for more details and generality.) The most important property of
the Euler-Frobenius polynomial Em-1 in (4.6.6) for our purpose here is that
it does not vanish on the unit circle \z\ = 1 (see Theorem 5.10 in the next
chapter for a more general result). Hence, it follows that Nm(z) 0 for all
z = e-iw, w IR. Now, as in (4.5.10), the system of linear equations (4.6.1)
can be written as

where Cm(z) is the symbol of {ck(m)}. By using partial fractions, it is easy to
see that the sequence {ck(m) } has exponential decay as k — > ±, and the decay
rate is given by the magnitude of the root of Em_1 in \z\ < 1 which is closest
to the unit circle \z\ = 1.

By applying the Poisson Summation Formula (2.5.8), we may also write

(4.6.8)
k= —

where Nm( • +y) denotes the Fourier transform of Nm(x + y), and this
Fourier transform is evaluated at u + 2k in (4.6.8). Hence, by taking the
Fourier transform of both sides of (4.6.2) and applying (4.6.7) and (4.6.8),
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we have two formulas of (the Fourier transform of) the fundamental cardinal
spline function, namely:

(4.6,9)

Each of these two formulas can be used for computing Lm(x).

Example 4,18. Determine the cubic fundamental cardinal spline L4(x} .

Solution. By applying the recursive algorithm described in (4.2.15), the nonzero
values of N4(k), k ZZ, are found to be

as already observed in (4.3.15). Hence, the corresponding Euler-Frobenius
polynomial is given by

Consequently, we have

4 - l 2
(4.6.10)

so that the sequence {ck(4) } is given by

This yields the cubic fundamental cardinal spline
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Observe that the rate of decay of 1/4(x;) is

in view of the fact that supp N4(- + 2 — k) = (k — 2, k + 2].

113

(4.6.13)

As for computing the spline interpolant Jmf in (4.6.4), rather than doing
so directly, it is more efficient to approximate Jmf by Qk f for large values of k,
where Qk is the quasi-interpolation operator introduced in (4.5.17). To analyze
the resulting error, let us first return to (4.5.11) and (4.5.21), and consider

Hence, by repeating the telescoping argument in (4.5.20), we have, for each
£ 6 ZZ and p m_1,

This gives

where

Example 4.19. Estimate the error between ( Q k f ) ( l ) and (J4f)(£),^ < ZZ,
cubic spline interpolation (i.e., m = 4).

Solution. It is easy to see that
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and this yields

Hence, by (4.6.16), we have

For instance, if {f(k)} is a bounded sequence, then by observing dist l (f, 3)
dist l (f,0,r0) it follows from (4.6.17) that

In replacing Jmf by the quasi-interpolant Qkf, we do not have exact
interpolation in general, although a good estimate is given in (4.6.16). One of
the compelling reasons for choosing Qkf over Jmf, however, is that the local
nature of the quasi-interpolation operator makes it possible to employ it for
real-time applications. If we must insist on exact interpolation, then one way
to obtain a local interpolation formula is to use a spline space on a finer grid,
such as Sim, forr some j > 0, instead of Sm (where sim, is the space of mth order
cardinal splines with knot sequence 2-, as discussed in Section 4.1). For
instance, to interpolate a given data sequence {f(j): j € ZZ}, it is clear that
with

then the cardinal spline function

satisfies the requirement

Hence, the spline operator

k= —

is both local and interpolatory. Unfortunately, Rmf is a very bad representa-
tion of /, since even the constant data function is not reproduced. For instance,
when cubic splines are used, we have 4 = 1 and
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so that for the data function f ( x ) — 1, x € IR, we have (R4f)(1/2) — 3/2 N4(3) +f-
3/2V4(i) = 1/2, but not 1.

We now have two local methods: the method of constructing quasi-inter-
polation operators Q as studied in the previous section, and the local inter-
polation formula (4.6.21). The first method reproduces all polynomials in the
corresponding spline space, and hence provides the optimal order of approxi-
mation (see Theorem 4.16), while the second method provides an interpolatory
spline. To construct a bounded linear local operator P that possesses both the
polynomial-reproduction property of Q and the interpolatory property of Rm,
we consider the following "blending" operation:

Since both Q and Rm are bounded linear local operators on C, so is P. Now,
for any x € IR and p rm_1, in view of the fact that (Qp)(x) = p(x), we have

so that P also preserves all of m-1. On the other hand, for any / € C and
j ZZ, since (Rmf)(j} = f(j), we also have

Hence, we have proved that, indeed, P is a quasi-interpolation operator which is
interpolatory on ZZ. Two important points must still be observed. Firstly, since
we are interested in interpolation of the data f ( j ) , j 2Z, the local operator
P should only depend on this data set, but nothing else. This is certainly true
for Rm in (4.6.21), but the quasi-interpolation operator Q must also have this
property. Fortunately, the general formulation of Q° in (4.5.33) by imposing
the condition (4.5.36) on the defining linear functionals, as introduced in the
above section, can be applied to change the data set. Secondly, since the range
of Rm is the spline space smm , we should also restrict the range of Q = Q° to
Smm. We have thus established the following result.

Theorem 4.20. Let Q° be a quasi-interpolation operator from Cb(IR) into Smm
in terms of the data sequences f ( j ) , j ZZ, / € Cb(IR). Then the operator
P denned in (4.6.23), with Rm given by (4.6.21), is also a quasi-interpolation
operator on C&(IR) with range Smm- in terms of the data sequences f ( j ) , j ZZ,
and satisfies the additional property

Of course the interpolatory quasi-interpolation operator P can be "scaled"
to yield the operators
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by choosing h — 2- Ja (for any fixed positive constant a and large positive
integer j) to take care of other data sequences

and to achieve the optimal order O(hm) of approximation (see Theorem 4.16),
We end this chapter by providing an example of cubic spline interpolation and
quasi-interpolation operators.

Example 4.21. Construct a local cubic spline interpolation operator P04 that
depends only on the data set /(j), j € ZZ, and preserves all cubic polynomials.

Solution. By scaling the quasi-interpolation operator Q° in (4.5.39) in Exam-
ple 4.17 by 1/2, we obtain the quasi-interpolation formula

that reproduces all of 3, where {C(1)j } and {C(2)j } are given by (4.5.42) and
(4.5.43). Hence, by applying (4.6.23) with Q = Q04 and Rm = R4 as given by
(4.6.21) and (4.6.22), we have
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where

n

for

for

for

for

for

n =

n —

n —

n —

se

0

±1

±2

±3

±4

Observe that to determine the cardinal B-spline series

11?

(4.6.28)

we can simply apply the MA formula

where {f(n)} is obtained from the data sequence {f(n)} by upsampling, namely:
f(2n) = f(n) and /(2n + 1) = 0, n € 2Z. (See (4.3.11).) •
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5 Scaling Functions
and Wavelets

Any 7^-wavelet (or simply, wavelet) gives rise to some decomposition of
the Hilbert space L2(IR) into a direct sum of closed subspaces Wj, ZZ; in
the sense that each subspace Wj is the closure in L2(IR) of the linear span of
the collection of functions

Hence, the corresponding subspaces

form a nested sequence of subspaces of l2(IR), whose union is dense in L2(1R)
and whose intersection is the null space {0}.

This observation motivates the following introduction of a very useful
technique for constructing the wavelet and its corresponding dual , namely:
the investigation of the existence, and a study of the structure, of some "scaling
function that generates the spaces Vj, j ZZ, in the same manner as
generates the spaces Wj, j e ZZ. In particular, the collection of functions

is to form a Riesz (or unconditional) basis of V0; and hence, generates a
multiresolution analysis (MRA) {Vj} of L2(IR). Since V0 c V1, there exists
a unique sequence {pn} l2 that relates (x) with the functions (2x — k),
k ZZ; and the structure of is governed by that of this "two-scale sequence"
{pn}. For instance, a finite two-scale sequence characterizes a scaling function
0 with compact support. In this respect, has minimum support if the length
of this finite sequence is the shortest.

We will see that there is quite a lot of freedom in choosing the corre-
sponding wavelet and its dual , and another objective of this chapter is to
investigate the structure of the complementary spaces Wj (in the sense that
Vj+i = Vj+Wj, j ZZ), and the corresponding "two-scale sequences" relating
Wj with Vj+1, that describe this freedom. With full knowledge of what the
freedom is, it is then possible to construct the wavelet and its dual to meet
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certain specifications. Among those specifications of special interest, particu-
larly to the engineer, are: decomposition of the space L2(IR) as an orthogonal
sum of the subspaces Wj: an orthonormal basis of L2(1R) generated by , finite
reconstruction and decomposition sequences as a result of compactly supported
; and and symmetry or anti-symmetry of and In addition to a study

of these features, we will also discuss the relation between symmetric wavelets
and linear-phase filtering.

5.1. Multiresolution analysis
If some wavelet L2(IR) has to be constructed, then it is advisable to

study the structure of the L2(IR) decomposition it generates. As usual, let
j,k(x) := 2j/2 (2jx - k) and

Then this family of subspaces of L2(IR) gives a direct-sum decomposition of
L2(IR) in the sense that every / L2(IR) has a unique decomposition

where gj Wj for all j ZZ, and we shall describe this by writing

(see (1.4.3)-(1.4.5)). Being in Wj, the component gJ of / has a unique wavelet
series representation, where the coefficient sequence gives localized spectral
information of / in the jth octave (or frequency band) in terms of the inte-
gral wavelet transform of / with the dual of as the basic wavelet (see
Theorem 3.27). We will return to this topic in Section 5.4. Using the decom-
position of L2(1R) in (5.1.3), we also have a nested sequence of closed subspaces
Vj, j ZZ, of L2(IR) defined by

Let us summarize the properties of {Vj}}, which are simple consequences of
(5.1.1), (5.1.3), and (5.1.4), in the following (see Section 1.5).

Lemma 5.1. The subspaces Vj defined by (5.1.4) satisfy:
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Now, suppose that a function V0 exists such that

is a Riesz basis of V0 with Riesz bounds A and B (see (3.6.7)). Then by setting

it follows from (5.1.4), (5.1.1), and (5°) above that for each j ZZ, the family

is also a Riesz basis of Vj with the same Riesz bounds A and B. As a conse-
quence, the spaces Vj also possess the following property:

We have seen that in order to construct a wavelet , we always end up
with a nested sequence {Vj} of subspaces of L2(1R) that satisfies the properties
(l°)-('5°). So, these properties may be considered as necessary conditions for
the existence of a wavelet . The technique we are going to study is first to
construct a so-called "scaling function" € l2(IR) that "generates" a sequence
of closed subspaces of L2(1R) (which we will also call Vj, with the understanding
that these subspaces are no longer defined by (5.1.4) through some whose
existence is still under investigation). More precisely, we have the following.

Definition 5.2. A function L2(IR) is called a scaling function, if the sub-
spaces Vj of L2(IR), defined by

(where the notation in (5.1.6) is used) satisfy the properties (1°), (2°), (5°),
and (6°) stated above in this section, and if {(- — k): k & ZZ} is a Riesz
basis of V0. We also say that the scaling function generates a multiresolution
analysis {Vj} of L2(IR).

Remark. If 0 6 L2(1R) is a scaling function that generates an MRA {Vj} of
L2(IR), then the nested sequence {Vj} of MRA subspaces necessarily satisfies
the property in (3°). The proof of this fact requires a little work and will not
be discussed here. (See (7.2.29) in the proof of Lemma 7.13 in Chapter 7.)
In addition, it is always possible to introduce complementary subspaces Wj
as in (4°). However, we will always assume that these subspaces are chosen
"consistently" for all j ZZ. For instance, if W0 ± V0, then we require Wj ± Vj,
j € ZZ. In general, if W0 is generated by some in the sense of (5.1.1) for j = 0,
then all the other subspaces Wj are assumed to be generated analogously by
the same . In summary, all the properties (l°)-(6°) will be assumed in any
MRA {Vj} of L2(JR).
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If generates an MRA, then since Vo is also in V1 and since { 1 , k ' - k ZZ} is a Riesz basis of V1, there exists a unique l2 -sequence {pk} that describes
the "two-scale relation"

of the scaling function . (See (4.3.1) and (4.3.3)-(4.3.4) for the two-scale
relation of the mth order cardinal B-spline.) This sequence {pk} is called the
"two-scale sequence" of . Corresponding to this l2 -sequence, let us introduce
the notation

which differs from the symbol notation in (4.5.9) in that a normalization con-
stant of | is used to define P. This normalization simplifies the following
Fourier transform formulation:

of the identity (5.1.8). We will call P = P the "two-scale symbol" of the
scaling function 0.

In order to be able to derive certain desirable properties of the L2(IR)
scaling function 0, and later, its corresponding wavelet and dual wavelet
we will make the following assumptions on and its two-scale sequence:

The assumption in (A2) is called the property of "partition of unity" of .
It is a standard (although not necessary) hypothesis for deriving the density
property of the spaces Vj in (2°). (See the proof of Theorem 4.16.) Observe
that every cardinal B-spline satisfies (A2). Assumption (Al) implies that
is a continuous function on IR, as guaranteed by Theorem 2.2, (ii). Hence, it
follows from Corollary 2.27 and the Poisson Summation Formula in (2.5.11)
that (A2) is a consequence of the following conditions on 0:

(See (4.5.5) for a more qualitative description of the mth order cardinal B-
splines.) In general, since generates a Riesz basis of V0, it follows from
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(5.1.8) that by the normalization 0(0) = 1, (A2) already follows. Finally, the
assumption in (A3) guarantees that P = P, is a continuous function on the
unit circle z\ — 1. It is a very weak hypothesis; and in applications, we are
interested in finite sequences so that the corresponding P = P are Laurent
polynomials. This further assumption will be made in the next section.

From the continuity of P = P on \z\ = 1 and the first condition in
(5.1.11), and by applying (5.1.10), we have

On the other hand, it follows from the assumption that {(- — k): k ZZ} is
a Riesz basis of V0 and the second condition of 0 in (5.1.11) that P(z) also
satisfies

Indeed, by Theorem 3.24 and the continuity of 0, we have

so that 0((2k0+ I) 0 for some ko ZZ; and hence, evaluation of both
sides of (5.1.10) at w = 2(2ko + 1) yields (5.1.13). Of course, an equivalent
statement of (5.1.12) and (5.1.13) is

As another consequence of the continuity of and the condition 0(0) = 1,
we observe, by repeated application of (5.1.10), that as n — >

pointwise, provided that the infinite product converges. We will return to the
convergence argument after considering the following example.

Example 5.3. For the mth order cardinal B-spline Nm, we have
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(see (4.3,3)), so that

as n — > , and this limit agrees with the formulation of Nm(w) in (3.2.16). •

In view of the preceding spline example, we will restrict our attention to
two-scale equations with governing sequences {pk} given by

where N is some positive integer, S(1) — 1, and S(z) is sufficiently smooth on
the unit circle \z\ — 1. More precisely, we consider the following.

Definition 5.4. A Laurent series P(z] of the form (5.1.17) is called an "ad-
missible two-scale symbol" if S is a continuous function on the unit circle
satisfying

(i) 5(1) = 1, and
(ii) as a function of w, the L°°(0, 2) modulus of continuity of S (e - iw) as in

(2.4.23) is of order O(naa), for some a, with 0< a 1, as 77 0+.

For any admissible two-scale symbol P with factor S as in (5.1.17). let us
consider the bounds Bj — Bj(S) and bj = bj(S) defined by

We have the following convergence result.
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Theorem 5.5. Let P be an admissible two-scale symbol of the form (5.1.17).
Then the infinite product

converges pointwise everywhere to some function g. Furthermore, for every
positive integer no, there exists some positive constant Cno, such that the
limit function g satisfies

where bno is denned as in (5.1.18). In particular, if there is some no such that
bno < N— 1/2, then there exists a function L2(IR) such that 0 = g, (0) = 1,
and satisfies the two-scale relation (5.1.10).

Proof. For any fixed w, since 5(1) == 1 and the L°°(0,2) modulus of continuity
of S ( e - i w ) is of order 0(77"), 0 < a 1, we have

Hence, since (/w/a/2ka <

it follows that the infinite product

converges. Therefore, in view of Example 5.3, the infinite product in (5.1.19)
converges for every w.

To establish the estimate in (5.1.20), we first observe, again from Exam-
ple 5.3, that



126 5. Scaling Functions and Wavelets

Next, for any fixed w, there corresponds a unique n ZZ such that 2n -1 <
1 + /w/) 2n. So, on one hand, since |w//2k| 1 for all k > n, the above
estimates give

where C" is independent of . Hence, with C'" := C'C", we conclude, using
(5.1.22), that

On the other hand, using (5.1.18), we have, for any fixed positive integer n0
and for all large n > 0,

Since

it follows that

Hence, with Cno := C"'C^0C'''n0, the assertion in (5.1.20) is a consequence of
(5.1.22) and (5.1.24).

If bno < N - |, then from (5.1.20) we see that g L2(IR); and by the
L2(IR) isometry of the Fourier transform established in Theorem 2.17, we have
g = 0 for some 0 L2(1R). In addition, it is clear from the estimates (5.1.21)
and (5.1.22) that 0 C, so that 0(0) g(0) = P(l) = 1, and

This completes the proof of the theorem.
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Observe that the foregoing theorem does not give any information on the
smoothness of and on whether or not it generates a Riesz basis of V0. In
fact, without imposing any additional conditions on the two-scale symbol P, it
is very difficult to draw any conclusion concerning whether or not the scaling
function generates a Riesz basis of VQ. A discussion of this issue is delayed to
Chapter 7, where {(- — k): k ZZ} is required to be an orthonormal family.
In what follows, we will only be concerned with the smoothness of the scaling
function ,

Theorem 5.6. Under the hypotheses in Theorem 5.5, if

satisfies b < N -1, then the limit function g in (5.1.19) is in L2(IR) Ll(IR),
and the function L2(IR), satisfying = g as stated in Theorem 5.5, is in
Cb(IR), where /3 is the largest integer which is strictly smaller than N — b — 1.
Furthermore, for any a > 0, with 0 < f 3 + a<N — b — I, b satisfies:

Definition 5.7. The class of all functions f C = C(IR) satisfying

where 0 < a < 1, is denoted by Lip a; and the class of functions f € Cm =
Cm(R), where m is a positive integer such that f(m^ € Lip a, 0 < a < 1, will
be denoted by Lipma.

Proof of Theorem 5.6. Select a positive integer no such that

Note that by the definition of (3, we have 0 < a < 1; and by (5.1.20) in
Theorem 5.5, we see that

Hence, the Lebesgue Dominated Convergence Theorem permits us to differen-
tiate inside the integral of the formula

(3 times, yielding C b and



128 5. Scaling Functions and Wavelets

Now, from the estimate

along with (5.1.27) and (5.1.28), it follows that

where the integral is finite, since b + a — N + bo < — 1. Hence, we have proved
that Lip'3 a.

5.2. Scaling functions with finite two-scale relations
In this section, we restrict our attention to two-scale relations (5.1.8) de-

scribed by finite sums. A very important consequence of this restriction is
that the corresponding scaling functions necessarily have compact supports.
Hence, as we will see in this section, the graphical display algorithm for car-
dinal B-splines in Section 4.3 also applies to plotting the graph of any causal
series

where is any such scaling function, in real-time. We will also study the
class of all scaling functions with finite two-scale relations that generate the
same multiresolution analysis, and investigate the ones with minimum sup-
ports. This is important in revealing the basic structure of the MRA under
investigation, and minimally supported scaling functions will be instrumental
in constructing wavelets with smaller supports. It will be clear that the smaller
the supports of a scaling function and its corresponding wavelet are, the
shorter the reconstruction sequences (see (1.6.2)) used in the wavelet recon-
struction algorithm become. (For more details, see Section 5.4 later in this
chapter.)

Let be a scaling function described by the two-scale relation

When no possible confusion arises, we will drop the subscript or superscript 0,
by writing
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We remark that by a change of index in pk, any finite two-scale relation can
be written as in (5.2.2). Of course, the scaling function 0 must also be shifted
accordingly.

Let us first take care of the cases N = 0,1 in (5.2.2).
(i) For N = 0, we have, by (5.1.12),

so that the two-scale symbol is P(z) = 1 and the infinite product in
(5.1.19) is g(w) = 1 for all a;. So if g = 0, then 0 must be the delta
distribution.

(ii) For N, = 1, we have, by (5.1.14),

which is the same as the two-scale relation of the first order cardinal B-
spline N1 in (4.3.4). So 0 = NI.
Hence, we will always assume that N 2. In the following, an iterative

procedure will be introduced to construct the scaling functions 0. For this
purpose, we will only be concerned with scaling functions which are continuous
everywhere. Under this additional assumption, it is also possible to show that
for N, — 2, the two-scale relation must be given by

which is identical with the two-scale relation of the second order cardinal B-
spline N2 as in (4.3.4) for m = 2, and hence, 0 = N2. For N 3, however,
we are going to see some very interesting varieties in Chapter 7. For instance,
when N = 3, of course we always have the quadratic cardinal B-spline N3

whose two-scale equation is

However, there is another alternative, namely: Daubechies' scaling function D3
governed by

More details on 0D will be given in Chapter 7. Here, we only point out two
essential features of the two-scale sequence in (5.2.6). Firstly, as required by
(5.1.14), we have
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and secondly,

which satisfies the admissibility condition in Definition 5.4, with N = 2 and
S(z) being a trigonometric polynomial in w such that 5(1) = 1.

To understand a scaling function better, we consider the recursive
scheme

for some suitable initial function . By considering the Fourier transform for-
mulation of (5.2.9) (see (5.1.10)) and following the same process as in (5.1.15),
we have

Hence, if P is an admissible two-scale symbol and the Fourier transform of
the initial choice 0 is continuous at w = 0 and satisfies 0(0) = 1, then by
Theorem 5.5 both sides of (5.2.10) converge for any w IR, and

where g is the infinite product given in (5.1.19). In addition, if the two-scale
symbol P also satisfies b < N — I where 6 and N are given in (5.1.25) and
(5.1.17), respectively, then by Theorems 5.5 and 5.6, we have g — 0, where

L1(IR) L2(IR) is in Lipb a, with 0 < a < 1 and (3 is the largest integer
satisfying Q<b + a<N — b — 1 (see Definition 5.7). Therefore, under these
conditions, a scaling function 0 can be obtained by taking the limit of 0n in
the recursive scheme (5.2.9). We will sketch a proof of this in a moment. In
view of the foregoing discussions on the cases in (i) and (ii), we see that for a
two-scale sequence with at least three non-zero terms the second order cardinal
B-spline N2, being a continuous spline function with lowest order, provides a
good choice as the initial function in (5.2.9) for producing the scaling function
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. That is, we recommend the following recursive scheme:

131

In fact, under the above assumption on the two-scale symbol P, this recursive
scheme is uniformly convergent.

Sketch of Proof. Let > 0. Since 0 L1(IR), we have

for all sufficiently large values of M > 0, and

for any fixed value of M. On the other hand, since

we have, by applying the same estimate as in (5.1.24),

where 0 <n < N — 6 — 1 and M is sufficiently large. Finally, the periodicity of

may be used to yield

and uniform convergence follows from the observation that \n(x) — (x}\

2
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As a consequence of the process in (5.2.11), we see that 0 has compact
support, and in fact, we can find its support exactly, provided that 0 is contin-
uous. It is interesting to observe that, indeed, supp 0n increases monotonically
with n. More precisely, by simple computations, we have

and hence, since N > 2, we have

and it follows from (5.2.11) and (5.2.12) that

Knowing that the support of 0 is [0, N], as in (5.2.13), is a tremendous help
in computing 0(x), at least at all the dyadic points x — k/2-j, where j, k € ZZ.
This is evident by referring to the two-scale relation (5.2.2). In fact, if the
values of 0(1),..., 0(N — 1) are known, then since 0(k) = 0 for all k < 0 or
k > N, the relations

uniquely determine all the values of (x) at x = k/2J, j, k £ 2Z.
To determine the values of 0(k), k € ZZ, we again use the two-scale relation

(5.2.2) with x being an integer. That is, in matrix notation, we have

where m is the column vector
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and M the (N - 1) x (N - 1) matrix

with j being the row index and k the column index. Recalling that generates
a partition of unity (see (A.2) in Section 5.1), we can determine the values of
0(k), k ZZ , simply by finding the eigenvector m in (5.2.14) corresponding to
the eigenvalue 1 and imposing the normalization condition

Example 5.8. Determine the values of k ZZ, where the two-scale
relation of is given by (5.2.6).

Solution. By (5.2.6), we have N> = 3 and the matrix M in (5.2.16) becomes

It is easy to see that the solution space of (5.2.14) is

So, by the normalization condition (5.2.17), we have a = 1/2 and

Having computed the values of 0(k), k ZZ, it is now very easy to compute

In fact, the Interpolatory Graphical Display Algorithm (see Algorithm 4.7) can
be applied, without any change, even to compute any causal series

in real-time, for any fixed jo ZZ, at x = k/2J'J for any k ZZ and any j1 > J0.
Hence, to compute (k/2J) in (5.2.20), we simply apply this algorithm to jo — 0
and Of course, one must set



134 5. Scaling Functions and Wavelets

in Algorithm 4.7 for computing (or displaying the graph of) fJ0 in (5.2.21).
We now turn to a study of the class of all the scaling functions with

finite two-scale relations that generate the same MRA {Vj} of £2(1R). Again,
without loss of generality, we may assume that the two-scale relation of any

takes on the form (5.2.2), and hence, by (5.2.13), the support of is
precisely the interval [0, N]. So, 0* has minimum support if and only if

Corresponding to any, let us consider the autocorrelation function

introduced in Definition 2.9, and the symbol of the sequence , namely:

Since F clearly satisfies:

it follows that E is a Laurent polynomial. Let k denote the "one-sided
degree" of E that is, k is the largest integer for which F ( k } / 0. Then

is an (algebraic) polynomial (in z) of degree 2k0, and the "reciprocal polyno-
mial" of II is given by

In view of the first property in (5.2.26), it is clear that

We call II the "generalized Euler-Probenius polynomial" and E the "gen-
eralized Euler-Frobenius Laurent polynomial" relative to . (Recall that a
multiplicative normalization constant is used to give integer coefficients for
the ordinary Euler-Probenius polynomials relative to the cardinal S-splines in
(4.2.18), and more generally in (4.6.6).)
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We need the following terminology.

Definition 5.9. Let Z0 be a zero (or root) of an algebraic polynomial p(z).
Then we call Z0 a symmetric zero (or symmetric root) of p(z) if (i) Z0 0 and
(ii) p(-zo) = p(z0) - 0.

In the following theorem concerning scaling functions with finite two-
scale sequences, recall that P(z) denotes the two-scale symbol of 0.

Theorem 5.10. Let 0 be any scaling function governed by (5.2.2). Then
(i) both E (Z) and I I , ( z ) never vanish on \z\ = 1;

(ii) for all w IR.,

(iv) for all complex numbers z,

(v) P has no symmetric zeros that lie on \z\ = 1.

Proof. The identity in (5.2.30) follows from the Poisson Summation Formula
(2.5.19). Hence, by applying Theorem 3.24, since {0(- — k): k zZ} is a Riesz
basis of V0, we have E ( e - l w ) 0 for all w IR. In particular, assertion (i)
follows from (5.2.27). To derive (5.2.31), we start from (5.2.30) and apply the
Fourier transform formulation of the two-scale relation (5.2.2), obtaining:

This establishes (iii). To prove (iv), we appeal to the formulas

which hold for \z\ = 1, and verify that (5.2.31) is equivalent to (5.2.32) for
z — e-iw/2. Now, since both sides of (5.2.32) are entire functions (being
algebraic polynomials in z), they must be identical for all z.

Finally, if Z0 0 is a symmetric zero of P, then by (5.2.32), we have
) = 0, so that \Z0\ 1 by applying (i).
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We are now ready to give a characterization of those that have
minimum support.

Theorem 6.11. A scaling function 0 € has minimum support if and only
if its two-scale symbol P,* has no symmetric zeros.

Proof. Let * be given arbitrarily and consider the factorization of its
two-scale symbol P into the form

where m* and n* are polynomials satisfying

Recall that supp 0* = [0, N*] and N</>* — d e g P . Also, observe from (5.2.33)
and (5.2.34) that P has no symmetric zeros if and only if

Now, by Theorem 5.10, (v), since P has no symmetric zeros that lie on
\z| = 1, the polynomial n is zero-free on \z\ = 1, so that n-1,1 is analytic on

| = 1, and has a Laurent expansion

Define a function ** V0 by

Then using the notation z = eiw/2, we may reformulate (5.2.35) as

or

Now, by applying both (5.2.36) and (5.2.37) and using the two-scale relation
of 0* , we have
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This shows that ** and its two-scale symbol is given by

So, in view of (5.2.33), we have

Hence, for * to have minimum support, we must have deg P = det p, or
d e g n * = 0, or equivalently, P has no symmetric zeros.

To prove the converse, suppose that and that P has no symmetric
zeros. Then in view of (5.2.13), in order to prove that has minimum support,
it suffices to prove that

for some sequence {sn} £2. The Fourier transform formulation of (5.2.39) is

By taking the discrete Fourier transform of both sides of (5.2.39), we see that
C(z) is a rational function, being the quotient of the (polynomial) symbol of

and that of {*(k}}. In addition, since it follows from (5.2.40) that

we observe, by applying Theorem 5.10, (i), that the rational function C(z] is
both zero-free and pole-free on \z\ — 1. Now, let us write
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where d, q0,q0* are polynomials with (0) = 0, q(0) 0, and q,,q, have
no common zeros. Then it follows from the two-scale relations of and ,
and also from (5.2.40) that for z = e-iw/2,

whence

On the other hand, from (5.2.41) and our earlier observation on C(z), we have

So, since q(z2) and q(z2) are relatively prime, and since P(z) in (5.2.42) is
a polynomial, we may conclude that the polynomial q* (z}P* (z) is divisible
by q*(z2)] that is,

where r(z) is some polynomial.
Let us assume that deg q0 1 and let { Z I , . . . , Z P } be the zeros of q.

Since q (0) 0, we have z1, . . . , zp / 0. In addition, since

where q and q* are relatively prime, and C(z) is zero-free and pole-free on
\z\ = 1, we conclude that none of the Zj, j = 1,... ,p, lie on (2) = 1. Hence,
there exists some jo, 1 jo p, such that neither branch ±zj0 of the square-
root of ZJo belongs to the set { Z I , . . . , Z P } . That is, while each of the two
polynomials, (z — Z 'Jo) and (z + z'jo), does not divide q ( z } , their product
(z — z'j0)(z + z'io) = (z2 — Zj0) is a factor of q* (z2). Therefore, it follows from
(5.2.44) that (z2 — ZJ0) is a factor of P c ( z ) . Since Zj0 0, P* now has a



5. Scaling Functions and Wavelets 139

symmetric root, and this is a contradiction to the hypothesis. Hence, q* must
be a constant. Consequently, we have, from (5.2.42) and (5.2.43), that

and this implies that deg P deg P* .

In our proof of Theorem 5.11, we have actually derived several nice prop-
erties of any 0 , two of which are stated in the following.

Theorem 5.12. For any 01,02 , the symbol C(z] of the sequence {sn}
relating 1 and 2, in the sense that

is a rational function which is both zero-free and pole-free on the unit circle
\z\-l. In addition, if 1 has minimum support, then C(z) is a polynomial;
that is, every 02 is a finite linear combination of integer translates of the
minimally supported 1 In particular, the minimally supported
is unique.

Proof. The first statement has been proved previously. If 1 has minimum
support, then by the preceding theorem, the two-scale symbol P 1 of 1 has
no symmetric roots. Hence, by the foregoing derivation, we note that q1 is
a constant, say ql(z) = q1(0) 0; so in view of (5.2.45), with 0* = 1,
C(z) is a polynomial and this establishes the second statement in the theorem.
Finally, suppose that both 1 and 2 have minimum supports. Then by the
definition of and (5.2.13), we have

and

Suppose p 1. Then for x [N1 + p — 1, N1 + p], we have

Since i is non-trivial on [N1 — 1, N1], so is 1(- —p) on [N +p — I, N1 +p}.
Hence, cp = 0, which is a contradiction to (5.2.46); and this implies
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That CO = 1 is a consequence of 2(0) = ^i(0) = 1. •

We end this section with the following example.

Example 5.13. For any positive integer m, the mth order cardinal S-spline
Nm is a scaling function that generates the MRA {Vmj: j ZZ} of l2(IR) as
defined in Section 4.1. The two-scale relation of Nm is given by (4.3.4), and
the Riesz bounds of Nm are A = Am and B = 1, where Am is defined in
(4.2.21). Let m denote the class of all compactly supported V0m that
generate the same MRA {Vjm}. Then since the two-scale symbol PNm of Nm

is (1 + z)m/2m which has no symmetric zeros, Nm is the unique function in
m with minimum support.

Without going into any details, we remark that Nm is the only function
in m, although in general the cardinality of may be infinite.

5.3. Direct-sum decompositions of L2(IR)
In the last section, we only considered scaling functions with finite two-

scale sequences. To develop a more general theory, we will allow the two-scale
sequences to be in I1 (see the assumption (A3) in Section 5.1), so that the
corresponding two-scale symbols belong to the so-called " Wiener Class".

Definition 5.14. A Laurent series is said to belong to the Wiener Class W If
its coefficient sequence is in ll.

Since the discrete convolution of two ll-sequences is again a sequence in
ll, it is clear that W is an "algebra". The truth is that W is even more than
an algebra, as seen in the following well-known theorem due to N. Wiener.

Theorem 5.15. Let / € W and suppose that f ( z ) / 0 for all z on the unit
circle \z\ — 1. Then 1/f W also.

A proof of this theorem is unfortunately beyond the scope of this book.
For the reader who is unwilling to accept this theorem, it is only a small
sacrifice to consider the subclass of Laurent series of rational functions which
are pole-free on \z\ — 1, since the Laurent series of special interest are finite or
at least have exponential decay.

Let 0 be a scaling function whose two-scale symbol

is in W. Recall that P governs the relation V0 C V1 in the sense that

and p "generates" V0. Let us now consider any other ll -sequence {qk} and its
"symbol"
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(which is halved to match the two-scale symbol P). Then Q is also in W and
defines a function

in V1 . This function also generates a closed subspace W0 in the same manner
as generates V0, namely:

Hence, analogous to what

does, the symbol Q governs the relation W0 V1 in the sense that (5.3.4) and
(5.3.5) are satisfied.

Of course the relation between the two subspaces V0 and W0 of V1 must
depend on the relation between the two symbols P and Q. Our main con-
cern in the construction of wavelets is at least to ensure that V0 and W0 are
complementary subspaces of V1 , in the sense that

As in (1.4.4), the two properties in (5.3.7) together are referred to by saying
that V1 is the "direct sum" of V0 and W0, and the notation

is used in place of (5.3.7). In the following, we will see that the matrix

plays an essential role in characterizing (5.3.8). Hence, we must consider the
determinant

of the matrix in (5.3.9). Since P and Q are in W and W is an algebra, we have

also. In addition, if ptQ(z) 0 on z\ = 1, then by Theorem 5.15, we also
have

So, under the condition P;Q 0 on \z\ — 1, the two functions
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are both in the Wiener Class W. The reason for considering the functions G
and H in (5.3.11) is that the transpose MTG H of MG,H is the inverse of MP,Q,
namely:

The first identity in (5.3.12) is equivalent to the pair of identities

while the second identity in (5.3.12) is equivalent to the following set of four
identities:

For L2(IR) decomposition, we do not need the identities in (5.3.14). However,
this set of identities will be crucial to our discussion of "duality" in the next
section.

Since G, -H" € W, we may write

where {gn}, {hn} £l, whenever P,Q(^) 0 on the unit circle. We are now
ready to formulate the following decomposition result.

Theorem 5.16. A necessary and sufficient condition for the direct-sum decom-
position (5.3.8) to hold is that the (continuous) function p,Q never vanishes
on the unit circle \z\ = 1. Furthermore, if pQ(z) 0 for all \z\ = 1, then the
family (- — k): k ZZ}, governed by Q(z) as in (5.3.4), is a Rtiesz basis of
W0, and the "decomposition relation"

holds for all x JR.

Proof in one direction. We will only take care of the important direction.
Hence, in the following, it is assumed that p,Q(z) 0 for all z satisfying
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z\ = 1. As a consequence, all sequences to be considered are in I1 and there
will be no danger in interchanging the orders of summation.

Observe that as an equivalent formulation of (5.3.13), we have

which, in view of (5.3.15), may be written as

Hence, by setting z = e iw/2 and multiplying the two identities in (5.3.18) by
and z(w/2)(̂ , consecutively, we have

which is equivalent to

where the Fourier transform formulations of (5.3.2) and (5.3.4) have been used.
Consequently, by taking the inverse Fourier transform on both sides in (5.3.19),
we obtain

It is clear that (5.3.20) is equivalent to (5.3.16). As a consequence, since
and {hk} are in l1, and since

we have now shown that V\ c V0 + W0, so that
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To prove that this is a direct sum, we consider

where {ak} and {bk} are in £2. Then by applying the two-scale relations in
(5.3.2) and (5.3.4), we obtain

so that

by referring to the fact that {0(2 • — l): l € ZZ} is a Riesz basis of V1. Now,
taking the symbols (or "z-transforms") of both sides of (5.3.22), we have

where A and B denote the symbols of {a,k} and {bk}, respectively. So, if z is
also replaced by —z, then (5.3.23) gives rise to the linear equations:

with two unknowns A(z2) and B(z2), where the coefficient matrix is M P , ( Z ) ,
which is nonsingular for all z on \z\ = 1. Hence (z2) and B(z2) must be zero,
and the l2-sequences {ak} and {bk} in (5.3.21) are trivial. This proves that
V0 Wo = {0}.

To prove that the family (- — k): k ZZ} is a Riesz basis of wo, we will
rely on Theorem 3.24. In particular, since (• — fc): k ZZ}is a Riesz basis
of V0, we have

Also, it follows from the Fourier transform formulation of (5.3.4) that
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where z = e~iw/2, so that an application of (5.3.24) yields

Since Q E W, it is continuous on \z\ = 1, and we have

On the other hand, in view of

we see that not both Q(z) and Q(— 2) can vanish at the same z on the unit
circle, and so, again by the continuity of Q on \z\ = 1, we have

Hence, it follows from (5.3.25), (5.3.26), and (5.3.27) that

or (- — k): k; ZZ} is a Riesz basis of W

We must now pause for a moment and comment on the decomposition of
L2(IR) via Theorem 5.16.

Remark 5.17. Let PQ(Z) 0 for all z on the unit circle and define

Then in view of the definition of Vj, j , and the assertion V1 = V0+W0 in
Theorem 5.16, we have

Hence, since {Vj} is an MRA of L2(IR), it follows that the family {Wj} con-
stitutes a direct-sum decomposition of L2(IR), namely:

Furthermore, the decomposition relation in (5.3.16) gives rise to the decompo-
sition algorithm described by (1.6.9) with ak = g-k and bk — h-k,, and the pair
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of two-scale relations in (5.3.2) and (5.3.4) gives rise to the reconstruction al-
gorithm described by (1.6.10). (Derivation of this and other details concerning
these decomposition and reconstruction algorithms will be given in the next
section.) However, from the most modest assumption that ptQ(z) 0 for

= 1, it is not possible to draw any conclusion on time- frequency analysis.
(i) From (5.3.3), it follows that

As usual, let

Then Theorem 5.16 says that for each j € ZZ, the family ,k:k- k zZ} is a
Riesz basis of Wj. However, the whole family j,k'- j, k zZ} is not necessarily
a Riesz basis of L2(IR). Indeed, as shown in Chapter 3, for a function to
generate a Riesz basis of l2(IR) such that is continuous, its integral over

must be zero, and so, in view of (5.3.32), a necessary condition is
that

(ii) Even if would generate a Riesz basis of L2(IR), may not be a
wavelet (or more precisely, an "R,- wavelet), since the existence of the dual of
still has to be investigated. (See Definition 1.5 and the example in (1.4.1) of an
R-function which does not have a dual.) Recall that in any series representation

it requires a dual of to extract any time-frequency information of / from
the coefficients Cjtk (see Section 1.4 and Theorem 3.27).

5.4. Wavelets and their duals
We continue our discussion of the decomposition of L2(IR) and extend

our effort to ensure that the decompositions are "wavelet decompositions".
As observed in Remark 5.17, this requires the function , governed by the
Laurent series Q W according to (5.3.4), to be a wavelet with some dual
wavelet . In particular, Q must satisfy (5.3.33). Recall that the two-scale
symbol P = P W must also satisfy the conditions in (5.1.12) and (5.1.13).
Hence, P and Q necessarily satisfy the conditions



5. Scaling Functions and Wavelets 147

Let G and H be the Laurent series defined by (5.3.11). Then we have G, €
W, and the four Laurent series P,Q,G,H satisfy the identities in (5.3.13).
Therefore it follows from this set of identities and (5.4.1) that G must also
satisfy the conditions

where the notation

is used to facilitate our forthcoming presentation. The similarity between P
and G*, as described by (5.4.1) and (5.4.2), suggests that

(see (5.3.15)) should also be chosen as the two-scale symbol of some scaling
function that generates a possibly different MRA of L2(IR).

This motivates the following strategy for constructing wavelets and their
duals. We will start from two admissible two-scale symbols P = P and
G* = G*z, such that both

are in L2(IR) (see Definition 5.4 and Theorem 5.5). Moreover, we assume that
<p generates an MRA {Vj} and generates an MRA {Vj} of L2(IR). Then
according to Theorem 5.16, selecting any two arbitrary Laurent series Q and
H that satisfy

will result in two totally unrelated direct-sum decompositions of l2(IR). In
view of the discussion in the previous section, we will make use of the first
identity in (5.3.14) to make a connection between these two decompositions.

Definition 5,18. The two-scale symbols P — P and G
"duals" of each other if they satisfy the identity

G are said to be
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(see (5.4.3) for the relation between G* and G).

Hence, if the two Laurent series Q and H are so chosen that the two
nonsingular matrices MPQ(Z} and MQ H ( z ) are inverses of each other on \z\ =
1, that is,

then by (5.3.14) and the equivalence between this identity (see also (5.3.12)),
we have

Of course, (5.4.8) is also equivalent to

(see (5.3.13)). In this regard, we have the following.

Theorem 5.19. Let P and G* be dual two-scale symbols as in Definition 5,18.
Then the Laurent series Q and H in W satisfy (5.4.8) if and only if they are
chosen from the class:

Proof. It is easy to verify that every pair of Q and H from (5.4.11) satisfies
(5.4.8). To derive the converse, we rely on the equivalence between (5.4.8) and
(5.4.10). So, by applying Cramer's rule, we may express G and H in terms of
P and Q, namely:

(see (5.3.11)), where P,Q(z) = P(z)Q(-z) - P(-z}Q(z] 0 for \z = 1.
Since p , Q ( — z ) = — P , Q ( z ) , we may define

so that K W by Theorem 5.15, and K(z) 0 for z\ = 1. Now, (5.4.11)
follows from (5.4.12) and (5.4.13). •

We remark that by (5.4.2) and the first identity in (5.4.9), the pair (G*, H*}
satisfies the condition
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which is the same set of conditions as in (5.4.1) for the pair (P, Q). In addition,
in our strategy for constructing wavelets and dual wavelets through Q and H
of the class described by (5.4.11), the two-scale symbols P = P and G* — G-
play the same leading roles. Hence, the two pairs (P,Q) and (G*,H*) are
interchangeable. This is called the "duality principle" to be discussed at greater
length later in this section.

It is therefore important to study the two admissible two-scale symbols P
and G* in more detail. According to Definition 5.4, we can write

where N and N are positive integers, 5(1) = 5(1) = 1, and the L°°(0,2)
moduli of continuity of both S(e~iw) and 5(e-iw) are of orders O(na) and
0(na), respectively, where 0 < a, a < 1. In what follows, we will require the
factors 5 and S in (5.4.15) to satisfy, in addition,

and employ the standard notation Xa f°r the characteristic function of a set
A.

Lemma 5.20. Let P and G* be admissible two-scale symbols as in (5.4.15)
that satisfy (5.4.16). Then

Proof. Since some of the required estimates are quite similar to those in the
proof of Theorem 5.5, we will not elaborate on them. Let us first show that

for some n > 0. This estimate is quite straightforward. Indeed, for any positive
integer n0, and all w; with 2n° < \w/ 2n°+1, it follows from the first
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assumption in (5.4.16) that

for some 771 > 0. In addition, for any K > nO, we have, by the admissibility
condition,

Hence, we have

so that

Since the same estimate applies to G, by using n2> 0, say, we obtain (5.4.18)
with n = n1+n2

Next, we will derive that C > 0 and n > 0 exist, such that for any
sufficiently large positive integer n, and |w| 2n, we have

for some 77 > 0. To arrive at (5.4.19), we continue with the argument outlined
above to get, for |w| 2n,

where the inequalities, 2/ /w/ sinw;| < |w|, which hold for |w| are used.
Again the same estimate applies to G.
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We now proceed to establish (5.4.17). First observe that by (5.4.18), the
function

is in //(IR). Let > 0 be arbitrarily given. Choose M > 0 such that

Then we break the integral in (5.4.17) into the sum of two integrals. For the
integral over \w\ < M, the integrand converges uniformly to zero; and for the
integral over \w\ > M, we bound it by the sum of two integrals, one of which
may be estimated by (5.4.18), while the other may be estimated by (5.4.19).
This completes the proof of the lemma.

Recall that the two admissible two-scale symbols P and G* give rise to
two scaling functions 0 and 0, as in (5.4.5). Although 0 and 0 might generate
two different MRA's of L2(IR), they could still be related in the following sense.

Definition 5.21. Two scaling functions 0 and 0, generating possibly different
MRA's {Vj} and {Vj}, respectively, of L2(IR), are said to be "dual scaling
functions", if they satisfy the condition

In the following, we shall give the connection between dual scaling func-
tions and admissible two-scale symbols that are dual to each other.

Theorem 5.22. Let P = P and G* = G*- be two admissible two-scale symbols

as defined in (5.4.15). Also, let 0 and 0 be the corresponding scaling functions
whose Fourier transforms are given by (5.4.5). If 0 and 0 are dual scaling
functions as in Definition 5.21, then P and G* are dual to each other in the
sense of (5.4.7). Conversely, if P and G* are dual to each other and satisfy
(5.4.16), then 0 and 0 are dual scaling functions.

Proof. Let 0 and 0 be dual scaling functions. Then for each n ZZ, we have
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so that

Hence, setting z = e -iw /2 and applying (5.4.21), we obtain

so that, by the continuity of P and G on [z] = 1, we have

That is, P and G are dual to each other.
To prove the converse, we fix a j ZZ and consider, for any positive integer

Then by a change of variable x = 2-nw, we have

Now, by invoking the duality between P and G* and making another change
of variable y = 2x, it follows that
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Hence, comparing (5.4.24) with (5.4.23), we have In — In-\. Since this con-
clusion is valid for any positive integer n, we obtain

Finally, by applying Lemma 5.20, the result in (5.4.25) yields

This completes the proof of the theorem. •

Let us now select any Q and H from the class of functions in (5.4.11). By
Theorem 5.19, the matrices MP,Q and MG*,H* are invertible on \z\ — 1, and
so Theorem 5.16 applies. In particular, by considering the functions

where

(see (5.4.3) for the analogous formulation of G*), and setting

as well as

we have
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Here, as usual, we set

where

with 0 and 0 being the scaling functions whose two-scale symbols are P — P
and G* = G*-;, respectively.

We shall next show that if the admissible two-scale symbols P and G* are
dual to each other in the sense that the identity

is satisfied, then not only are { j t k } and { j , k } dual to each other, but addi-
tional orthogonality properties are achieved as well.

Theorem 5.23. Let P = P and G* = G* be two admissible two-scale symbols
which satisfy (5.4.16) and are dual to each other. Then for any Q,H W
chosen from the class (5.4.11), the functions and defined as in (5.4.5)
and (5.4.26) satisfy

and

Proof. Let us first consider the case j — £ in (5.4.33). In this case, by the third
identity in (5.4.9) and (5.4.21) we have, again using the notation z — e-iw/2,
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Proceeding to the general case, we observe, by applying the first two identi-
ties in (5.4.9) instead, that the same derivation given above also yields (5.4.34),
so that

Hence, if j < £, then

and by the first assertion in (5.4.36), we have

For j > l, the same conclusion can be drawn by applying the second assertion
in (5.4.36). This completes the proof of the theorem.

As a consequence of the biorthogonality property in (5.4.33), both families
{ j , k } and {j,k} are £2-linearly independent. Therefore, since

both { j , k } and {j,k} are bases of L2(IR,). In fact, under the hypotheses of
Theorem 5.23, it follows that both {j,k} and {j,k} are frames of £2(IR) also.
We do not intend to give a proof of this fact, since no simple derivation seems
to be available. By an application of Theorem 3.20, we may now conclude
that { j , k } and { j , k } are actually Riesz bases of L2(IR). That is, we have the
following result.

Theorem5.24. Under the hypotheses of Theorem 5.23, the two functions
Wo and Wo are wavelets which axe dual to each other.

Consequently, as stated in Theorem 3.27, every function f l2(IR) has
two (unique) wavelet series representation:
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where the coefficients are values of the IWT of /, relative to the basic wavelets
and respectively, evaluated at the time-scale positions

(see Section 1.4 and Theorem 3.27).
It is therefore very important to derive efficient algorithms for finding

these IWT values from / and for reconstructing / from these IWT values.
It turns out that the two-scale sequences { g - n } and {h-n} (whose two-scale
symbols are G* = G and H* as given by (5.4.4) and (5.4.27)) can be used for

obtaining the IWT values (f, j,k}- This computational scheme, called "de-
composition algorithm" is a consequence of the decomposition relation (5.3.16)
in Theorem 5.16. On the other hand, the two-scale sequences {pn} and {qn}
(whose two-scale symbols are P = P and Q as given by (5.3.1) and (5.3.3))
can be used for reconstructing / from its IWT values {f, j,k) This compu-
tational scheme, called the "reconstruction algorithm" is a consequence of the
two-scale relations (5.3.2) and (5.3.4). If we wish to use , instead of , as
the basic wavelet, then the two-scale sequences {pn} and {qn} are used in the
decomposition algorithm, while the two-scale sequences { g - n } and {h-n} are
used in the reconstruction algorithm.

In other words, the roles of the pairs

for decomposition and reconstruction purposes are interchanged, if the IWT
information

is replaced by the IWT information

This is called the "duality principle" in wavelet decomposition-reconstruction.
As a result, there is no need to describe both situations.

In what follows, we only discuss the IWT in (5.4.39) using as the basic
wavelet. For any / L2(1R), let /AT be some approximant of / from VN for
a fixed N € ZZ. Note that this approximation does not have to be the L2(IR)
orthogonal projection. We may consider VN as the "sample space" and fN the
"data" (or measurement) of / on VN- Since
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for any positive integer M, f N has a unique decomposition:

where

Let us write

and

Then the decomposition in (5.4.41) is uniquely determined by the sequences
cj and dj in (5.4.43) and (5.4.44). It is important to note that

are the values of the IWT of fN, using as the basic wavelet. Observe that
the decomposition in (5.4.41) is data-dependent. In the wavelet decomposition
and reconstruction schemes to be discussed below, we will use the "digital
representations" cj,dj of f i ( x ) and gj(x), respectively.

To facilitate our discussion (and to avoid any possible confusion), we in-
troduce the notation

where { g - n } and { h - n } are the two-scale sequences corresponding to the two-
scale symbols G* = G and H*, respectively (see (5.4.4) and (5.4.27)). Hence,
the decomposition relation (5.3.16) in Theorem 5.16 now becomes

Let us now derive the decomposition and reconstruction algorithms stated in
(1.6.9) and (1.6.10) in Chapter 1.
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(i) Decomposition algorithm

Proof. By applying the decomposition relation (5.4.47), we have

Hence, from the decomposition f i ( x ) — f i -1 (x ) + g j - 1 ( x ) , where f j - 1 i ( x ) and
g j - 1 ( x ) are given as in (5.4.43) and (5.4.44) with j replaced by j — 1, it follows
that

so that (5.4.48) follows by invoking the l2-linear independence of {j-1 k
ZZ} and {j-1,k: K ZZ} and the fact that

(ii) Reconstruction algorithm
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Proof. By applying the two-scale relations (5.3.2) and (5.3.4), we have

Since fi-1(x) + gi-1(x) = f j ( x } , we obtain (5.4.49) by referring to the rep-
resentation formula (5.4.43) of fj(x) and the l2-linear independence of { j , k ' :

Observe that both the decomposition and the reconstruction algorithms
are moving average (MA) schemes, except that "downsampling" is required in
decomposition and "upsampling" is required in reconstruction. To downsam-
ple, we simply keep every other term of the output sequence. More precisely,
in (5.4.48), only the terms with even indices are kept, and the (even) indices
of this output sequence are halved. To upsample, a zero is placed in between
every two consecutive terms of the input sequences before the MA schemes are
applied. More precisely, in (5.4.49), the indices of the input sequences {clj-1}
and {djl -

1} are multiplied by 2, and zeros are used as the terms with odd indices
in the new input sequences (see (4.3.11) in Algorithm 4.7 in Chapter 4).

5.5. Linear-phase filtering
Scaling functions and wavelets can be considered as filter functions. If

the space L2 (IR) represents the space of all analog signals with finite energy,
and {Vj} is an MRA of L2(1R), then sampling an analog signal / € L2(IR)
is accomplished by approximation (which may or may not be interpolation)
from some "sample space" VAT, where N should be chosen large enough to
avoid undersampling. It must be emphasized that even if a digital sampling
procedure is applied, the sampled signal fN VN is still an analog signal,
although f N has a series representation in terms of a scaling function, as de-
scribed by (5.4.43), where the coefficient sequence CN = {ckN} is formulated
in terms of the digital samples. For instance, if the mth order cardinal spline
space Vmn with knot sequence 2~NZZ is used as the sampling space VN, then
the coefficient sequence cN can be obtained by applying a finite moving av-
erage procedure to give a quasi-interpolant or interpolant fN of f as studied
in Section 4.5 and Section 4.6, respectively, in the previous chapter. In any
case, the analog sample f N VN of / can now be decomposed as in (5.4.41),
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where for each j — N — M, . . , , N — 1, g J ( X ) gives localized time- frequency in-
formation of fa in the jth octave (or frequency band). The importance of this
filter-bank method is that the details of the sampled signal f N are sorted out
and stored in different subspaces Wj of VN for better analysis. For instance,
in data compression, by simply applying thresholding at each octave we may
obtain substantial saving in general. What we really mean by this is that af-
ter deleting information of very small magnitudes in each subspace Wj , much
less data information has to be stored or transmitted, and the reconstruction
algorithm can be applied later to give a good approximation of the original sig-
nal. Of course there are many more important applications of similar nature.
However, since each component gJ has been altered, we no longer have perfect
reconstructions, so that special attention must be paid to possible distortion.
The reconstructed signal is nothing but a wavelet series, which in turn means
that it is a result of linear filtering. Therefore, distortion can be avoided if the
filter has linear, or at least generalized linear, phase.

Definition 5.25. Let /f L2(IR). Then f is said to have "linear phase" if its
Fourier transform satisfies

where a is some real constant and the + or — sign is independent of w. Also,
/ is said to have "generalized linear phase" if

where F(w) is a real-valued function and a, 6 are real constants. The constant
a in both (5.5.1) and (5.5.2) is called the phase of f.

Example 5.26. The Fourier transform of the mth order cardinal .B-spline Nm

is given by

and hence, Nm has linear phase, and the phase of Nm is m/2.

Definition 5.27, Let {an} £ I1 and A(e-iw) be its discrete Fourier transform
(or Fourier series). Then {an} is said to have "linear phase" if

where no € 1/2 ZZ and the + or - sign is independent of w. Also, {an} is said to
have "generalized linear phase" if

for some real-valued function F(w), nQ € ZZ and b e JR. The value n0 in both
(5.5.3) and (5.5.4) is called the phase of the symbol of {an}.

Let us first give a characterization of both functions and sequences with
generalized linear phases.
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Lemma 5.28.
(i) A function f L2(IR) -has generalized I/near phase in the sense of

(5.5.2), where a, b € IR, if and only if e'lbf(x) is "skew-symmetric"
with respect to a in the sense that

(ii) A sequence {an} € ll has generalized linear phase in the sense of
(5.5.4), where no € 1/2 ZZ and b IR, if and only if {eiban} is "skew-
symmetric" with respect to no in the sense that

Proof, (i) Suppose that / L2(IR) satisfies (5.5.2). Then

or equivalently,

Since F(w) is real, assertion (5.5.5) follows by equating the complex conjugate
of the expression in (5.5.7) with itself.

Conversely, if (5.5.5) is satisfied, then taking the Fourier transform of both
sides of (5.5.5) yields

Hence this quantity is real, and (5.5.2) follows by setting this real-valued func-
tion to be F(w).

(ii) Suppose that {an} € l1 satisfies (5.5.4). Then we have

or equivalently

Hence, assertion (5.5.6) follows by comparing the coefficients of e inw in (5.5.8).
Conversely, if (5.5.6) holds, then we have (5.5.8), and consequently
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and we define this real-valued expression to be F(w}. This yields (5.5.4).

Remark. The notion of "skew-symmetry" in (5.5.5) and (5.5.6) is not very
satisfying because of the necessary complex conjugation. When f ( x ) is real-
valued, however, it is clear that for (5.5.5) to hold, el2b must also be real, or

becomes

or

Of course, an analogous conclusion can be drawn for real l1 sequences.

Theorem 5.29.
(i) A real-valued function f l2(IR) has generalized linear phase if and

only if it is either symmetric or antisymmetric (with respect to the
phase of f).

(ii) A real-valued sequence {an} l1 has generalized linear phase if and
only if it is either symmetric or antisymmetric (with respect to the
phase of the symbol of {an}).

Characterization of linear phase is a little harder. However, in view of the
foregoing discussion (see particularly the remark), we will only consider real-
valued functions and sequences. Also, since the phase property of a two-scale
sequence directly influences that of the corresponding scaling function, we give
the following characterization of linear-phase sequences.

Lemma 5.30. A real-valued -sequence {an}, with symbol A(e -iw), has linear
phase if and only if there is some no 1/2 ZZ, such that A(e~iw)einow is real-
valued, even, and has no sign changes.

The proof of this result is easy. However, if the sequence is finite, then we
can say a little more.

Lemma 5.31. A real-valued finite sequence {an} with support [0, N] has linear
phase if and only if the following statements hold:

(i) aN-n = an, n € ZZ; and
(ii) the symbol

N

has only zeros of even order on the unit circle.

Proof. By Lemma 5.30, the real-valued finite sequence {an}, n = 0,. . . , TV, has
linear phase if and only if there exists some no € |2Z, such that the function
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is real-valued, even, and has no sign changes. On the other hand, it is clear
that F(w) — F(—w}} is equivalent to

N

which, in turn, is also equivalent to no = 1/2 N and aN-n = a-n for all n 6 ZZ.
Of course, the real-valued function F(w) has no sign changes if and only if
its real zeros (if any) are of even order; and this, in turn, is equivalent to the
statement that A(z) has only zeros of even order on the unit circle. •

We now turn to a study of the phase properties of scaling functions.

Theorem 5.32. Let 0 be a scaling function with two-scale sequence {pn} ll -
Also, let P = P denote the two-scale symbol of 0. Then

(i) has generalized linear phase if and only if

for some no 1/2ZZ and
(ii) has linear phase if and only if

where no 1/2 ZZ.

Proof. If has generalized linear phase, then by Definition 5.25, we have

for some real-valued function F(w) and some a, 6 IR. Hence, 4>(uj) =
F(w) and therefore

for almost all w IR. This implies that
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and (5.5.9) holds. If, in addition, 0 has linear phase, then by Definition 5.25,
we have 6 = 0 and F(w) has no sign changes. Consequently,

which agrees with (5.5.10).
Conversely, if (5.5.9) holds, then we have

Hence, the function

is real-valued, and since

has generalized linear phase. If the hypothesis (5.5.10) is assumed, then we
have

so that has linear phase.

Remark. It follows from Lemma 5.28, (i), and the above argument, that for a
scaling function to have generalized linear phase, it is necessary and sufficient
that is "skew-symmetric" with respect to some no 1/2 ZZ, in the sense that

Indeed, for to have generalized linear phase, we have (5.5.9) and consequently
(5.5.11), so that 0(w) = F(w)e-inow for some real-valued function F(w) and
some no 1/2ZZ. Hence, (5.5.13) follows from Lemma 5.28, (i). The converse is
trivial.

If the two-scale sequence {pk} is real- valued and finite, then by applying
Theorem 5.32 and Lemma 5.31, we can say a little more, as in the following.
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Theorem 5.33. Let be a real-valued scaling function whose two-scale se-
quence {pn} is a finite real sequence with support [0, N]. Then

(i) has generalized linear phase if and only if PN-n — Pn for all n ZZ;
and

(ii) has linear phase if and only if PN-n = Pn for all n and all the zeros
of the two-scale symbol P that lie on the circle, if any, have even
multiplicities.

To investigate the phase properties of a wavelet, one has to have some
knowledge of its two-scale symbol Q. For instance, if the scaling function p has
generalized linear phase, then by the two-scale relation
and Definitions 5.25 and 5.27, it follows that also has generalized linear phase
provided the sequence {qk} has generalized linear phase, and an analogous
conclusion can be made concerning the property of linear phase. Of course,
more can be said by a more careful analysis as in the study of .

Example 5.34. Consider the first order cardinal B-spline N1 and its corre-
sponding Haar wavelet (x) = H(x) := Ni(2x) — Ni(2x — 1) (see (1.5.7),
(1.1.16), and Example 3.2). From Example 5.26, we see that NI has linear
phase. Since the two-scale symbol Q for is

where z = e-iw/2, we also see that

has generalized linear phase, but does not have linear phase.

Observe that the Haar wavelet 1 = H is a compactly supported orthog-
onal wavelet (see (1.1.16)). From the following result, we may conclude that

is the only o.n. wavelet with compact support such that its correspond-
ing scaling function has generalized linear phase. (The relation between an
o.n. wavelet and its corresponding o.n. scaling function in general will be
discussed in the next section as well as in Chapter 7.)

Theorem 5.35. Let 0 be a scaling function governed by a finite two-scale
relation

N

as in (5.2.2) with N — N and pk — pk. Suppose that
is an orthonormal family that constitutes a partition of unity, and 0 is skew-
symmetric in the sense that
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for some a € IR (see (5.5.5) in Lemma 5.28). Then 0 must be the first order
cardinal B-spline.

Proof. As usual, let

k=Q

and z = e-iw/2. Then (5.5.16) is equivalent to

On the other hand, assertion (5.5.17) is equivalent to

Hence, from (5.5.18) and (5.5.19), we have

for |z/ = 1. Since P(z) is a polynomial of degree N with nonzero leading
coefficient and nonzero constant term, it follows that 2a = N, so that

Let us now consider the hypothesis that {(• — k): k € 2Z} is an orthonormal
family. By Theorem 3.23, this hypothesis is equivalent to

so that an application of (5.5.18) yields

So, by substituting (5.5.20) into (5.5.22), we have

Recall from Section 5.2 that, for to be a function, it is necessary that N > 0.
Hence, from (5.5.23) and the hypothesis pN 0, we see that N must be an
odd integer. Now, by setting
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we can write

and the identity (5.5.22) yields

Hence, by applying (5.5.20) and (5.5.25), we obtain

167

Since N is odd, equating the odd and even parts gives

so that

Applying this identity to (5.5.26) gives rise to

This is not possible unless Pe and P0 are monomials, or

(To verify this claim, we may simply multiply out the polynomials in (5.5.27)
and compare coefficients of equal powers of z.) Since {£(• — k): k ZZ} is a
partition of unity, we have P(l) = 1 and P(-l) = 0 (see (5.1.12) and (5.1.13)),
so that

and hence,

(see Example 5.3). Consequently, by (4.2.9), we obtain
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It now follows from (5.5,21) that N = 1. That is, P+(z) = P(z] = (1 + z)/2,
or 0 is the first order cardinal B-spline N1 (see Section 5.2).

Remark. Although is only assumed to be skew-symmetric in (5.5.17), we
have shown that it is real-valued, and hence, 0 is actually symmetric. Theo-
rem 5.35 says that any compactly supported scaling function 0 that generates
a partition of unity and an orthonormal family {(• — k): k ZZ} cannot have
generalized linear phase unless it is almost everywhere equal to the character-
istic function of an interval [k, k + 1) for some integer k.

5.6. Compactly supported wavelets
The objective of this section is to investigate the structure of wavelets with

compact supports. Motivated by the need of linear-phase filtering in signal
analysis as discussed in the previous section, we are particularly interested in
skew-symmetric wavelets. (Recall from Section 5.5 that for any real-valued
function /, e i b f ( x ) is skew-symmetric for some b IR if and only if / is
symmetric or antisymmetric.) Following the strategy for constructing wavelets
as developed in Section 5.4, we will consider a pair of admissible two-scale
symbols P = P, and G* = G which are dual to each other in the sense that

where G*(z) = G(z), \z\ - I (see Definition 5.18, (5.4.3), and (5.4.4)). Then
the wavelet and its dual have two-scale symbols in the sense that

where H*(z) — H(z), \z\ = 1, and Q and H are arbitrarily, but necessarily,
selected from the class in (5.4.11), namely:

where K is in Wiener's class W with K(z) 0 for \z\ = 1. Also recall that the
spaces {Vj}, {Wj}, {Vj}, and {Wj} generated by and , respectively,
satisfy

and
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In addition, the pairs and are dual pairs, in the sense that

Details have been discussed in Section 5.4.
Let us first study the structure of semi-orthogonal (s.o.) wavelets, and

particularly orthogonal (o.n.) wavelets (see Definition 3.22). It is clear from
Theorem 3.25 that the spaces Wj and W j , j £ ZZ, generated by any s.o. wavelet

and its dual are identical, namely: Wj = Wj for all ZZ. Hence, from
(5.1.4), we also have Vj = Vj for all j 6 ZZ, so that the scaling function
and its dual generate the same MRA. In fact, going back to the proof of
Theorem 5.22 (see (5.4.21)), we observe that the (unique) dual of 0 is given
by

(see (3.6.13) for dual s.o. wavelets). Now, let us restrict our attention to sealing
functions with finite two-scale sequences {pn}, namely:

where pn = p and N = N, as studied in Section 5.2. Recall, from (5.2.24),
(5.2.25), and (5.2.30), that the generalized Euler-Frobenius Laurent polynomial

relative to 0, where 2 = e iw/'2, is zero-free and pole-free on \z\ — 1. Hence, it
follows from (5.6.8) that

and consequently the dual of the compactly supported scaling function 0
does not have compact support unless E(z) is a positive constant, although it
is of exponential decay. (Of course, the s.o. wavelets , relative to 0, may still
have compact supports.) First, we must find the two-scale symbol G* = G*~
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of 0. This is easily done by applying (5.6.10) and the two-scale relation of
as follows:

so that

It is also easy to verify that for this G* , the dual relation (5.6.1) is equivalent
to the identity (5.2.31) for generalized Euler-Frobenius Laurent polynomials.
Now, by Theorem 5.19 and (5.6.11), the two-scale symbol Q for any wavelet
relative to the scaling function 0 is given by

where K € W with k(2) 0 for \z\ — 1 (see (5.6.3)). Thus, we have some
freedom in the choice of ̂ . In particular, the wavelet with minimum support
is obtained by selecting the admissible K € W (that is, K(z] 0 for |z/ = 1)
such that Q(z) is a polynomial with lowest degree. We do not intend to pursue
this in the general setting any further, but only mention that the results from
Theorems 5.11 and 5.12 concerning two-scale symbols of minimally supported
scaling functions would be useful for this study. A detailed investigation for
scaling functions which are cardinal B-splines will be given in Section 6.2 in
the next chapter.

Since E is a Laurent polynomial which is zero-free and pole-free on \z\ = 1,
we may choose K(z) — —zE(z) in (5.6.12), so that the two-scale symbols Q
and H* for a compactly supported s.o. wavelet and its dual , respectively,
are given by

(See (5.6.3). The reason for this choice of K, instead of simply K = E, is
that this normalization is consistent with the formulation of the Haar func-
tion.) Observe that if E is not a constant, then again the dual wavelet does
not have compact support, although it decays exponentially. One advantage
of the choice of Q in (5.6.13) is that it is very easy to determine whether or
not the wavelet has generalized linear phase. Indeed, since the finite coeffi-
cient sequence of the Laurent polynomial E(z) is skew-symmetric (see (5.2.26)
or (5.6.9)), it is clear that the coefficient sequence of the polynomial Q(z) in
(5.6.13) is also skew-symmetric provided that the two-scale sequence {pn} has
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this property. Furthermore, in view of (5.6.11) and (5.6.13), the same conclu-
sion holds for both G* and H*. In particular, for real sequences, by applying
Theorems 5.32 (i) and 5.33, we have the following result.

Theorem 5.36. Let {pn} be a finite, symmetric, real-valued two-scale sequence
, of a scaling function 0. Also, let , and be the s.o. wavelet, dual scaling
function, and dual wavelet with two-scale symbols Q, G*, and H*, respectively,
as given by (5.6.13) and (5.6.11). Then 0 and its corresponding s.o. wavelet
have compact supports, 0 and are of exponential decay, and all of 0, , 0,
have generalized linear phases.

Next, let us consider orthogonal (o.n.) wavelets relative to compactly
supported scaling functions 0. The general approach is to construct 0 which
is orthonormal (o.n.), in the sense that

is an o.n. family. For such a 0, it follows from (5.6.9) that the generalized
Euler-Frobenius polynomial E(z) is the constant 1. Hence, by (5.6.13), we
have

Consequently, if the two-scale relation of 0 is given by

then the two-scale relation of the o.n. wavelet is given by

Observe that since the coefficient sequences {pn} and {(— l)npi_n} for 0 and
have similar phase properties, one expects, in view of Theorem 5.35, that the

compactly supported o.n. wavelets also fail to have generalized phases. Let us
reformulate Theorem 5.35 as the following.

Theorem 5.37. Let be a compactly supported o.n. wavelet as given by
(5.6.14) whose corresponding o.n. scaling function 0 generates a partition of
unity. Suppose that 0 is stew-symmetric in the sense of (5.5.17). Then must
be the Haar function .

Hence, for a compactly supported continuous wavelet function to have
generalized linear phase, there seem to be only two alternatives. First, we may
settle for semi-orthogonality. This certainly works, provided that we are willing
to accept duals which are only of exponential decay. In the following, we will
totally give up orthogonality and look for compactly supported and with
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generalized linear phases. Following the strategy formulated in Section 5.4,
we will start with two admissible two-scale (polynomial) symbols P = P and
G* = G| that are dual to each other. (For Q and H* to be Laurent polynomials
as well, it suffices to choose a monomial K.)

Recall from Theorem 5.32 that has generalized linear phase if and only
if its two-scale symbol P satisfies

for some integer m (see (5.5.9), with m = 2no, n0 1/2 ZZ). In order to be able
to construct a compactly supported dual 0 of 0 that also has generalized linear

have the following result.

Theorem 5.38. Let P = P and G* = G be admissible two-scale Laurent
polynomial symbols that are dual to each other, such that P satisfies (5,6.15).
Then

satisfies the same duality relation

as G(z), and moreover,

or equivalently,

Proof. It is clear that G1 satisfies (5.6.18). Indeed, for \z\ — 1, we have

To verify (5.6.17), we simply apply (5.6.15) and (5.6.1), and obtain

phase, we have to come up with an admissible two-scale polynomial symbol of
that also satisfies (5.6.15) for some integer power of z. In this direction, we
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This completes the proof of the theorem.

In the following, we will only consider finite two-scale sequences that are
real-valued. For such sequences the generalized linear-phase property (5.6.15)
becomes

Lemma 5.39. Let P be a Laurent polynomial with real coefficients that satisfy
(5.6.20) for some m € 2Z. Then there is another polynomial PI (depending on
m with real coefficients such that

Proof. From the assumption (5.6.20), we see that e imw/2 P(e-iw) is an even
function of a;. Thus, if m is an even integer, then eimw/2 p(e-iw) is a 2
periodic function and is therefore a real polynomial in cos w;. This gives (5.6.21)
for even m. On the other hand, if m is an odd integer, then by selecting w =
in (5.6.20), we have P(-l) = -P(-l), so that P(-l) = 0. Therefore, we can
write

for some polynomial PO with real coefficients. Substituting (5.6.22) into (5.6.20)
yields

Now, since m — 1 is even, we have

for some polynomial P1 with real coefficients. Hence, by putting (5.6.23) into
(5.6.22), we obtain (5.6.21) for odd m. •

In addition to the result in Lemma 5.39, we recall that, as a two-scale
symbol, P can be written as

where P2 is a Laurent polynomial with real coefficients satisfying

and l is some positive integer.
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Lemma 5.40. Let P be a Laurent polynomial with real coefficients that sat-
isfies (5.6.20) and (5.6.24)-(5.6.25). Then (m - £) must be an even integer,
and

where S is polynomial with real coefficients that satisfies

Proof. Prom (5.6.24), we have

Hence, by (5.6.20), we obtain

We will first show that (m — l} is an even integer. Suppose, on the contrary,
that (m — £) is odd. Then as before, we see, by applying (5.6.29) with w; = ,
that P2(—l) = 0. This is a contradiction to (5.6.25). Now, since (m — I) is
even, we may apply Lemma 5.39 to write

for some polynomial S with real coefficients. Hence, assertion (5.6.26) is es-
tablished by substituting (5.6.30) into (5.6.28). In addition, by (5.6.25), it is
clear that the polynomial S in (5.6.30) satisfies (5.6.27).

Prom Lemma 5.40, we see that any two-scale (Laurent) polynomial symbol
with real coefficients and generalized linear phase (i.e. satisfying (5.6.20)) takes
on the representation (5.6.26) with S being a polynomial with real coefficients
satisfying (5.6.27). In view of Theorem 5.38 and Lemma 5.40, we will look for
the dual symbol G*(z) = G(z), \z\ = 1, of the form

where S is a real polynomial satisfying 5(1) = 1 and l is some positive integer
such that

is also a positive integer. By applying (5.6.26) and (5.6.31), the dual identity
in (5.6.1) becomes
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Also, by setting x = sin2(w/2), we have cos a; = 1 — 2x, Hence, if we define

then (5.6.32) becomes

So, our problem now is to give a characterization of the real polynomial R(x).
By the Euclidean algoirthm, there exists two polynomials A and B such

that

Let us write

where deg A1 N — 1; and set

Since

we have

This implies that deg B1 N — 1 also. That is, there exist polynomials A1
and BI such that

The polynomials A1(x) and B1(x] in (5.6.35) are actually unique. Indeed, if
there is another solution pair (A1, B1), then the difference (A — A1, B — BI)
satisfies

where deg(A1-A1), deg(B1 - BI) < AT — 1, and hence, AI — AI = 0 and
BI — BI = 0, due to the fact that XN and (1 - x)N are relatively prime. Now,
by interchanging x and (1 — x) in (5.6.35), the uniqueness of A1 and B1 implies
that AI(X) = B 1 ( l — x ) . That is, there is indeed a unique algebraic polynomial
Ro with deg R0 < N — I that solves (5.6.33). To determine R0, we multiply
(5.6.33) throughout by (1 — x ) - N and expand it in terms of x, yielding
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where

Since R O ( X ) consists of powers of x of order N or higher, while RQ(X) and the
other finite sum are polynomials of degree N — 1, we have R o ( X ) = 0, or

This is a "particular solution" of (5.6.33). The general solution must be the
sum of R 0 ( X ) and a term which is divisible by XN. Let us call this term xNT(x).
Since this function solves the "homogeneous equation" (with 1 replaced by 0
in (5.6.33)), it follows that T satisfies T(l - x) = -T(x}. That is, setting

we have

where T0(— y] = —To(y). Now, returning to (5.6.32), we arrive at the general
formulation of S(y)S(y) = S(cos w)5(cos w;), namely:

(5.6.39)

We end this chapter by writing down the skew-symmetric two-scale poly-
nomial symbol G* for a (compactly supported) dual of the l th order cardinal
B-spline.

Example 5.41. The skew-symmetric two-scale symbols G* which are dual to

are given by G* l(z) = Gl.l(z), for \z\ = 1, where

with N := (£ + 1}/2. This is obtained by applying (5.6.39) and (5.6.26) with
5=1 and 



Cardinal Spline-Wavelets

A very general framework for the study of scaling functions and wavelets
along with their duals has been established in the previous chapter. One of
the main ingredients in this approach is the notion of multiresolution analy-
sis (MRA), which is not only essential in the construction scheme, but also
necessary for the formulation of the wavelet decomposition and reconstruction
algorithms. In applications such as real-time signal analysis, for instance, a
finite-energy signal (i.e., a function in L2(IR)) has to be mapped into some
sample space VN belonging to the nested sequence {Vj} that constitutes an
MRA, before it can be separated into wavelet components by applying the
decomposition algorithm. In this regard, the sequence {Vmj, j € ZZ, of cardi-
nal spline spaces of an arbitrary order m is a very attractive MRA of L2(IR),
in that spline and finite element methods are available for constructing the
projection operators. (If we are satisfied with real-time optimal-order approx-
imation, then the quasi-interpolation and interpolation algorithms developed
in Sections 4.5 and 4.6, are readily applicable.) In addition, the structure of
cardinal splines, though very simple, consists of many desirable properties as
studied in Sections 4.2-4.4. This singles them out uniquely as a prime candi-
date for (nonparametric) modeling of arbitrary functions such as signals.

The objective of this chapter is to formulate wavelets in terms of cardi-
nal B-splines and to study the structure of these "spline-wavelets". Special
emphasis will be given on semi-orthogonal (s.o.) spline-wavelets, since their
explicit expressions facilitate not only our study of these special features, but
also hardware and software implementations.

6.1. Interpolatory spline-wavelets
The only wavelet we are very familiar with so far, at least in explicit

formulation, is the Haar wavelet = H . On the one hand, its companion
scaling function is the first order cardinal B-spline NI , namely:

while on the other hand, it is interesting to note that H is also related to the
derivative of the second order cardinal B-spline N2, in the sense that

It is therefore natural to ask to what extent the observation in (6.1.2) would
generalize. To answer this question, let us first remark that the second order
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cardinal B-splme N2 can be viewed as a fundamental cardinal spline, intro-
duced in Section 4.6. In fact, the second order fundamental cardinal spline
function L2, defined as in (4.6.2)-(4.6.3), is given by

Hence, an equivalent statement of assertion (6.1.2) is

If we follow this point of view, then we can get spline- wavelets of arbitrary
orders. To be precise, let {Vmj be the MRA of L2(IR) generated by the mth

order cardinal B-spline as introduced in Section 4.1, and let {WJ™}, j € 2Z,
denote the sequence of orthogonal complementary (wavelet) spaces, in the sense
that

where it should be recalled that the circle around the plus sign indicates orthog-
onal summation (see (1.4.8) and (1.5.9)). In the following, for each positive
integer m, Lm denotes the mth order fundamental cardinal spline function
introduced in (4.6.2)-(4.6.3).

Theorem 6.1. Let m be any positive integer, and define

where L2m is the (2m)th order fundamental cardinal spline. Then 1,m gener-
ates the (wavelet) spaces W™, j ZZ, in the sense that

Proof. Let us first verify that 1 m is in Wom For every n E, by applying
successive integration by parts and noting that the mth derivative of the mth

order cardinal B-spline Nm is a finite linear combination of integer translates
of the delta distribution, we have
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since L2m(l} - l,o,l. Hence, 1,m W0
m.

Next, let us investigate the two-scale relation of 1 ,m with respect to
(2x — k), k € ZZ. That is, we are interested in studying the I2 sequence

{<qk} f°r which

Keeping the same notation as in (4.6.2), we write

On the other hand, by applying the cardinal B-spline identity (vii) in Theo-
rem 4.3 repeatedly, it follows that

where A denotes the backward difference operator introduced in (4.1.9). Hence,
we obtain, from (6.1.5), (6.1.8) and (6.1.9),

with

The two-scale symbol Q corresponding to the two-scale sequence {qk} in (6.1.7),
as given by (6.1.10), is now
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where it follows from (6.1.8) and the interpolatory property L2m(l} = l,o, that

00

with

being the generalized Euler-Probenius Laurent polynomial relative to the mth

order cardinal B-spline Nm (see (4.2.14), (5.2.24) and (5.2.25)). In spline
theory, where algebraic polynomials with integer coefficients are very desirable,
the Euler-Probenius polynomials of order 2m — 1 are defined, as in (4.2.18), by

Thus, substituting (6.1.12) into (6.1.11), we have found the formula for the
two-scale symbol Q, namely:

We remark that Fm never vanishes on the unit circle because of (i) in Theo-
rem 5.10.

Now, since the two-scale symbol of Nm is given by

(see (4.3.3)), we can compute the determinant AP,Q, defined in (5.3.9) and
(5.3.10), as follows.
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where we have applied the identity (5.2.32) in Theorem 5.10, with N = m,
Since Fm never

vanishes on \z = 1, we have shown that

Hence, an appeal to Theorem 5.16 shows that we have indeed the proof of
Theorem 6.1.

In view of the preceding result, let us consider the subspace

of cardinal splines of order 2m with knot sequence 1/2ZZ, and vanishing at all
the integers. It is clear that the function

is in V1 2m,0 and so are all its integer translates. In fact, we have the following
result.

Theorem 6.2. For each m, the family

is a Riesz basis of V1 2m,0

Proof. To show that the linear span of the family in (6.1.18) is dense in Vl ,
we let G Vl 2

m,o be chosen arbitrarily. Then by applying Theorem 4.3, (ii),
we have

for all l ZZ. Consequently, since it is clear that G (m) is in Vm1, the derivation
in (6.1,19) shows that G(m) is orthogonal to the subspace Vmo of V™, and hence
lies in W™. By Theorem 6.1, we have

for some sequence {an} l2. Also, observe that from the definition (6.1.17) of
2m, we have

so that
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where Dm denotes the mth order differential operator introduced in (4.5.2).
Since V1 2m,o consists only of functions in L2(IR) that vanish at ZZ, we have

To show that the basis in (6.1.18) is unconditional (or is a Riesz basis), we
simply note that since

it follows from (4.2.16) and (6.1.12) that

where z = e-iw/2 and

with K4m_1 being the Euler-Erobenius polynomial of order 4m — 1 (or degree
4m — 2). Hence, Theorem 5.10, (i), applies, and the proof is complete. •

As a consequence of Theorems 6.1 and 6.2, we have the following result.

Theorem 6.3. For each positive integer m, the mth order differential operator
Dm maps the spline space V12m,o m' one-to-one onto the wavelet space Wmo. In
addition, the Riesz basis { 2 m ( - — k): k ZZ) of v1 2m,o corresponds to the
Riesz basis m ( - - k ) : k } o f Wom v ia the relation I , m = Dm

2m,

6.2. Compactly supported spline- wavelets
The interpolatory wavelets 1,m introduced in (6.1.5) have exponential de-

cay but are not compactly supported. Prom the development in Chapter 5 (see
Section 5.6), however, we already know that semi-orthogonal (s.o.) wavelets
with compact supports always exist, provided that the two-scale sequence of
the corresponding scaling function is finite. Indeed, if P — P denotes, as
usual, the two-scale symbol of , then by considering the dual of to be in the
same space V0 as , the two-scale symbol G* = G*- of 0, where G*(z] = G(z)
for z\ — 1, is given by
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where E is the generalized Euler-Probenius Laurent polynomial relative to
(see (5.6.11)). As a result, the two-scale symbol Q of any s.o. wavelet

corresponding to is given by

for any K € W with K(z) / 0 on |z| = 1 (see (5.6.12)), so that by simply
choosing K(z) = — z E ( z ) , we have the two-scale polynomial symbol for a
compactly supported s.o. wavelet . In the cardinal spline setting, it follows
from Theorem 5.19 that the general formulation of the two-scale symbols for
the class of all possible s.o. wavelets relative to Nm is given by

where E2m-i is the Euler-Probenius polynomial of order 2m—1 (or degree 2m—
2) as defined in (4.2.18). So, to ensure that the wavelet has compact support,
the Laurent series K in (6.2.3) must be so chosen that Q is a polynomial. Now,
since E2m-i never vanishes on \z\ = 1, the only way to reduce the degree of
the polynomial (1 — z )mE2m - 1 ( — z) is for E2m-1(z2) to have a common zero
with E2m-i(—z), while, at the same time, when a common factor is cancelled
out, the remaining factor of E2m-i(z2) must still be in powers of z2 for it to
be cancelled out by K(z2) in (6.2.3). This is not possible since E2m-i(z) does
not have any symmetric zeros and in fact, as we will see in Section 6.4, all
the zeros of E2m-1(z) are negative (see also (4.2.18)-(4.2.19)). Hence, for Q
in (6.2.3) to be the two-scale symbol of an s.o. cardinal spline-wavelet with
minimum support, it is necessary and sufficient that

where C0 is any nonzero constant and no is any integer. In other words, up to
multiplication by a nonzero constant and shift by any integer, the compactly
supported s.o. wavelet with minimum support that corresponds to the mth

order cardinal B-spline Nm is unique, and is given by

where we have chosen C0 — -[(2m - I)!]-1 and no — 1 in (6.2.4) in order to
have q0 0 and qn = 0 for n < 0. In view of the fact that, analogous to Nm,
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m also has minimum support, we will call m the mth order "B-wavelet" for
convenience. Since Qm in (6.2.5) is the product of two polynomial symbols, the
sequence {qn} is the convolution of these two polynomial coefficient sequences.
That is,

Let us summarize these findings in the following.

Theorem 6.4. Let m be any positive integer. Also, let Nm be the mth order
cardinal B -spline and m the B-wavelet as denned in (6.2.5) with coefficients
given by (6.2.6). Then

is a Riesz basis of W0 . Furthermore, m has compact support with

It is the "unique" wavelet in W0 with minimum support in the sense that if
W0 generates W0 as m does and the support of 77 is an interval with

length not exceeding 2m — 1, then n (x} = C 0 m ( x — no) for some constant
GO 0 and n0 ZZ.

We now turn to the dual m of m. By (5.4.11), the two-scale symbol //*
of relative to 0 is given by H(z) ~ z P ( — z } K ' - l ( z 2 } , where H(z) = H*(z)
for \z = 1. Hence, in view of the dual relation of 0 and 0 (see (5.6.10)), we
have, for z = e-iw/2,

Hence, if we try to relate the dual wavelet m with the interpolatory wavelet
I,m introduced in Section 6.1, then using the two-scale symbol Q(z) in (6.1.14)
with Fm(z] — ENm(z) (see (6.1.13)), we have
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Recall that in our normalization of m in (6.2.5), we have chosen C0 = —[(2m —
1)!]-1 and n0 = 1 in (6.2.4) for K(z). This gives

where Fm is the reciprocal of the symbol of the B-spline coefficient sequence
{c(2m)k } in the definition of the fundamental cardinal spline L2m. Hence, noting
that z2 = e-iw in (6.2.9), we have

We end this section with a discussion of the phase properties and an
investigation of the time-frequency windows of the B- wavelet m and its dual

m. First observe that the cardinal B-spline Nm and the fundamental cardinal
spline L2m are symmetric for any m (see Theorem 4.3, (ix)). Hence, the
sequence {ck 2

m} is also symmetric. So, from the definition of 1,m, we see
that must be symmetric for even m and antisymmetric for odd m, and
the same conclusion holds for m in view of (6.2.10). Similarly, from (6.2.6),
since it is clear that the sequence {qn} is also symmetric for even order m
and antisymmetric for odd order m, we may draw the same conclusion for the
cardinal B- wavelets m

Theorem 6.5. All the wavelets m,m and m are symmetric for even m
and antisymmetric for odd m. Consequently, they all have generalized linear
phases.

The graphs of the B-wavelets m are particularly interesting. For m > 3,
the even order m's match almost exactly with

and the odd order ones with

for certain values of a, b, w, where ga is the Gaussian function with parameter
a (see (3.1.10)). In Figures 6.2.1 and 6.2.2, we show the graphs of 4 and 3,
respectively. Observe the resemblance between these graphs and those of the
corresponding Gaussian functions in Figures 3.1.1 and 3.1.2. The error curves
are shown in Figures 6.2.3 and 6.2.4.

Recall from Chapter 3 that when a wavelet "0 is used as a basic wavelet
in the IWT, the area of the window is given by 4 , and the smaller the
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value of , the better the wavelet is for applications to time-frequency
localization. Since the Gaussian function ga cannot be used as a basic wavelet,
the Uncertainly Principle (see Theorem 3.5) says that , no matter
what basic wavelet is considered. In Table 6.2.1, we give the values of
for m = 2,3,4,5,6. Observe how close the cardinal U-wavelets m are to being
optimal for larger values of m.

Figure 6.2.1. Cubic spline-wavelet

Figure 6.2.2. Quadratic spline-wavelet

2 .Figure 6.2.3. |4 - ReGa3.5,2/2 in dB, a = 0.2925
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Figure 6.2.4. - ImGa2.5, 2 in dB, a = 0.2300.

m
2
3
4
5
6

Products of ,m and m
0.971715
0.535070
0.504839
0.500929
0.500367

Table 6.2.1. Values of m .

6.3. Computation of cardinal spline-wavelets
This section is devoted to a discussion of certain computational schemes

for the compactly supported cardinal spline-wavelets (or B-wavelets) m in
(6.2.5)-(6.2.6). In Section 5.2, a method for computing any compactly sup-
ported scaling function was offered. It consists of two main steps: the first
step is to find the eigenvector [0(1)... (N, — 1)]T of the matrix [P2j"-k]>
1 < j, k N — 1, corresponding to the eigenvalue = 1 and subject to
the normalization condition (1) , while the second step
is to apply the Interpolatory Graphical Display Algorithm described in Sec-
tion 4.3 using jo = 0, a0l) = l,o,wm,k = 0(k) and replacing pm,k by k. This
method yields the values of

for any desirable positive integer j. Now from the two-scale relation
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for the wavelet we can easily formulate the following scheme for computing
at the dyadic points, namely:

Note that again this scheme consists of taking moving averages followed by
upsampling.

Observe that if the values of pk and Qk are exact, then the computational
algorithm described above gives precise values of at the dyadic points. For
the setting of cardinal splines of order m, recall from (4.3.3) and (6.2.6) that

and

where the values of N2m(k), k ZZ, can be computed by applying the recursive
scheme

put forth in (4.2.15). Note that the procedure in (6.3.5) is more efficient
than finding the eigenvectors of [Pm,2j-k], I < j,k < m — l, and [p2m,2j-k],
1 j,k < 2m — 1, corresponding to the eigenvalue A = 1, as described above
and in (5.2.14)-(5.2.17).

The computational advantage of cardinal B-splines over other scaling func-
tions is more than just the recursive scheme in (6.3.5). The first goal in this
section is to introduce a Pascal triangular algorithm (PTA) for computing the
two-scale sequences {qm,k}, k ZZ, m = 1,2, . . ., more directly. As we will
see, this algorithm gives not only the two-scale sequences, but also the coef-
ficient sequences {qrm k} of the cardinal B-spline series representations of the
rth derivatives

of the compactly supported mth order B- wavelet m. The structure of this
PTA will be discussed in Section 6.6 in conjunction with a discussion of "total
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positivity" , "complete oscillation" , and "zero-crossings" . For this purpose, we
describe the PTA in somewhat more generality.

In the following, we will use the notation

for the set of nonnegative integers, and as in (4.5.9), A(z) will denote the
symbol of a sequence {an} l2. To facilitate our presentation, we will also
need the notation

for any n ZZ+. Hence, {£n}, n € ZZ+, is a mutually disjoint partition of the
family

of the class of all causal l2-sequences. In addition, let denote the shift
operator on £2 defined by

Definition 6.6. A Pascal triangular algorithm (PTA) is a map P: ZZ+ l
that can be formulated as follows:

Definition 6.7. A PTA P, as described by (6.3.11), is called a linear Pascal
triangular algorithm (LPTA), if L(n, •) and R(n, •) are both linear (in the
second "variable" .), namely:

for some kL(n), KR(n), bl(n), and 6R(n).

Remark. For any PTA P, it is clear that

If, in addition, P is an LPTA, then it is necessary that
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holds, since bl(n) = l(n, 0) / 0 and 6/z(n) = /2(n, n) / 0.
Because of the initial condition P(Q) — { j t o } in (6.3.11), a PTA can be

realized as a "tree" algorithm for computing the sequences

More precisely, if the configurations in Figure 6.3.1 are interpreted as

then the tree configuration of a PTA can be described by Figure 6.3.2, where
we have used the notation

Figure 6.3.1. Details of PTA.

Figure 6.3.2. Pascal Triangle.

Example 6.8. Consider the LPTA Pb defined by setting

(that is, kl(n) = kR.(n) = 0 and bl(n) = bR(n) = 1). Then the Pascal triangle
in Figure 6.3.2 is the well-known algorithm for computing the sequence of
binomial coefficients
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Example 6.9. Consider the LPTA Pe defined by setting

191

(that is, kl(n) = KR(n) = bl,(n) = bR(n) = 1). Then the Pascal Triangle
in Figure 6.3.2 can be used to calculate the coefficient sequence of the modi-
fied Euler-Frobenius polynomials En (see the remark following this example),
defined by

of order n (or degree n — 1), in the sense that

This is a consequence of the recursive scheme (4.2.15) or (6.3.5) for cardinal
B-splines. It can be shown that this LPTA yields

In particular, we have listed the first nine modified Euler-Probenius polynomi-
als in Table 6.3.1.

Table 6.3.1. Modified Euler-Frobenius polynomials.

Remark. Recall from (4.6.6) that the mth order Euler-Frobenius polynomials
Em are defined by
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Hence, for odd m, we have

which agrees with (4.2.18). For even m, however, the coefficients of Em(z) are
no longer values of the cardinal B-spline Nm+i at the integers, and therefore
the recursive scheme in (4.2.15) or (6.3.5) does not apply. For this computa-
tional reason, the modified Euler-Frobenius polynomials En(z) are introduced
in (6.3.19). We have seen that E2m-1(z) — Ezm-1(z)- In other applications,
the .film's are not very useful since interpolation by cardinal splines of odd or-
der (and with knot sequence 2Z) at the knots 2Z is "unstable" (for example, the
coefficient matrix is not invertible). This follows from Table 6.1, by observing
that

Another reason for introducing E2m is that again in view of the recursive
scheme (6.3.5) for cardinal B-splines at the integers, there is a very nice rela-
tionship between En and En+1, namely:

The proof of (6.3.21) is a straightforward application of (6.3.5). This identity
will be useful in Section 6.5.

We now turn to formulating the PTA for the two-scale sequences {qm,k}
in (6.3.4) of the mth order cardinal B-wavelets m. As mentioned earlier,
in computing {qm,k}, this same PTA may be applied to yield the coefficient
sequences {q(r) m,k} of the B-spline series of the rth derivatives m of
0, . . . , m — 1. In order to avoid any sign changes, let us introduce the notation

We have the following result.

Theorem 6.10. For every positive integer m, let Pm be the LPTA with

and
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Then

Remark. Observe that in (6.3.23) and (6.3.24), we have bL(n) = bR(n] = 1
for all n e ZZ+, and

in the LPTA.

Proof. Let us again use the notation

Then in view of (6.3.23) and (6.3.24), by applying the results in Examples 6.9
and 6.8 consecutively, we have

(Note that E2m-i = E 2 m - i ) Hence, the symbol of s3m-2+r is given by

On the other hand, by applying the identity (vii) in Theorem 4.3, we have

Therefore, since the symbol of {qm,k} (which is twice the two-scale symbol Q
for the B- wavelet m relative to the scaling function Nm) is

(see (6.2.5)), it follows from (6.3.28) that the symbol of {q(r)m,k} is given by
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So, if we multiply the expression in (6.3.29) by (2m — 1)!2m-r-1 and change
-z to 2, we obtain the symbol S3m-2+r in (6.3.27) of Pm(3m - 2 + r). That
is, we have indeed derived (6.3.25). •

Since the B- wavelet m is a cardinal spline of order m, its (m — l)st

derivative is a step function m-1 with jumps at j/2, j = 0, . . . , 4m — 2.
Hence, to obtain m, we may simply integrate this step function (m — 1)
times. In general, to generate any B-wavelet series

the integrations can be performed on the step function

Of course, if the engineer prefers to work with an "impulse train" (that is, a
series of delta functions), then he or she may use the series

which necessitates an extra integration.

Theorem 6.11. For each positive integer m, let

and let , denote the characteristic function of the interval [0, 1/2). Then

the mth order B-waveletm is given by

Another method for computing the .B-wavelet m (and any B-wavelet
series g(x) as in (6.3.30)), is to compute the B-net representation of each of
its polynomial pieces. This gives the values of m(x) not only at the dyadic
points x = n + £/2j , as given by the general computational scheme (6.3.2), but
also at every x IR. The efficient computation may be performed simply by
taking a moving average of the sequence Pm (3m — 2) with the sequence of the
.B-nets of the mth order cardinal B-spline Nm(2x) obtained by applying the
Cardinal B-spline B-net Algorithm in Section 4.4. (See Example 4.11 for the
B-nets of the quadratic, cubic, and quartic cardinal B-splines.)
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6.4. Euler-Frobenius polynomials
We have seen that Euler-Probenius polynomials Em(z) play a very im-

portant role in cardinal spline interpolation (see Sections 4.6 and 6.1) and the
construction and analysis of cardinal spline-wavelets (see Sections 6.1-6.3). In
this section, we shall investigate these polynomials in some detail, paying spe-
cial attention to their zero structures. These structures have already been used
in (4,2.18)~(4.2.21) for determining the sharp lower Riesz bounds of Nm, and
will again play an important role in the error analysis of spline-wavelet decom-
positions in the next section. Although the properties of the Euler-Probenius
polynomials Em of even and odd orders are the same and the derivations of
these properties are quite similar, in order not to repeat analogous arguments
we will only consider the odd order ones, since the even order ones are not
used in our study of spline-wavelets.

Analogous to (4.6.8), by applying the Poisson Summation Formula (2.5.8),
the Euler-Frobenius polynomial E-2m-i(z}i with z = e-iw, can be written as

(see (3.2.16)). By defining

it follows from (6.4.1) that

As a consequence of (6.4.1) and (6.4.3), it is clear that en(w) is completely
characterized by the recursive relation
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Another formulation of en is given by

which follows from (4.2.9), where D is the derivative operator. In view of the
formulations in (6.4.4) and (6.4.5), we find it convenient to introduce the new
variable

so that (6.4.4) becomes

where

Remark. Prom (6.4.7), it is quite easy to compute Un, n € ZZ+. For instance,
we have

Observe from this remark that at least for 0 n < 4, Un(x) is a polynomial
of exact degree n, and has a positive leading coefficient. Moreover, Un(l] = 1
and Un is an even function for even n and an odd function for odd n. That the
same properties still hold for all n + can be established by mathematical
induction. In fact, one can even draw some interesting conclusions concerning
the zeros of Un as follows.

Lemma 6.12. For each n +, Un(x] is a polynomial of exact degree n,
consisting only of even powers if n is even and only of odd powers if n is odd,
such that Unn > 0 and Un(l) = 1. Furthermore, all the zeros of Un are simple
and purely imaginary.

Proof. We will only be concerned with the last statement. In addition, since
it is easier to consider real zeros, we study
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Instead of Un; and it is sufficient to show that all the zeros of un are simple
and real. From (6.4.7), we also have

and consequently, it is easy to see that un is even for even n and odd for odd
n. In addition, from (6.4.9), it follows that

which means that the leading coefficient of un is also positive. We now proceed
by induction.

(i) Suppose that u2k has only simple and real zeros. Then since u2k is an
even function, it cannot have a zero at 0 and all its zeros occur in symmetric
pairs, say, ±j, where

Now, u'2k cannot vanish at these zeros, and in fact, the sequence

must (strictly) alternate in sign. Consequently, since (6.4.10) asserts that

the sequence

must also (strictly) alternate in sign. Being an odd function, u2k+1 must vanish
at 0, and from the sign pattern in (6.4.11), it has at least one zero between £,
and £j+i, j = 1, . . . , k — 1. So, u2k+1 has at least 2(k — 1) + 1 = 2k — 1 zeros in
the open interval ( — k , k)- Now, from the fact that u2k has a positive leading
coefficient, it follows that u2k(k) > 0 (since k is the largest zero). Hence,
again from (6.4.10), we have

So, since the leading coefficient of u2k+1 is also positive, u2k+1 must have at
least one zero to the right of k; and being odd, it also has one zero to the left
of — k. This shows that u2k+1 has 2k + 1 simple real zeros.

(ii) Suppose that u2k+i has only simple real roots at ±nj and 0 where
Then by the same argument as in (i), we may conclude



198 6. Cardinal Spline-Wavelets

that U2k+2 has roots in each of the intervals (0,n1), . . . , ( n k - 1 , n k ) , ( n k , ) ,
Hence, being even, U2k+2 has 2k+ 2 simple real zeros. •

By applying Lemma 6.12, we may conclude, from the identification of Un

with en in (6.4.8), that

Next, we must relate the imaginary zeros of Un to the zeros of the Euler-
Probenius polynomials. Observe from the fact that z = e -iw and the relation
(6.4.6) between x and w, that, for any a > 0,

where

So, by setting

we have

Hence, we conclude that, for any a > 0,

To apply this result to (6.4.12), let us set
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Then it is clear that — 1 < X < 0 and

where z = e M. When (6.4.14) is substituted into (6.4.3), we arrive at the
following result.

Theorem 6.13. Let m be any positive integer. Then the Euler-Frobenius
polynomial .E2m-1 of order 2m — I (or degree 2m — 2) can be written as

where

and

6.5. Error analysis in spline-wavelet decomposition
In Section 6.2, when the compactly supported cardinal spline-wavelet (or

B-wavelet) was introduced in (6.2.5), the normalization parameters C0 and
no for K(z] in (6.2.4) were chosen to be Co — — 1/2m-1 and no — 1. Hence,
the symbols G(z} and H(z) in (5.3.15) that correspond to the decomposition
relation (5.3.16) in Theorem 5.16 are given by

(see (6.2.1) and (5.4.11)). Now let us recall from (5.4.46) that the sequences
for the decomposition algorithm (5.4.48) are chosen to be

So, for non-Haar spline-wavelets (i.e. m 2), the "weight" sequences {an}
and {bn} are infinite sequences, and must be truncated in order to apply the
(finite) moving average scheme in (5.4.48).
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Remark. The weight sequences for the reconstruction algorithm (5.4.49) are
the finite sequences

which can be easily computed for any order m by using the linear PTA's as
discussed in Examples 6.8 and 6.9. In addition, since G(z) and H (z) are ratio-
nal functions, it is conceivable that a recursive algorithm could be devised for
decomposition without truncation. However, we will not discuss this approach
here.

Observe that the only multiplicative factor in (6.5.1) that contributes to
the infiniteness of the weight decomposition sequences (an) and {bn} in (6.5.1)-
(6.5.2) is 1/E2m-1(z2)- We will now analyze the "errors" that will arise as a
result of truncating this factor.

Let us begin by considering the (2m)th order fundamental cardinal spline

that has already been discussed in Sections 4.6 and 6.1 (see (6.1.8)). Recall
from (6.1.12) and (6.1.13) that the symbol of the coefficient sequence {ck

 m'} in
(6.5.4) is the reciprocal of the generalized Euler-Frobenius Laurent polynomial
Fm :— ENm, namely:

where E2m-1 is the Euler-Frobenius polynomial of order 2m— 1 (or degree 2m—
2) studied in the previous section. So, truncation of l/2m-1(z2) is equivalent
to truncating the B-spline series representation (6.5.4) of the fundamental
cardinal spline L2m For convenience, let us absorb the factor (2m — 1)! with
{en } by setting

so that (6.5.5) becomes
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We now truncate this Laurent series by introducing

for positive integers N. With the quantity in (6.5.7) replaced by that in (6.5.8)
in the expressions (6.5.1) for G and H, we obtain

The finite "truncated" decomposition sequences are now

It is clear from (6.5.9) that the supports of the truncated sequences are given
by

When the finite sequences {aN,n} and {bN,n} are used instead of the
original sequences {an} and {bn} as weights in the decomposition algorithm
(5.4.48), there will be some discrepancy. To measure this error, we simply
compare the perfect reconstruction of the truncated decomposed components
with the original finite-energy sequence. Precisely, let

be any cardinal B-spline series in Vmj. The sequence cj is a finite-energy
sequence representation of the signal fi . If fi is decomposed into

where fN, j € Vmj-1 and 9N,j- wmj-1, by using the (finite) decomposition
algorithm
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then we will compare the perfect reconstruction cjN of its decomposed compo-
nents

that is, cjN = {cjn,k}, k e ZZ, where

with the original sequence ej, where {pk} and {qk} are given in (6.5.3). By
using l2-measurement, the truncation error is the quantity:

Since the cardinal B-spline Nm generates a Riesz basis of V0m, the error mea-
surement in (6.5.16) is equivalent to the measurement

where

with {CjN,k] given by (6.5.15).
For the error analysis, we need the following expression for the coefficients

of the B-spline series of the fundamental cardinal splines.

Lemma 6.14. Let m,j = 1, • • • , 2m — 2, be the zeros of the (2m — l)st order
Euler-Frobenius polynomial E2m-1 as in Theorem 6.13. Then the coefficients
of the Laurent series in (6.5.7) are given by

for

Proof. To establish (6.5.19), we need the identity in (6.3.21) for the modified
Euler-Frobenius polynomials En defined in (6.3.19). Recall that
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Hence, it follows from the simple observation

and (6.5.20), that

By resorting to a partial fraction decomposition and the use of the relations in
(6.5.21) and (6.4.17), consecutively, we obtain

This establishes (6.5.19).

Remark. By setting

in (6.5.19), we have, by applying (6.3.21),

where E2m is the modified Euler-FYobenius polynomial of order 2m. Thus, the
formula (6.5.24) facilitates the computation of k(km), andconsequently of cr-

in (6.5.23), since E2m is easy to compute (see the LPTA in Example 6.9 and
(6.3.21)).

To formulate an estimate of the error measurement in (6.5.16), let us recall
the notation

as introduced in (6.1.13) and define

We have the following results.
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Theorem 6.15. For any positive integer m,

for any c € l2.

Theorem 6.16. For any positive integer m, there exists a positive integer N0
No(m), such that

for all N N0. Furthermore, No(m) can be chosen to be 0 for m = 2, 3, 4.

As a consequence of the two theorems stated above, since the terms in
the sum in (6.5.28) for 2 m < 4 alternate in signs and have monotonically
decreasing magnitudes, we have the following.

Corollary 6.17. For m = 2, 3, 4, and any positive integer N,

where

Proof of Theorem 6.15. Let c = cj and CN = cjN as in (6.5.12) and (6.5.15),
and denote their symbols by C and CN, respectively. Then from (6.5.14),
(6.5.15), and (6.5.9), we have

where P and Q are the two-scale symbols of the mth order cardinal B-spline
Nm and B- wavelet m- Hence, by applying the identities (5.3.13), we have

On the other hand, it follows from (6.5.7), (6.5.8), (6.5.23), (6.5.25), (6.5.26),
that

and the identity in Theorem 5.10, (iv), translates into
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Therefore, by applying (6.5.33) and (6.5.34), the quantity in (6.5.32) can be
simplified as

Assertion (6.5.27) now follows from (6.5.35) by applying the Parseval Identity
(2.4.18). •

Proof of Theorem 6.16. By introducing the notion

and observing that

we have, from (6.5.24),

Next, substituting (6.5.37) into (6.5.26) yields
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On the other hand, by setting z = e-iw/2, the expression Fm,j as defined in
(6,5.36) can be written as

Hence, the formula in (6.5.38) becomes

so that

But since Fm,j(z) is a symmetric Laurent polynomial with only negative
zeros, the coefficients, bm>jtl in (6.5.39) must be strictly positive. So, it follows
from (6.5.41) and (6.5.42) that

for I = 0, . . . , m - 2; and hence an integer N0 = N0(m) exists, such that for
all N N0,
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for t — 0 , . . . , m — 2. As a consequence, we see that for all N > AT0, the cosine
polynomial - R ( z ) , which can be formulated as

has positive coefficients (except for the (— 1)N+1 factor) and satisfies

So, since Fm(l) = ZN2m(j) = 1, it follows from (6.5.44) and (6.5.26) that

for all N > N0. Observe that (6.5.45) agrees with (6.5.28) in view of the fact
that {n+1 m,j is of one sign. For m = 2, it is clear that (6.5.45) holds for all
N > 0, and it only takes a little bit more work to show that (6.5.28) also holds
for all N > 0, when m = 3 and 4. •

We end this section by mentioning that for linear and cubic spline wavelets,
the truncation errors have the following upper bounds

These are crude estimates made by applying Corollary 6.17. Better estimates,
particularly for small N and m = 2,3,4, can be obtained by applying (6.5.28).

6.6. Total positivity, complete oscillation, and zero-crossings
As mentioned in Chapter 4, cardinal B-splin.es possess a very special prop-

erty called "total positivity". This property is the key ingredient that makes
the B-splirie series

stand out as a unique tool most suitable for "smoothing" purposes. In this
section, we shall demonstrate that the corresponding cardinal B-wavelet m

has a property which is in some sense a contrast to total positivity. While a
B-spline series "smooths" any "bumpy" data, a B-wavelet series

"detects" such data. The important difference between these two series is
that the series in (6.6.1) never oscillates more than its coefficient sequence
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{ck}, while the series in (6.6.2) always oscillates more than {dk}. We will say
that m possesses a special property called "complete oscillation", which is in
contrast to the property of total positivity of its companion Nm.
Definition 6.18.

(i) A matrix M (finite, infinite, or bi-infinite) is said to be '"totally pos-
itive" (TP), if any square submatrix of M of any finite dimension,
formed by deleting arbitrary rows and columns of A, has a nonnega-
tive determinant.

(ii) A function F(x, y) of two variables is called a TP kernel, if the matrix
[F(Xj,yk)]} where {xj} and {yk} are increasing sequences arbitrarily
chosen from the domain of definition of F, is a TP matrix.

(iii) A sequence {an}, n — 0,1,..., (finite or infinite), with ao 0, is
called a TP sequence, or a Polya frequency (PF) sequence, if the
Toeplitz matrix [a_j+k], formulated by setting a_1 = a_2 = • • • = 0,
is a TP matrix.

For the cardinal S-spline Nm, we consider Nm(x — k) as a function of two
variables x 1R and k ZZ. So, by saying that Nm is TP, we mean that for
any positive integer n and any sequences {xj} and {£j}, with

we have

A proof of this important fact about cardinal -B-splines will not be included in
this book, but we do point out that as a consequence of (6.6.4), the sequence

is a PF sequence. Indeed, by selecting Xj = j +1 and 4 = k, where j, k € 21+,
we see that the transpose of the matrix [N2m(xj — 4)] = [N2m(j+1- k)}
agrees with the upper triangular Toeplitz matrix whose first row is given by
(6.6.5). It is also interesting to note that the symbol of the sequence in (6.6.5),
being a 1(2m — 1)! multiple of the Euler-Frobenius polynomial E2m-1, can be
written as

since Xm,j < 0, j = 1, . . . , 2m — 2 (see (6.4.16)). This result can be extended
to any PF sequence as follows.

Lemma 6.19. Let {a,j}, j 6 ZZ+, be a sequence in £2 satisfying a0 0. Then
{aj } is a PF sequence if and only if its symbol can be written as
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where and
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Example 6.20. Consider the two-scale sequence {(qk} of the mth order cardinal
B-wavelet m as given in (6.2.6). More generally, for each r — 0,. . . ,m — 1,
consider the sequence that governs its rth derivative rm as defined by

(6.3.6). The symbol of {qr m,k} has been shown in (6.3.29) to be

and consequently, q(r)m,k k = 0, ... ,3m — 2 + r, alternates in sign, and the

smbol of becomes

which is a polynomial with only negative zeros. Hence, by Lemma 6.19,
is a PF sequence. •

Recall from Theorem 6.10 that {q rm,k} can be computed by applying an
LPTA. In general, we have the following result.

Theorem 6.21. Let P be an LPTA as defined by (6.3.12) with kL(n), kR(n) >
0 and &L(^)J bR(n) > 0, for all n ZZ+. Then each P(n) is a PF sequence.

An important feature of PF sequences, and TP kernels in general, is their
so-called "variation-diminishing" property. This is a "smoothing" effect in
the sense that "oscillations" , such as sign changes, of a sequence or function,
gradually diminish when it is "filtered" by convolving with PF sequences or
integrating with TP kernels.

Definition 6.22. The number of strong (or actual) sign changes of a finite
sequence a of real numbers, denoted by S-(a), is the count of sign changes of
a after all the zero terms are deleted. The number of both strong and weak
sign changes of this sequence a, denoted by S+(a), is the count of changes of
signs when each of the (interior) zero terms of the sequence is considered as
being positive or negative to give the maximum count. (Note: When a finite
sequence is considered, the first and last terms of the sequence are supposed
to be nonzero.) The number of strong sign changes of a continuous function f
with supp f = [a. b] is denned to be
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and the number of both strong and weak sign changes of the same f is defined
by

Remark. In considering the count S+(f), we are only interested in those /
whose supports do not contain nontrivial intervals on which / = 0; that is, we
assume Zc(f) — supp /, where

Otherwise, the count S+ (f) should be considered on each component of supp f.

The following variation-diminishing property of cardinal B-splines can be
established by applying the TP property.

Theorem 6.23. Let m 2 be any positive integer. Then

As to the corresponding B-wavelets m, we will see that instead of possibly
reducing the number of sign changes, a B-wavelet series always oscillates more
often than its coefficient sequence. This property of "complete oscillation"
of m, which is in contrast to the TP property of Nm, is what makes m

useful in applications to localization and measurement of irregularities such as
singularities.

When the zeros of a wavelet series are also counted as sign changes, one
expects a larger lower bound. In this direction, we have the following result
valid for linear B-wavelet series.

Furthermore, if the support of this B-wavelet series is an interval and if
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Remark. The result in (6.6.14) justifies the terminology of "complete oscilla-
tion".

Proof of Theorem 6.24. Recall from Theorem 6.3 in Section 6.1 that the
(wavelet) space W™ can be identified as the (multiresolution) subspace V1

 rn'
of Vim via the mth order differential operator Dm,

However, instead of considering the relation m = - D m 2 m there, let us
introduce the (2m)th order cardinal spline

that belongs to V1
 m' . It is easy to verify that

is a Riesz basis of ym<° Furthermore, analogous to the relation
I, m, we also have

Indeed, applying (vii) in Theorem 4.3 m times yields

Hence, we may use m in Place of 2m in Theorem 6.3. Now, consider the
spline series

n

Since do, dn 0 and supp 2m = [0 2m — 1], we see that

Thus, it follows from the fact that
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that a family of points {Xj '}, j = 1,..., n + 2m + £ — 2 and I — 1..... TO,
satisfying

exists, such that G(l) has a (strong) sign change at each Xj , j = 1, . . . , n 4-
2rn + £ — 2. In particular,

has a (strong) sign change at each of

Proof of Theorem 6.25. To study the more delicate count S+, we need a
result from TP matrices, namely: if A is any p x (n+1) TP matrix with p > n,
then

for any (n + l)-vector of real numbers. This fact is actually the key ingre-
dient for establishing Theorem 6.23. In addition, if v = (VQ, . . . ,v n ) and
v := (v0, — vi, v%,..., (—l)nu

n), then it is easy to verify that

To establish (6.6.13), we need the matrix
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It is also easy to verify this (2n4-5) x (n+1) matrix A is a TP matrix. Hence,
by applying (6.6.19) and (6.6.20) to the vector v = (V0, ... ,u2n+4) with

we have

This establishes (6.6.13).
Next, by using the two-scale relation of 2 relative to N2, the cardinal

B- wavelet series dk 2(.-k) can be written as a cardinal B-spline series in
terms of N-2(2 • —k). Since the support of this series is an interval, we have, by
applying yet another result on the TP of cardinal B-splines,

k } ) = 0.

In applications, it is quite essential to be precise about the oscillations of
a B- wavelet series. For instance, the distribution of the zeros of a bandpass
band-limited signal, which is governed by the "Nyquist rate" , can be completely
recovered from its isolated zeros (called "zero-crossings"), provided that certain
conditions are satisfied. When a cardinal B-wavelet series is treated as a
bandpass signal, however, it cannot be band-limited, being different from an
entire function of exponential type. Nonetheless, when linear B-wavelets are
used, we still have the following theorem. Analogous results for cardinal B-
wavelets of higher orders are not available at this writing.

Theorem 6,26. Let

be two linear spline-wavelet series with Zc(f) = Zc(g) — [0, n + 3] such that
S~ (c) — 0 and g has only simple zeros. Then if f and g have the same zeros,
f must be a constant multiple of g.

Proof. By assumption, we have dodn / 0 and cocn 0. Choose c such that
Co = cdo- Then

Suppose that g — cf is not identically zero. Then we may assume, without
loss of generality, that Zc(g — cf) = [l,n + 3]. Since (g — cf) € v12, an
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application of the so-called Budan-Fourier Theorem affirms that the number
of zeros Z(g—cf), counting multiplicities, of g— cf in the open interval (1, n+3)
does not exceed 2n -f 2, namely:

On the other hand, since the restriction of g to (0,1] is a constant multiple of
2, it has only a simple zero in (0,1]. Hence, it follows from Theorem 6.25 that

In addition, since g has only simple zeros and / has the same zeros as g. we
have

Therefore, from (6.6.23) - (6.6.25), we obtain

which is absurd. This completes the proof of the theorem. •



7 Orthogonal Wavelets and
Wavelet Packets

For obvious reasons, orthonormal (o.n.) bases are the most desirable bases
of a Hilbert space. In particular, if an o.n. basis of L2(IR) is generated by some
R-function then, being self-dual, is already a wavelet. Moreover, the two-
scale sequence {qn} of relative to the scaling function is obtained from
the two-scale sequence {pn} of 0 simply by complex conjugation followed by
alternation of signs and reverse in direction with a unit shift. For instance, as
in (5.6.14), we may set

In other words, essentially only one two-scale sequence governs both the mul-
tiresolution analysis (MRA) and its corresponding wavelet decomposition.
What is more interesting is that by applying a mixture of {pn} and {<?„}
to produce two-scale relations with the wavelet spaces Wn can be further
decomposed orthogonally. The families of new orthogonal basis functions so
produced are called "wavelet packets". This chapter is devoted to the analysis
and construction of o.n. wavelets and their wavelet packets. In particular, the
construction of compactly supported o.n. wavelets will be discussed.

7.1. Examples of orthogonal wavelets
A general framework of wavelets and their duals has been studied in Sec-

tion 5.4, where the proposed strategy was to start with two admissible two-scale
symbols P = P and G* = G, which are dual to each other. For the con-
struction of o.n. wavelets, as we have seen in Section 5.6, 0 is also necessarily
self-dual, so that G* = P and the dual relation (5.4.7) becomes

In addition, by Theorem 5.19, the general formulation of the two-scale symbol
Q for the o.n. wavelet ty relative to the scaling function 0 is given by

where C0 — ±1 and no is an arbitrary integer. To be consistent with the choice
in (5.6.13) and (5.6.14), let us set c0 = —1 and no = 1, so that

215
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Hence, to construct an o.n. wavelet , we must investigate the two-scale
relations

Of course, if or P is known, then , and hence , is determined by applying
the second relation in (7.1.4) using (7.1.3).

Example 7.1. Let m be any positive integer and let Nm denote the mth

order cardinal B-spline. Then by Theorem 3.23 (see also (3.6.18)), the scaling
function m whose Fourier transform is given by

is an o.n. scaling function in the sense that {0m(- — k): k e TL} is an o.n.
basis of VQ™. Here, Fm is the generalized Euler-Frobenius Laurent polynomial
relative to Nm as defined in (6.1.13), and the structure of Fm has been discussed
in Section 6.4 (see (6.1.13) and Theorem 6.13). As a consequence, by applying
(7.1.3)-(7.1.5), the Fourier transform of the o.n. wavelet that generates

W™ is seen to be

where z = e~M/2. For m = 1, it is easy to see that the o.n. wavelet given
by (7.1.66) is nothing but the Haar function H. •

Of course, if we already have an s.o. wavelet, then the orthonormalization
procedure formulated in (3.6.18) readily yields an o.n. wavelet.

Example 7.2. Let be one of the s.o. cardinal spline-wavelets 1,m. m,
or m, m 1, introduced in the previous chapter. Then 1, whose Fourier
transform is given by (3.6.18), is an o.n. wavelet. For = 1,,m m, or

m, the results obtained in Chapter 6 can be easily applied to determine the
Laurent series

(See (6.1.11)-(6.1.13), (6.2.5), and (6.2.9).)
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In general, since we don't have any knowledge of the scaling function
or its two-scale symbol P = P, we have to work very hard to come up with
either one of them. Recall that our strategy is to construct P, and the next
two sections will be devoted to this effort. To end this section, we give an
example in which 0, instead of P, is constructed first.

Example 7.3. Let 0 < e < /3, Q < A < l < B , and N be an arbitrary
positive integer. Select any CN(IR) that satisfies the following conditions;

Then we can introduce a function 0 whose Fourier transform is given by

It is clear that 0 satisfies

and that the function P defined on the unit circle by

is in CN. Hence, by integrating the Fourier series

by parts N times, we obtain

so that

In particular, we have {pn} l2. Next we show that
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by considering two separate cases.

(i) Suppose that w supp 0. Then we have

so that either 0(w/2 ) = 0, or else P(e~iw/'2) = 0. That is, both sides of (7.1.13)
are zero in this case.

(ii) Suppose that w € supp 0. Then we can draw the following two
conclusions. Firstly, since 0 < < Tr/3, it follows that n(w/2 + 2k) = 0 for
all nonzero integers fc, so that 0(-f) = (w/2)/n(w/2) — 1- Secondly, we have
P(e"iw/2) = 0(w). Hence, both sides of (7.1.13) are equal to 0(w).

Prom the definition of 0 in (7.1.8), we already know that

is an o.n. family (see Theorem 3.23), and that

In view of the Poisson Summation Formula (see (2.5.11)), this implies that
(7.1.14) is also a partition of unity, namely:

Hence, to conclude that 0 generates an MRA {Vn} of L2(IR), what remains to
be verified is that for any / Z/2(1R),

where Pn(f) denotes the L2(IR) projection of / onto Vn. For this purpose, we
need to know the rate of decay of 0. This is easy, for an JV-fold integration by
parts readily yields

which implies that
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Now, by using the kernel

219

we can represent the projection Pn(f) of / as

Since (7.1.16) implies that

we may conclude that

where the estimate

which follows from (7.1.18), has been used. By applying the generalized
Minkowski inequality (which is the L2(IR) analog of (2.4.3) and can be easily
derived by using (2.1.1)), we obtain, from (7.1.20),

The rest of the proof is now standard, and is accomplished by breaking the
integral into two parts. First, for each e > 0, choose M > 0 so large that

Then, since / € L2(IR), we have, for \y\ < M,

uniformly, as n — > . This establishes (7.1.17).
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7.2. Identification of orthogonal two-scale symbols
The technical problem in the construction of scaling functions and wavelets

is the identification of the admissible two-scale symbols P — P<f, (see Defini-
tion 5,4 and recall that our strategy in general is to start with a pair of dual
two-scale symbols P and (7"-). Besides the cardinal spline- wavelets studied
in Chapter 6 and the three examples of o.n. wavelets discussed in the pre-
vious section, there does not seem to be any procedure available other than
constructing as an infinite product

Although certain conditions imposed on the limit functions of such infinite
products have been identified in Theorems 5.5 and 5.6, these conditions do
not directly reflect on the two-scale symbols P nor do they guarantee all the
requirements for 0 to generate an MRA. This section is concerned with a study
of the Laurent series P € W that are two-scale symbols of some 0. Since a
complete characterization of P does not seem to be feasible, we will be satisfied
with a sufficient condition which can be easily applied. It is a continuation of
our effort which began with Lemma 5.20. The distinction here is that special
emphasis is placed on 0 being an "o.n. scaling function" , and by this we mean
that 0 not only generates an MRA of I/2(1R), but also satisfies the requirement

Let us first recall from (5.1.12) and (7.1.1) the necessary conditions that
a two-scale symbol P of any o.n. scaling function 0 must satisfy.

Lemma 7.4. Let P be a Laurent series in the Wiener Class W. If P is a two
scale symbol of some scaling function 0 which is o.n. in the sense of (7.2.2),
then P must satisfy

Therefore, in view of (7.2.3), we are, as in (5.1.17), interested in those P
in W that can be expressed as

where N is some positive integer, and
_ S e W satisfies 5(1) = 1.

For any S in (7.2.5), we write

The objective of this section is to establish a useful condition on the factor
S which guarantees that P is a two-scale symbol of some o.n. scaling function.
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Theorem 7.5. Let P € W satisfy (7.2.4) and (7,2.5) for some N > 1, such
that

for some e > 0 and

where the notation in (7.2.6) is used. Then the infinite product

converges to g € C(IR)C\L1(IR)L2(IR) everywhere. Furthermore, the function
L2(IR), with = g, is an o.n. scaling function that generates an MRA of

The proof of this theorem will depend on a sequence of lemmas.

Lemma 7.6. Under the assumptions of (7.2.7) and (7.2.5) for some N > 1, the
infinite product in (7.2.9) converges everywhere to a continuous function g.

Remark. This lemma is different from Theorem 5.5 in that the hypothesis
here is placed on S instead of the finite products in (5.1.18).

Proof. From (7.2.7) and the relation (7.2.5), it is easy to see that {pk} also
satisfies

and it follows from (7.2.10) that, for any h > 0,

(Here, without loss of generality, we consider 0 < 1.) Hence, as a function
of a;, P(e~iw) is in the class Lip£ (see Definition 5.7). In addition, from the
same derivation as that which led to (5.1.21), and the conclusion there (with
the exception that 5 is replaced by P and a by ), we may conclude that
the infinite product in (7.2.9) converges. To prove that the limit function
g is continuous at each WQ, let us first assume that g (wo) 0. Under this
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On the other hand, if g(wo) = 0, then since -P(l) = 1, there is a sufficiently
large integer ko, depending on wo, such that the limit function

satisfies g(w0) 0. The derivation above already shows that g is continuous
at wo, so that

is also continuous at w

Lemma 7.7. Under the assumptions of (7.2.8) and (7.2.5) for some N 1, the
limit function g(w] in (7.2.9) satisfies

for some 77 > 0.

Proof. Let us return to the definition of bj in (5.1.18). In view of (7.2.8), we
have

So, by choosing no = 1 in Theorem 5.5, the conclusion in (5.1.20) of Theo-
rem 5.5 yields (7.2.11), with

Remark. Let us pause for a moment to summarize what we have already
proved and to give an outline of the rest of the proof of Theorem 7.5.

(i) As a consequence of Lemmas 7.6 and 7.7, we see that the infinite
product in (7.2.9) converges everywhere to some function
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which will be called the infinite product itself. Hence, by Theorem 2.17, there
is a unique € L2(IR) whose Fourier transform 0 is this infinite product.
Consequently, 0 satisfies:

So, as usual, we may introduce

and

By (7.2.12), it is clear that {Vj} is a nested sequence of closed subspaces of
L2(IR); and to prove that it is an MRA of l2(IR), we must show that the union
of Vj is dense in L2(IR) and that 0 generates a Riesz basis of V0.

(ii) We shall first prove that 0 generates an o.n. basis of V0. To prove
the density of the union of Vj, j ZZ, we will be consistent with our approach
discussed in Chapters 1 and 3, by constructing an o.n. wavelet basis of L2(IR).
This will imply not only

but also

(See Lemma 5.1.) Prom the study in Section 5.6, we know that a good candi-
date of an o.n. wavelet is

where

Also, as usual, we set

Then the proof of Theorem 7.5 will be complete, provided we can show that
the family
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is an o.n. basis of L2(IR).
To prove that 0 generates an o.n. basis (and hence, a Riesz basis) of Vo,

we recall, from Theorem 3.23, that it is equivalent to showing that

Lemma 7.8. Under the assumptions stated in Theorem 7.5, the infinite prod-
uct g = 0 satisfies (7.2.21).

Proof. The proof of this lemma is similar to the proof of one direction of
Theorem 5.22. Indeed, by setting

we have

which agrees with (5.4.22) with G replaced by P. Hence, from (5.4.25), we
obtain

and again by applying Lemma 5.20, we have

for all j € ZZ.

In order to show that the family in (7.2.20) is an o.n. basis of L2(IR), it is
helpful to know the properties of the sequences {pk} and {qk}, whose relation
is given by (7.2.18).

Lemma 7.9. Let {pk} and {(qk} be defined by (7.2.5) and (7.2.18), where
P satisfies (7.2.3) and (7.2.4). Then these two sequences have the following
properties:
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Proof, Assertion (i) is equivalent to (7.2,3), assertion (ii) to (7.2.4), and in
view of (7.2.18), (iii) is a trivial consequence of (ii). It is interesting to see that
the "orthogonality" property (iv) can be easily derived by a simple change of
indices. Indeed, we have

Finally, to verify (v), we see that after applying (7.2.18) to change the q's and
p's, the two sums in (v) simply form a partition of the summation in (ii), with
one over the odd indices and the other over the even indices. •

As a consequence of the identity (v) in the lemma above, we have the
following.

Lemma 7.10. For all x 6 R,

Proof. Just apply (7.2.12), (7.2.17), and (v) in Lemma 7.9.

The following decomposition formula will be useful.

Lemma 7.11. For every / € l2(IR),

Proof. Just apply Lemma 7.10 and (ii), (iii), and (iv) in Lemma 7.9. •

In addition to their nice "decomposition" properties as stated in Lem-
mas 7.10 and 7.11, the two families { j , k } and { j , k } also possess the following
orthogonality properties as expected.

Lemma 7.12. Under the assumptions stated in Theorem 7.5, the two families
{ j , k } and {j,k} satisfy the following:

Proof. Assertion (i) follows from Lemma 7.8 by applying Theorem 3.23 and
a change of scale. To verify (ii), we simply apply (i), (7.2.12), (7.2.17), and
Lemma 7.9, (iv). The same derivation, with the exception that (iii) instead



226 7. Orthogonal Wavelets and Wavelet Packets

of (iv) in Lemma 7.9, is applied, yields the assertion in (iii) for the situation
j = l For j l, say j > l, we note from (7.2.17) that l,,m € Vl+1. Since
Vl+i C Vj and j,k is orthogonal to Vj by (ii), we see that j,k is orthogonal
to

Hence, {'j,k;} is an o.n. family in L2(IR). As mentioned in an earlier
remark, our approach to demonstrating the density of the union of Vj in L2(IR)
is to verify that this family is an o.n. basis of L2(IR). The standard procedure
in harmonic analysis is to derive the "Parseval Identity" for { j , k } - This is
what we will establish in the following lemma. Let us first remark that any
o.n. family satisfies the "Bessel Inequality". The proof of this simple fact is
identical to that of the Bessel Inequality for (trigonometric) Fourier series (see
Theorem 2.18).

Lemma 7.13. Under the assumptions stated in Theorem 7.5, the o.n, fam-
ily { j , k } , j,k € ZZ, defined by (7.2.18) and (7.2.19), satisfies the following
"Parseval Identity":

Proof. Let (70° denote the class of all functions which have compact supports
and are infinitely differentiable. We will first establish (7.2.26) for all / € C0°.
As mentioned above, since is an o.n. family for each j, we have
the "Bessel Inequality":

Now, for any pair of positive integers L and M, by summing both sides of
(7.2.25) in Lemma 7.11 over M, and cancelling the common
terms, we have

Let us first take care of the second term on the right-hand side of (7.2.27),
Since f C0°, there is some K > 0 such that supp / C [-K, K}. Now, by the
Schwarz Inequality, we have
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so that
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for all sufficiently large L, where

Since p L2(1R) and the measure of BL [ — N , N] tends to zero as L tends to
infinity for any N > 0, the inequality in (7.2.28) yields

(Incidentally, the result in (7.2.29) says that Vj = {0}; see the remark made
after the statement of Definition 5.2.) So, from (7.2.27), we have

To study the quantity on the right-hand side of (7.2.30), we first observe,
by applying the Parseval Identities, both for the Fourier transform and for the
Fourier series, that
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where RM is defined to be the sum over t 0, Now, from (7.2.4) and the
formulation of as an infinite product of P(e- w / 2 k ), we have

Hence, it follows that

Let us consider

Since / € C0, it is clear that { F M ( w } } is uniformly bounded on IR and
converges to 0 uniformly on every compact set as M tends to infinity. Hence,
by observing that / L1(IR), it is easy to see that RM — >• 0, as M — » +00.

We now return to (7.2.31). First, recall from Lemmas 7.6 and 7.7 that
0 = g is continuous. In addition, by (7.2.3) and (7.2.9), we have (0) = 1.
Hence, by using standard arguments, we may conclude that

Therefore, from the conclusions RM -» 0, (7.2.35), (7.2.31), and (7.2.30), we
have

To extend (7.2.36) to all of L2(IR), we use the fact that C0 is dense in
L2(1R). So, for any / L2(IR) and an arbitrary > 0, there is some fo € (7§°
such that f — f0 2 < Hence, by the Bessel Inequality,

whence

Since we also have

we infer (7.2.26) from (7.2.36)-(7.2.38). •

It is now easy to establish Theorem 7.5.
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Proof of Theorem 7.5. Having established the Parseval Identity (7.2.26) in
Lemma 7.13, we now use a standard argument to show that the o.n. family
{ j , k } (established in Lemma 7.12, (iii)) is an o.n. basis of L2(IR). Indeed, for
any / € L2(IR) and any finite sequence {j,k, we have

Hence, by choosing Cj,k = {j,k) for \j\ < N and \k\ N and allowing N to
approach infinity, we have

where the convergence is in L2(IR). That is, we have proved that is an o.n.
wavelet. Hence, by applying Lemma 5.1, we obtain (7.2.15), so that is a
scaling function. •

7.3. Construction of compactly supported orthogonal wavelets
In view of the relationship between the two-scale sequences {pk} and {qk}

as described by (7.2.18), in order to construct an o.n. wavelet , it suffices
to construct its corresponding o.n. scaling function . The objective of this
section is to describe a general procedure for constructing o.n. scaling functions
and wavelets with compact supports. For simplicity, we only consider real-
valued two-scale sequences {pk}- According to Theorem 7.5 and (5.2.13), all
we need is to identify those Laurent polynomials S(z), corresponding to any
given positive integer N, such that the conditions in (7.2.4)-(7.2.8) are satisfied.

More precisely, let N be a positive integer and consider

where S(z) is a Laurent polynomial satisfying S(l) — 1. Since any finite
Laurent series already satisfies (7.2.7), it suffices to identify those 5 that satisfy
(7.2.4) and

To translate the condition (7.2.4), which is imposed on P(z), into one that
directly governs S(z), we observe that since 5 is a Laurent polynomial with
real coefficients, \S(e-iw)\2 is a cosine polynomial; and hence, we may write

where R is some (algebraic) polynomial with real coefficients. As in (5.6.37),
the change of variables
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translates the condition (7.2.4) into

or equivalently,

According to (5.6.33) and (5.6.38), the general solution of (7.3.5) is given by

Let us summarize the above findings in the following, where

Lemma 7.14. Let S be any Laurent polynomial that satisfies both (7.3,2) and

for some odd polynomial TQ. Then the Laurent polynomial

where 5(1) is chosen to be 1, is the two-scale symbol of some compactly sup-
ported o.n. scaling function that generates an MRA of L2(IR). Consequently,

is a compactly supported o.n. wavelet.

Remark. If S satisfies (7.3.7), then by setting w; = 0, we have |S(1)|2 = 1. So,
the choice of S to satisfy S(1) = 1 is easily achieved. The family of all odd
polynomials R 0 ( X ) , \x\ |, in (7.3.7) gives us some freedom in the construction
of o.n. scaling functions. If choosing R0 = 0 does not violate (7.3.2), then the
corresponding scaling function has smallest support among those governed by
(7.3.7). In the following, we will see that, indeed, the condition in (7.3.2) is
satisfied by the choice R0 = 0.

We need the following identity.
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Lemma 7.15. For all k, n ZZ

Proof. This lemma is easily established by repeated applications of the identity

Indeed, we have

The following result is a corollary of Lemma 7.14.

Theorem 7,16. Let N be any positive integer and S(z) be any Laurent poly-
nomial with real coefficients that satisfies

such that S(l) = 1. Then the Laurent polynomial in (7.3.8) is the two-scale
symbol of a compactly supported o.n. scaling function , and , as defined by
(7.3.9), is a compactly supported o.n. wavelet.

Proof. By applying (7,3.10) with n = k — N — 1, we have

so that B < 2N-1 and (7.3.2) is satisfied. •

Thus, to construct compactly supported o.n. wavelets, the only technical
problem is to solve (7.3.11) for S(z}. The following result, known as the Riesz
Lemma, assures us that S(z) always exists. We will give a "constructive" proof
of this result in order to show how S(z) can be derived.
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Theorem 7.17. Let ao, • • •,a N IR with a N 0 such that

Then there exists a polynomial

with real coefficients and exact degree N that satisfies

Proof'. Corresponding to the cosine polynomial A(w>), let us consider the alge-
polynomial

Proof.
braic polynomial

It is clear that PA satisfies

and

Now, from the assumption that an 0, we see that PA(0} 0, and by (7.3.17),
it follows that all the zeros of PA occur in reciprocal pairs. In particular, any
zero on the unit circle must have even multiplicity. Furthermore, since the
coefficients of PA are real, all the complex zeros of PA also occur in conjugate
pairs. That is, PA can be written as

,
pairs. That is, PA can be written as

where r1, . . . , Tk IR\{0}, Z1, . . . , zJ € C\IR, and K + 2J = N. Therefore, in
view of the fact that



7, Orthogonal Wavelets and Wavelet Packets

we have, by applying (7.3.12), (7.3.16), (7.3.18), and (7.3.19),
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where z = e-iw'. So, the polynomial

has exact degree K + 2J = N and satisfies (7.3.14).

Remark. Observe that B(z] is not unique, since we may select any zero
from every reciprocal pair of zeros of PA(Z) to formulate B(z). In applying
Theorems 7.15 or 7.16, it is necessary to normalize B(z] so as to give 5(1) = 1.
In the following example, we will choose those zeros that do not lie in the open
unit disk, and note that the normalization constant must be — 1.

Example 7.18. Applying Theorems 7.16 and 7.17 with N = 1, we have

so that the nonzero coefficients in (7.3.12) are a0 = 4 and 01 = —1. Now, by
(7.3.15), we obtain

If we choose the zero outside the unit circle, then we have, by applying (7.3.20),
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Therefore, with the factor S(z) in (7.3.21), the two-scale symbol is given by

The scaling function with the two-scale symbol given by (7.3.22) is called
Daubechies' scaling function D3 (see (5.2.6)).

To facilitate our discussion, let us introduce the following notation.

Definition 7.19. For each integer N > 2, let SN(Z) denote the solution B(z),
as given by (7.3.20), of the equation (7.3.11), formulated by selecting from each
reciprocal pair of zeros of PA(Z), the one that has larger magnitude, normalized
such that B(l) = 1. Then the scaling function with two-scale symbol

will be denoted by DN+1 and will be called the Daubechies scaling function of
order N + 1.

Next, we shall study the order of smoothness of the compactly supported
o.n. Daubechies wavelets and their corresponding scaling functions Dm.

Definition 7.20. Let 7 > 0. A function f € L2(IR) is said to belong to the
class Cr if its Fourier transform f satisfies

In the following, we compare the class Cr with the class Lipwa, where
TO = [7] is the largest integer not exceeding 7 and a = r—m (see Definition 5.7).
For convenience, we set

Lemma 7.21. For any 7 > 0,

with m = [7] and a = 7 — m.

Proof, (i) Suppose 7 = 1. Then for each h > 0, we have
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Since
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we can apply the Lebesgue Dominated Convergence Theorem to obtain

Now, since w f(w) (IR), we have /' € C(1R).

(ii) If 7 is a positive integer, then (7.3.25) can be established by induction.

(iii) Let a = 7 - [7] > 0. Then for f <Cr it follows from (ii) that
f e Cm(IR), where m = [7]. Analogous to (7.3.26) and (7.3.27), we have

This implies that f(m) Lip a, or / € Lipma.

We are now ready to establish the following.

Theorem 7.22. There exists some positive number A such that dm+1, dm+1
Lip 'mam , am := Am — [ m ] , for all integers m 2.

Proof. For S = Sm, let the quantity in (7.3.11) be denoted by Tm. Then we
have, with y — sin2 (w/4),

Let us first observe that

and that

Hence, for 0 < y < 1/2, we have

m(y)Tm(4y(l - y))
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Also, for y 1/4(2 + \/2) or 4y(l — y] 1/2, we have

Finally, for 1/2 y < 1/4(2 + \/2) we have

These estimates now yield

Thus, it follows from (5.1.20) in Theorem 5.5, that

This exponent can be shown to be less than —1 for m 16. For m < 16, one
can estimate

directly to get

for some 77 > 0. An appeal to Lemma 7.21 now completes the proof of the
theorem. •

Remark. Let am be the "largest" value for which

The proof of this result is beyond the scope of this book.

7.4. Orthogonal wavelet packets
While the two-scale sequence {pk} of an o.n. scaling function contains

all the information on 0, the sequence {qk}> defined by

completely characterizes its corresponding o.n. wavelet . In what follows, let
us use the notation:
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and

Hence, the two-scale relations of the scaling function and its corresponding
wavelet are given by

or equivalent ly,

This new notation is intended to facilitate the introduction of the following
family of functions, called "wavelet packets". These functions give rise to o.n.
bases which can be used to improve the performance of wavelets for time-
frequency localization.

Definition 7.23. The functions mn, n = 2l or 21 + 1, £ = 0,1,..., defined by

are called "wavelet packets" relative to the o.n. scaling function p,Q = 0.

Thus, the family {n} is a generalization of the o.n. wavelet = . To
describe n, n ZZ+, via its Fourier transform, we need the dyadic expansion
of n € ZZ+, namely:

Observe that (7.4.6) is always a finite sum and that the expansion is unique.
Indeed, if 2 s - 1 < n < 28°, say, then we have n = 2s0-1 + n1 where 2s1-1
n1 < 2S1 and s1 < S0; and iterating this procedure, we obtain n = 2S°-1 +
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Theorem 7.24. Let n be any nonnegative integer and let the dyadic expansion
of n be given by (7.4.6). Then the Fourier transform of the wavelet packet n

is given by

Proof. The Fourier transform equivalence of the two-scale relations (7.4.5) for
the wavelet packets is given by

In view of (7.4.4), we may proceed to prove (7.4.7) by induction on n = 21 or
2l + 1. Suppose that (7.4.7) holds for all n with 0 n < 2S°, and consider
2S° < n < 2S°+1. From the discussion presented above, we have

so that

and

As usual, let [x] denote the largest integer not exceeding x, and observe that

Hence, from (7.4.8), we have

On the other hand, since

it follows from the induction hypothesis that

Therefore, by combining (7.4.10) and (7.4.11), we obtain (7.4.7)

Next, we show that wavelet packets preserve the orthogonality property
of the o.n. scaling function
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Theorem 7.25. Let be any o.n. scaling function and its corresponding
family of wavelet packets. Then for each n € ZZ,

Proof. Since satisfies (7.4.12), we may proceed to prove (7.4.12) by
induction. Suppose that (7.4.12) holds for all n where and
consider Then as in the proof of Theorem 7.24, by applying
(7.4.8) and (7.4.9), we have

Hence, by the induction hypothesis and Theorem 3.23, we obtain

where one of the following two identities

has been applied (see (7.2.4) and (7.1.3)).

The orthogonality property between the o.n. scaling function and
its corresponding wavelet extends to wavelet packets, as asserted
in the following theorem.
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Theorem 7.26. Let be any o.n. scaling function and its corresponding
wavelet packets. Then

Proof. Before we proceed, let us first record the identity

which is equivalent to the identity (iv) in Lemma 7.9. Hence, by applying
(7.4.8), (7.4.15), and Theorems 7.25 and 3.23, we obtain, for all j, k € ZZ and

7.5. Orthogonal decomposition of wavelet series
Let be a family of wavelet packets corresponding to some o.n. scaling

function For each consider the family of subspaces

generated by Recall that

where {Vj} is the MRA of L2(R) generated by is the sequence
of orthogonal complementary (wavelet) subspaces generated by the wavelet

Then the orthogonal decomposition

may be written as

In the following, we shall see that this orthogonal decomposition can be gen-
eralized from n = 0 to any n E ZZ+.
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Theorem 7.27. Let n be any nonnegative integer. Then

Proof. From (7.4.5) in Definition 7.23, it is clear that are
subspaces of Furthermore, by Theorem 7.26, we see that these two
subspaces are orthogonal to each other. So, it suffices to show that

holds for all m € 2Z.
To this end, we apply (7.4.5) to the right-hand side of (7.5.5) and simplify

the expression by using the identity (v) in Lemma 7.9:

This completes the proof of the theorem.

The importance of an o.n. wavelet is that it generates an o.n. basis
of L2(R) in such a way that for each j € ZZ, the sub-family
is not only an o.n. basis of

but is also a time-window for extracting local information (on both magnitudes
and locations) within the jth frequency band (or jth octave)

where is the RMS bandwidth of the wavelet (see Sections 3.2 and 3.4. and
particularly (3.4.1)-(3.4.5)). Observe that the width of the frequency band Hj
increases at higher frequency ranges. In the following, we will see that wavelet
packets have the capability of partitioning the higher-frequency octaves to yield
better frequency localization.
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Theorem 7.28. For each j — 1,2, . . . ,

Furthermore, for each family

Remark. By using the kth orthogonal decomposition in (7.5.7), the jth fre-
quency band Hj is further partitioned into 2k "sub-bands" :

Of course, the o.n. basis in (7.5.8) of provides time-localization within

the sub-band, and the union of the family

is all of Hj .

Proof. The proof of (7.5.7) is simply a repeated application of (7.5.4) in
Theorem 7.27, by setting n = 1 and recognizing that , That the

family in (7.5.8) is an o.n. basis of is a consequence of (7.5.1) and
(7.4.12) in Theorem 7.25. •

Remark. In view of the decomposition formula in (7.5.5), the decomposition
of any wavelet series

into an orthogonal sum of wavelet packet components
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(for any fixed value of can be formulated as a "tree", where each
branch of the tree has two sub-branches. The same decomposition algorithm
as given by (5.4.48) with

can be used for decomposition at each branch. Of course, this tree decomposi-
tion algorithm should be designed to be adaptive; and in particular, if certain
wavelet components are not as essential as others, then they should be made
to have fewer branches by selecting smaller values of k. For reconstruction,
the tree algorithm can be reversed by applying the reconstruction algorithm
(5.4.49) with weight sequences pn and qn — (—l)np_n+1 .

For the "finest" orthogonal decomposition, each k is chosen to be largest
possible; that is, the last formula in (7.5.7) is used.

Corollary 7.29. For each j = 0,1, 2 , . . . ,

Of course, the family

is an o.n. basis of L2(R).
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Notes

Chapter 1.
The standard reference for trigonometric series is Zygmund [9]. Other

books on Fourier series that were helpful to us in the preparation of Chapters 1
and 2 are Bari [1], Helson [5], Katznelson [6], and Stein and Weiss [7].

The simplest orthogonal wavelet is the Haar function studied by A. Haar
in [55]. The notion of integral wavelet transform (IWT), (W f)(b, a), was first
introduced by Grossmann and Morlet [54], although the techniques which are
based on the use of translations and dilations can be traced back to Calderon
[30] in the study of singular integral operators. The basic wavelet used to
formulate the IWT is also called a "mother wavelet" in the wavelet literature.
The formula for the recovery of any f e L2(R) from its IWT (W f)(b,a),
a, b € R, can be found in [54].

The importance of the semi-discrete IWT, (W f)(b, a), where 6 € R and
, in image compression was first pointed out by S. Mallat, and
the notion of dyadic wavelets was also introduced by Mallat in his joint work
with W.L. Hwang [60] and with S. Zhong [61, 62]. The stability condition on
dyadic wavelets studied in Mallat and Hwang [60] can be viewed as a gener-
alization of the Littlewood-Paley Identity. Inequalities of this type for frames
and wavelets were studied in Daubechies [50] and Chui and Shi [37], and in
particular, the identity was used by Chui and Shi [38] to characterize wavelets.

A general reference on signal processing is Oppenheim and Schafer [25],
and a mathematical analysis of the subject is given in Chui and Chen [24].
Other references that deal with certain specialized but related topics in signal
and image processing are Auslander, Kailath, and Mitter [22], and Rosenfeld
[26].

That an R-function is not necessarily an R-wavelet (or wavelet) was
already observed by Y. Meyer in the first volume in [21] and discussed by
Daubechies in some detail in [50], where the results of Tchamitchian [68, 69]
were used. The proof in this chapter was given by Chui and Shi in [37], fol-
lowing the ideas of Daubechies and Meyer.

The notion of multiresolution analysis (MRA) was first introduced by
Meyer [63] and Mallat [58], and further developed by Mallat in [57, 59]. It was
also Mallat [57-59] who constructed the wavelet decomposition and reconstruc-
tion algorithms using the MRA spaces. The presentation of these algorithms in
this chapter follows [40, 43] in that the normalization constant is absorbed
by the basis functions to facilitate implementations. We remark that there is
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some similarity between an MRA and the Laplacian pyramid algorithm due to
Burt and Adelson [29].

The most comprehensive work on cardinal splines is [14] by Schoenberg,
who was also responsible for the development of this subject. It was Meyer [63]
and Lemarie [56] who noted that cardinal spline spaces give rise to MRA, al-
though approximation theorists have also been considering subdivision schemes.
(See Chui [11] and the references therein.) Corresponding to the mth order B-
spline Nm, the mth order B-wavelet was introduced by Chui and Wang
[43]. The dual was also constructed in [43] in terms of the mth

derivative of the shifted and scaled fundamental spline of order 2m introduced
by Chui and Wang in [40].

A predictor-corrector algorithm can be devised to implement an IIR filter
as an ARMA filter with poles lying both inside and outside the unit circle.
Such algorithms can be optimized by incorporating them with noise processes
(see Chui and Chen [23]). This procedure should apply to spline-wavelet de-
compositions without truncations.

Chapter 2.
There are many good references on Fourier transforms in the literature.

The ones that were helpful to us in the preparation of Chapter 2 are Goldberg
[4] and Titchmarsh [8].

Since functions in Lp(R) or L p (0 ,2) are considered to be "equivalence
classes" of functions, we are allowed to change the functions on sets of mea-
sure zero. In particular, in the statements of pointwise convergence, we always
mean convergence to some representative of the equivalence class under con-
sideration.

Again, the books [1, 5, 6, 7, 9] on harmonic analysis are good sources
for further reading. This subject has a very rich history. We only include a
very brief discussion on the development of pointwise convergence here. As
early as 1876, du Bois-Reymond already showed the existence of a 2-periodic
continuous function whose Fourier series diverges at some point. From this
result, it is not difficult to prove the existence of a 27-periodic continuous
function whose Fourier series is divergent on a dense subset of the real line R.
In 1923, Kolmogorov extended this observation and showed that the Fourier
series of some 2-periodic continuous function may diverge almost everywhere.
Three years later, he even extended this result and proved the existence of some

with an a.e. divergent Fourier series. On the other hand, in 1966,
Carleson proved that if f e £ 2 (0 ,2 ) , then its Fourier series converges a.e. This
very deep result was extended by Hunt in 1967 to every

A somewhat extensive discussion of the Poisson Summation Formula is
given in this chapter because several variations of this formula are used through-
out this book.
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Chapter 3.
The window Fourier transform was first introduced by Gabor [53] by using

a Gaussian function as the window function. This is why it is also called
the Gabor transform. In the engineering literature, this windowing process,
which is not restricted to the use of a Gaussian function, is called a short-time
Fourier transform (STFT) as well. See Daubechies [20, 50], Mallat [57], some
of the chapters in the edited volumes [16, 17, 18, 19] and the lists of references
therein. The reader is also referred to the same sources for material concerning
the use of the standard deviation to define the radius, and hence width, of a
window function as well as for discussions on the Uncertainty Principle. As
mentioned earlier, when we refer to a function in £P(R), we actually mean a
representative of an equivalence class of functions which are identical except on
sets of measure zero. In particular, we always use a continuous representative
as a window function whenever it is available. See also Champeney [2] for
further discussions and references from the harmonic analysis point of view.

As mentioned in the notes for Chapter 1, the IWT was introduced by
Grossmann and Morlet [54], where the admissibility condition (3.3.1) on the ba-
sic wavelets (also called the mother wavelets) was imposed. The semi-discrete
version of the IWT has proved to be very useful in Mallat's work on image
compression, first using zero-crossings and later using wavelet maxima (or lo-
cal extrema) of the IWT on dyadic scale-levels. See the work of Mallat and
Zhong [61, 62] and Mallat and Hwang [60]. In this regard, the stability condi-
tion (3.4.6) is crucial to the inversion formula (3.4.14) introduced in Mallat and
Hwang [60]. The characterization of dyadic duals using the Littlewood-Paley
identity is given in Chui and Shi [38].

The notion of frames was introduced by Duffin and Schaeffer [51] and
studied in some detail by Daubechies [20, 50]. Example 3.18 is also attributed
to Daubechies. The Interior Mapping Principle used in our discussion on the
boundedness of the inverse map generated by the frame is standard in oper-
ator theory (see Vol. 1, page 57, of Dunford and Schwartz [3]). The stability
property (3.5.18) of a frame was derived in Chui and Shi [37]. We also remark
that Frazier and Jawerth [52] used dilation and translation in their work on

transforms.
Semi-orthogonal wavelets were introduced independently by Auscher [27]

and Chui and Wang [40, 41, 43], while semi-orthogonal cardinal spline-wavelets
were first constructed by Chui and Wang in [40, 43]. The orthonormalization
procedure in (3.6.18) is due to Schweinler and Wigner [66] and is therefore
called the Schweinler-Wigner o.n. procedure.

Chapter 4.
Spline analysis is an established subject. The reader is referred to de Boor

[10], Nurnberger [13], Schoenberg [14], and Schumaker [15] for the univariate
theory, and to Chui [11] for a multivariable investigation. A spline function
with equally spaced (simple) knots is called a cardinal spline, and the reader is
referred to Schoenberg [14, 65] for further study. In particular, the structure
of Euler- Frobenius polynomials is documented in [14, 65],
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The graphical display algorithm (Algorithm 4,7) introduced in Section 4.3
is an iteration of a standard subdivision scheme. It is presented here in order to
motivate the introduction of the (wavelet) reconstruction algorithm in Chapter
5. The cardinal B-spline B-net algorithm (Algorithm 4.10) is the one-variable
version of the box-spline graphical display algorithm developed in Chui and
Lai [36].

The notion of quasi-interpolation is due to de Boor and Fix (see de Boor
[10] and Schumaker [15]). The Neumann series approach was first introduced
by Chui and Diamond in [35], where Theorem 4.13 was established. The char-
acterization of quasi-interpolants presented here (see (4.5.35)-(4.5.36)) was
given by Chui and Diamond [33]. The theory of interpolation by cardinal
splines was developed by Schoenberg (see Schoenberg [14, 65]). The con-
struction of local interpolation formulas presented in Section 4.6 by taking
a "Boolean sum" of a completely local interpolation operator and a quasi-
interpolation operator was introduced by Chui and Diamond in [34]. A tutorial
study of this topic is given in Chui [32], and in more generality, in Chui [31],

Chapter 5.
The notion of multiresolution analysis (MRA) was first introduced by

Meyer [63] and Mallat [58], and further developed by Mallat in [57, 59]. The-
orems 5.5 and 5.6 are due to Cohen [44]. The result on the support of a
scaling function being given by the length of its two-scale sequence is due to
Daubechies [49], and the scaling function defined in (5.2.6) was also given in
[49]. The characterization of minimally supported scaling functions in terms
of the non-existence of symmetric zeros was given by Chui and Wang [41],
where the notion of generalized Euler-Frobenius (Laurent) polynomials was
introduced and their properties, such as those in Theorem 5.10, were stud-
ied. The fact that the mth order B-spline is the only function that generates
the MRA and has a finite two-scale sequence was also proved in [41].
The presentation of the direct-sum decomposition in Section 5.3 seems to be
new, and the approach in Section 5.4 is a generalization of the work of Cohen,
Daubechies, and Feauveau in [46]. In particular, the criterion (5.4.11) in Theo-
rem 5.19 is new. The duality principle for spline-wavelets and, more generally,
semi-orthogonal wavelets, was introduced in Chui and Wang [43] and [41], re-
spectively, and the nonorthogonal (or biorthogonal) version is again found in
Cohen, Daubechies, and Feauveau [46].

As mentioned earlier, wavelet decomposition and reconstruction algorithms
were constructed in Mallat [58]. The formulation here follows [40, 43]. The
importance of linear phase in filtering and the relation between linear phase
and symmetry are well known in the engineering literature (see Oppenheim
and Schafer [25]). Our discussion in Sections 5.5 and 5.6 is an extension of the
results of Chui and Wang in [41].

The general solution of (5.6.39) of the dual relation (5.6.17) was given
in Daubechies [49] for the orthonormal setting, and in Cohen, Daubechies,
and Feauveau [46], in general. Compactly supported wavelets with compactly
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supported duals that meet the linear-phase requirement were also constructed
by Cohen, Daubechies, and Feauveau in [46]. The filter bank approach was
considered by Vetterli and Herley [70].

Chapter 6.
The interpolatory spline-wavelets given in Theorem 6.1 are due to Chui

and Wang [40], and the identification between the MRA subspaces
with the wavelet spaces was introduced in Chui and Wang [39]. The
compactly supported cardinal spline-wavelets (or B-wavelets) given in (6.2.5),
together with their duals in (6.2.10), were introduced by Chui and Wang in
[43]. However, the presentation in Section 6.2 is quite different in that it makes
use of the more general result, Theorem 5.19, from Chapter 5. The Pascal
triangular algorithm (PTA) for computing B-wavelets and their derivatives
was introduced in Chui and Wang [42].

The presentation of properties of the Euler-Frobenius polynomials follows
Schoenberg [65], while the material on error analysis in spline-wavelet decom-
position is taken from Chui and Wang [42]. The most comprehensive reference
on total positivity is Karlin [12], and additional information on Polya frequency
(PF) sequences can be found in Schoenberg [14]. Theorem 6.21 on certain lin-
ear PTA's producing PF sequences was proved in Chui and Wang [39], where
the notion of complete oscillation was first introduced and its relation to zero-
crossings explored.

Chapter 7.
The first nontrivial wavelet was constructed by Stromberg [67], using

spline functions. The Meyer wavelets [64], as studied in Example 7.3, are
o.n. wavelets with compactly supported Fourier transforms. The o.n. spline
wavelets given in Example 7.1 are usually called the Battle-Lemarie wavelets,
since they were constructed independently by Battle [28] and Lemarie [56] using
different methods. However, none of these o.n. wavelets has compact support.
Based on the structure of MRA, Daubechies [49] was the first to construct
compactly supported o.n. wavelets. Hence, her construction was based on the
identification of o.n. scaling functions as discussed in Section 7.2, although the
presentation there is somewhat different from that in [49]. The construction of
the Daubechies wavelets also depends on the Riesz Lemma as stated in Theo-
rem 7,17. Theorem 7.22 was also proved by Daubechies [49], while the result
stated in (7.3.28) was established by Cohen and Daubechies in [45].

Wavelet packets, also called "wave packets" by Coifman and Meyer, were
introduced in Coifman, Meyer, Quake, and Wickerhauser [47]. See also Coif-
man, Meyer, and Wickerhauser [48] for further information.
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Appendix

In order to be able to implement the wavelet decomposition and recon-
struction algorithms as described by (5.4.48) and (5.4.49), we need the weight
sequences {ak}, {bk}, {pk}, and {qk}• Besides, the reconstruction (or two-scale)
sequences {pk} and {qk} can be used to graph the scaling function and
wavelet (see (5.2.11), (5.2.14)-(5.2.17), and (5.3.4)). In what follows, we

as given in (6.3.3)-(6.3.4), are particularly simple, and their decomposition
sequences

can be computed by using (6.5.1)-(6.5.2). Since these sequences are symmetric,
it is sufficient to compute half of the values. More precisely, we have

for all k E ZZ. In practice, particularly in cardinal spline interpolation, linear
and cubic splines are used most frequently. We therefore give the values of

A.1 and A.2. The reader is reminded to refer to (A.1) and (A.2) for the other
"half" of the sequences.
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k
1
2

3
4

5
6
7

8
9
10
11
12
13
14
15
16
17
18
19
20

21

m

at
0.683012701892

0.316987298108

-0.116025403784

-0.084936490539

0.031088913246

0.022758664048

-0.008330249198

-0.006098165052

0.002232083545
0.001633998562

-0.000598084983

-0.000437828595

0.000160256388

0.000117315818

-0.000042940569

-0.000031434679

0.000011505891

0.000008422897

-0.000003082990

-0.000002256905

0.000000826079

= 2

bk+1
0.866025403784

-0.316987298108

-0.232050807569

0.084936490539

0.062177826491

-0.022758664047

-0.016660498395

0.006098165652

0.004464167091

-0.001633998561

-0.001196169967

0.000437828595

0.000320512777

-0.000117315818

-0.000085881139

0.000031434678

0.000023011782

-0.000008422897

-0.000006165980

0.0000022569054

0.0000016521587

m

04+1
0.893162856314

0.400680825467

-0.282211870811
-0.232924626134

0.129083571218

0.126457446356

-0.066420837387

-0.067903608499

0.035226101674

0.036373586989

-0.018815686621

-0.019473269356

0.010066747520

0.010424052187

-0.005387929819

-0.005579839208

0.002883979478

0.002986784625

-0.001543728719

-0.001598768083

0000826326663

= 4

bk+4

-1.475394519892

0.468422596633

0.742097698477

-0.345770890775

-0.389745580800

0.196794277304

0.207690838380

-0.106775803373

-0.111058440711

0.057330952254

0.059433388390

-0.030709700871

-0.031811811318

0.016440944687

0.017028029466

-0.008800839839

-0.009114745138

0.004710957034

0.004878941541

-0.002521687975

-0.002611601542

Table A.1. Spline-wavelet decomposition sequences.

1

9

3

4

5

6

m

Pk
2
2
1
2

qk+l

20
4!
12
4!
2
4!

m

Pk+1
6
8
4

1
8

= 4

qk+4
24264

8!
18482

8!
7904

8!
1677

8!
124

" 8!
1
8!

Table A.2. Reconstruction (or two-scale) sequences.
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Preface

Wavelet Toolware is a companion software package to the book An
Introduction to Wavelets by Charles K. Chui. It is designed for the
reader to gain some hands-on practice in the subject of wavelets. The
objective is to provide basic signal analysis and synthesis tools that are
flexible enough for the reader to easily increase the capability of the
Toolware by adding processing algorithms to tailor to specific areas of
application. Wavelet Toolware contains, among other algorithms and
codes, the one-dimensional (1-D) and two-dimensional (2-D) Discrete
Wavelet Transforms (DWTs) and their inverse transforms, as well as
computations of the Continuous Wavelet Transform (CWT) and the
Short Time Fourier Transform (STFT). Simple signal processing appli-
cations are also included for reader to practice with the software.

This manual for Wavelet Toolware leads the reader through the ba-
sics of wavelet theory and shows how it can be applied to a number of
engineering problems. It is organized into three major divisions. Part
I concerns the basics of wavelet theory, and readers should get a very
fundamental understanding of the development of the theory and gain
appreciation of the time-frequency (or time-scale) representation of sig-
nals. Part II contains several major algorithms that correspond to the
topics discussed in Part I. In most cases, the algorithms are outlined
in procedural steps. Finally, Part III provides hands-on practice with
the Wavelet Toolware. It contains many practice sections ranging from
installation of the software to denoising of images.

This manual is designed to be self-contained for the reader who is
unfamiliar with wavelet theory but wants to gain a basic understanding
and the usage of wavelet theory. After thoroughly studying this man-
ual and practicing with the Toolware, readers should be able to apply
the basic aspects of wavelet analysis to problems of their respective
disciplines.

Andrew K. Chan College Station, Texas
Steve J. Liu February 13, 1998
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1.1. FROM FOURIER ANALYSIS TO WAVELET ANALYSIS 1

1.1 From Fourier Analysis to Wavelet Analysis

Before the work of Haar [1], a continuous function (or an analog signal)
f ( t ) was represented either by an entire series (polynomial basis) or
by a Fourier series (sinusoidal basis). Since both bases functions have
infinite time duration (—00 < t < oo), it is awkward to use any of
these bases to represent finite time-domain (transient) signals. Haar's
work demonstrated that a continuous function can be approximated
arbitrarily closely by an orthonormal basis with local support (the Haar
basis). Since then, mathematicians have constructed various new bases
to represent a variety of analog functions.

During the past three decades, signal processing has grown to be-
come a major discipline in engineering and computing science. Since
most finite energy signals, either natural or otherwise, are transient (or
nonstationary) in nature, it is most natural and effective to represent
these signals by localized finite-energy bases. Because wavelets belong
to this class of bases, the development of wavelet theory and its applica-
tions to signal processing in various engineering disciplines has gained
tremendous popularity in recent years.

Fourier analysis has been the major mathematical tool for signal
representation and processing for at least the past 50 years. The dis-
crete version of this approach, called Fourier series, breaks down a given
signal into sinusoidal functions with different harmonics of the funda-
mental frequency. Since sinusoidal signals are periodic signals, Fourier
analysis is an excellent tool for analyzing this class of signals. How-
ever, it is inefficient for representing transient signals. Recall that the
definition of the Fourier transform of an analog function f ( t ) is defined
by

It is easy to show that if f ( t ) is replaced by a delta function 6(t — to) at
t = to, then the Fourier transform (or spectrum) becomes a sinusoidal
function e-wto = costouj — j sin tow. Hence, it takes an infinite number
of frequencies to represent a signal that exists at only one point in the
time domain. On the other hand, if the function to be analyzed is
a sinusoidal function of a single frequency, the spectrum is a delta
function. A careful study of this consideration leads to discrete Fourier
analysis. Discrete Fourier analysis is very efficient for studying global
periodic function. However, for transient signals, such as music, image,
speech, acoustic noise, seismic signals, thunder, and lightning, it is
more efficient to represent these signals by localized finite energy bases.
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Other drawbacks of the Fourier analysis include the following:

1. The Fourier transform can be computed for only one frequency at
a time.

2. Exact representations cannot be computed in real time.

3. The Fourier transform provides information only in the frequency
domain, but none in the time domain.

1.2 Short-Time Fourier Transform

Fourier analysis, being unable to provide localized time and frequency
information simultaneously, becomes the most serious drawback for pro-
cessing of transient signals. In order to gain information from both time
and frequency domains simultaneously, engineers have used the Short-
Time Fourier Transform (STFT) to accomplish their goal, even if only
approximately.

The STFT is formally defined by the integral transform

where the overbar indicates complex conjugation. The function w(t)
is called the window function to be chosen by the user. This is the
reason that the STFT is also sometimes called the Windowed Fourier
Transform (WFT). The variables ( t , w ) are the transform variables
from the single time domain variable t. Hence, the STFT transforms
a one-variable function into a two-variable function. It provides time-
frequency information of the function f ( t ) on the time-frequency (t-f)
plane. The complex spectrum of S T w f ( t , u j ) gives approximated spec-
tral properties of the function near the time location t. It is only an
approximation, since the expression in (1.2) is the Fourier transform of
the product of the functions f ( t ) and w(T — t). In other words, (1.2)
gives the spectrum of the product function f(r}w(r — t) instead of the
function f ( T ) alone. Even if the window function w(t) is a rectangu-
lar window with unit amplitude and f ( T ) is a pure sinusoidal function
cos(wot)5 the transform of the product f ( t ) w ( T — t) is not just a delta
function in the spectrum. Rather it is the convolution of the delta
spectrum with the sine function spectrum of the rectangular function.
This broadening of the delta function dwj — wo) to a sine (a; — wo) func-
tion represents the effect of the truncation due to the window function.
We call that a windowing effect on the function /(T). We will see in
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later sections that the accuracy of the information on the t-f plane is
controlled by the widths of the window in time and frequency domains.
In addition, the uncertainty principle governing the area of the window
in the t-f plane places a limit on the resolution that one can achieve
using STFT.

The spectral domain equivalent of (1.2) comes from the Paseval iden-
tity, which gives

Expression (1.3) indicates that the time-domain windowing process is
also a spectral-domain windowing process. It provides information on
the spectral energy of the signal near the center of the window.

The original signal f ( t ) can be recovered from the STFT uniquely.
Hence the STFT is a unique transformation. The recovery formula for
the STFT is given by

where \\w\\ is the norm of the function that will be defined in the next
section.

1.3 Window Measures

In order to make an intelligent choice of a window function for the
STFT, some measures of "goodness" must be established to evaluate
the suitability of the window function. Engineering measurements such
as the main lobe zero-crossing and the 3db points do not gauge the
concentration of energy of the function. In the wavelet literature, the
RMS width of the function is used to measure energy concentration in
the time and frequency domains. These measurements are explicitly
expressed respectively as
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and

Here, the usual definition of the energy norms

applies to these formulas. The measurement Aw is considered as half
of the time-domain window width, which measures the concentration
of energy in the window. A smaller window width means more energy
is concentrated in a smaller area. One may use a small time window
width to deduce the fine structure of a signal. On the other hand, Dw+

is the measurement of energy concentration in the spectral domain. In
addition, t* and w* are the centers of gravity of the window in the
time and spectral domains, respectively. If w(t) is real and even, and
the average value of the function is zero, then w(w) is also symmetric
with respect to the origin and w(0) = 0. In this case, the integration in
the frequency domain expression extends only from 0 to oo, and by the
definition of (1.8), a;* is located on the u;-axis other than the origin. In
general, one must compute the window widths numerically, since most
of the window functions we are considering in this manual may not be
described analytically.

We can easily see that the window area of the STFT in the t-f plane
is given by

The center of the window is located at (t + t*,w + w*) on the t-f
plane where t is the time parameter being considered. Once we have
chosen the window function w ( t ) , the window widths 2 Dw and 2 Dw
are fixed everywhere in the t-f plane since they are independent of t
and (jj. This effect is demonstrated on the t-f plane as given in Fig
1.1. This characteristic presents a distinct disadvantage of the STFT
since it creates difficulty in accurately processing signals with a time-
dependent spectrum, such as a chirp signal. In order to achieve a high
degree of accuracy, the STFT must be repeatedly applied to the signal
with a varying window width each time.
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w)

A

Figure 1.1: STFT windows

1.4 What Is a Wavelet?

Wavelets are finite-energy functions with localization properties that
can be used very efficiently to represent transient signals. Efficiency
here means only a small finite number of coefficients are needed to rep-
resent a complicated signal. In contrast with the sinusoidal functions of
infinite extent (big waves), "wavelet" implies a "a small wave." Strictly
speaking, it also means mathematically that the area under the graph
of the wavelet u ( t ) is zero, i.e., f-u(t)dt = 0. In the spectral do-
main, this property is equivalent to -0(0) = 0, i.e., the spectrum of the
wavelet has a value of zero at w = 0. In engineering terms, the wavelet
has no d-c offset. This spectral-domain behavior makes the wavelet a
bandpass filter. The reader can use the Toolware to generate the graph
of any wavelet listed in the Part III by following the instructions given
later in this manual.

It is easy to see from any wavelet and its spectrum that the energy
of the wavelet is concentrated in a certain region of both the t- and uj-
axes. This localization property is an important feature of the wavelets.
If a wavelet is more localized (that is, the energy of the wavelet is
concentrated in a smaller region), it produces a better representation
of the signal in the time-frequency (or time-scale) plane. In our case,
"better" means higher resolution and requires less coefficients in the
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D2 scaling function (scale=1)

D2 scaling function (scale=1/2)

D2 scaling function (scale=1/4)

1

Figure 1.2: The scaling functions of the Daubechies-2 wavelet at three different
scales

representation.

1.4.1 Wavelets at different resolutions (scales)

For a given wavelet u ) ( t ) , a scaled and translated version is designated
by

The parameter a corresponds to the scale while b is the translation
parameter. The wavelet u01(t) = u ( t ) is called the basic wavelet (or
mother wavelet). The Daubechies D2 scaling function at three different
scales is shown in Fig 1.2.

It is important to note that the shape of the wavelet remains the
same under translation and scaling. We will show below that with the
proper choice of (6, a), the set of wavelets ba(t) constitutes the basis
functions of a Reisz (or stable) basis in the L2 (or finite-energy) space.
Keeping this concept of basis in mind, we will show that the idea of
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wavelet signal processing is not much different from that of Fourier pro-
cessing, at least when "orthonormal wavelet" are considered. Instead
of decomposing a signal into sinusoidal functions of different frequen-
cies (the Fourier basis), wavelet signal processing seeks to decompose
a transient signal into a linear combination of a scaled and translated
version of the basic wavelet (the wavelet basis).

1.5 Continuous Wavelet Transform

The continuous (integral) wavelet transform (CWT/IWT) of a signal
x(t) is a linear transform defined by the integral

/

The last expression of (1.13) represents the inner product of two
functions, denned in the L2 space by

Referring to (1.13), the CWT computes, via the inner product formula,
the wavelet coefficient of x(t) associated with the wavelet u b a ( t ) . This
coefficient indicates the correlation between the function x ( t ) to the
wavelet u b a ( t ) . Higher correlation produces a larger coefficient. An
example of the CWT is shown in Fig 1.3.

For the sake of comparison, we write the STFT in the inner product
form as

One immediately sees from (1.13) and (1.15) that the difference be-
tween CWT and STFT is that the kernels for these two transforms are
different. CWT and STFT are interchangeable if we switch
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Figure 1.3: The graphical display of the CWT coefficients of a voice signal

We remark here that the basis function w(t — b)ejwt is a sinusoidal
function at a single frequency modulated by the window function w(t).
The window widths are fixed independent of b and u. Based on the
window measures discussed earlier in this manual, the window area in
the t-f plane for the wavelet at a given scale a is given by

We see clearly that the window area of the wavelet remains the same,
namely, 4DwDw. However the time and spectral window widths are
dependent on the scale a. (See Fig 1.4.) If a becomes large (i.e., at
low frequency), the window width in the time domain is large while
the window width in the spectral domain becomes small. This is the
case in processing signals in fine resolution in the spectral domain while
the time-domain resolution is coarse. For processing of a signal at low
frequency, one should use wavelets with a large scale.

Although there are striking similarities between the STFT and the
CWT, their results in signal processing are quite different. One must
compute the STFT of a broadband signal on the t-f plane for several
sizes of the same window to capture the high- and low-frequency char-
acteristics of the signal. However, one only needs to compute the CWT
once to detect both the high- and low-frequency events in the signal.
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Figure 1.4: Window widths for wavelets

The original signal is uniquely recovered by the double integral

where C$ is a finite constant given by the integral

1.6 Multiresolution Analysis

We have shown that the CWT has a unique advantage because its win-
dow widths can be controlled by the scale parameter a. However, we
also see that the computation load of the CWT is quite heavy in order
to capture all the characteristics of the signal. To alleviate this compu-
tational burden, mathematicians have developed the Discrete Wavelet
Transform (DWT) to minimize the redundancies existing in CWT. Al-
though the algorithm of DWT is identical to that of the two-channel
filter bank analysis, the underlying meanings of these algorithms are
different. We will point out these differences in later sections.

The most important feature of multiresolution analysis (MRA) MRA
is the ability to separate a signal into many components at different
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scales (or resolutions). For a specific choice of the scaling parameter
(such as a = 2J, j E Z), the decomposition algorithm is equivalent to
putting signal components into successive frequency octaves. Similar to
multiband signal decomposition, the goal here is to apply the "divide
and conquer" strategy on the signal so that individual components may
be processed by different algorithms. We present here the essence of
the MRA by considering the properties of the approximation subspaces
and the wavelet subspaces.

Approximation subspaces

A function ( 0 ( t ) L2, called a scaling function (or an approximate
function), generates a nested sequence of subspaces (approximation
subspaces) {Vj} of L2 such that

and satisfies a dilation (refinement) equation

for some a > 0, a 1, and some coefficient sequence {pk} E I2. For
the DWT to be discussed in some detail later, we will consider a = 2
that corresponds to a dyadic octave scale in the spectral domain. More
precisely, V0 is generated by {0 — k) : k E Z}. In general, Vn is
generated by {0(2n • —k) : k E Z}. The symbol (•) stands for the
dummy variable.

Wavelet subspaces

Let the subspace Vn constitute an orthogonal sum (for which we use
the symbol 0)of mutually orthogonal subspaces Wj of L2 as

Then

The subspace Wn (the wavelet subspace) is said to be the orthogo-
nal complementary subspace of Vn in Vn+i. This relationship is best
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Figure 1.5: Approximation subspaces and wavelet subspaces

described by Fig 1.5. We should take note of the following two obser-
vations:

1. Subspaces {Vj} are nested.
2. Subspaces {Wj} are mutually orthogonal.
Mathematically, they are expressed by

The subspaces {Wn} are generated by some function u(t) called a
"wavelet," in the same way as {Vn} are generated by 0 ( t ) . In other
words, any function fj(t) £ Vj can be written as

and any function gj(t) E Wj can be written as
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for some coefficient sets {cj,k} 7 and { d j k } in l2. Here we have
adopted the notation

We may restate here that a function f ( t ) can be decomposed into many
components such that

where the function fM(T) is the approximation of /(t) from the space
VM- For example, if a signal is sampled at the rate of 256 samples per
second, we may represent the signal by

This signal can also be represented by

1.6.1 Two-scale relations

The equation in (1.21) expresses the relation of a basis function between
two different scales. The two-scale relation formalizes this relationship
mathematically. Since

we can write ( 0 ( t ) and u ( t ) in terms of the bases that generate V1. In
other words, there exist two sequences {pk} and {qk} E L2 such that

In general, for any j 6 Z, the relationships between Vj,Wj and
are governed by the two-scale relations
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Figure 1.6: Daubechies D2 scaling function

These formulas of the basis function sets { 0 ( 2 j t ) } and {u(2J't)} are
built up by a linear combination of o(2J+1t). For a given {pk} sequence,
the relations (1.36) and (1.37) can be graphically describable. We use
the scaling functions of Daubechies (D2) and the cubic spline as exam-
ples. The two scale relation is graphically displayed in Fig 1.6 and Fig
1.7.

1.6.2 Decomposition relation

The relations (1.36) and (1.37) are often referred to as the reconstruc-
tive relations. The decomposition relation is for separating a signal into
components at different scales. The subspace relation in an MRA

indicates that there exists a relation between the basis functions in these
subspaces. Since o ( 2 t ) and o(2t — 1) are two distinct basis functions in
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Figure 1.7: Cubic B-spline

j+i, there exist two sequences {ak} and {bk} in I2 such that

Writing these relations in their generalized form, we have

for all l E Z. For an arbitrary resolution level j, this relation becomes

There exists a definite relationship between the two-scale sequences
{pk},{qk} and the decomposition sequences {ak},{bk}. We will con-
sider these relations when different types of wavelets are discussed.
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1.6.3 Development of the decomposition and reconstruction
algorithms

The decomposition (analysis) and reconstruction (synthesis) algorithms
are the most often-used algorithms in wavelet signal processing. As
mentioned earlier, the idea consists of simply dividing the signal into
components so that each component may be processed with a differ-
ent algorithm. The important issue of this algorithm is to be able to
reconstruct the signal perfectly if we apply all-pass filters on all signal
components. These algorithms are based on the two-scale relations and
the decomposition relation as developed in the previous sections. We
rewrite these relations here for convenience.

Let

Since the MRA requires that

we have

We substitute the decomposition relation (1.40) in (1.46) and inter-
change the order of summations. Comparing the coefficients of (f)j,k(t)
and U7,j,k(t), we obtain

where the right sides of (1.47) and (1.48) correspond to a down-sample
after convolution. These formulas relate the coefficients of the scaling
function from a given scale to the scaling function and wavelet coeffi-
cients at twice the given scale.
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Figure 1.8: Decomposition and reconstruction

The reconstruction algorithm is based on the two-scale relations.
When we sum the functions at the jth resolution, we have

We substitute the two-scale relations into (1.49) to yield

Again, we compare the coefficents of O j + i k ( t ) on both sides of (1.50)
to yield

where the right sides of the equations correspond to an up-sampling
before convolution. We use a block diagram (Fig 1.8) to illustrate the
procedure of these algorithms.

1.6.4 Mapping of functions into the approximation space

Before we go on any further on the extensions of the decomposition
and reconstruction algorithms, we first need to show how to obtain the
scaling function representation of an input data. That is, for a given
input signal s ( t ) , we wish to find the representation

where,k are the input scaling function coefficients to be processed.
Many users of wavelets have used the sample (discretized) values of
s(t = £) as the input. We want to stress the fact that in general,
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If we require s(k/2j) = Sj(k/2j), then the two sides of (1.53) are equal to
each other only if the scaling function is interpolatory, such as first-
order B-spline that corresponds to the Haar wavelet and the linear B-
spline. It is therefore advisable to obtain cj,k from the sample data s(t =
k/2j) before applying the decomposition algorithm. In the following, we
consider the orthogonal projection of s(t) onto the Vj space.

Assuming Vj is a subspace of L2 and s(t) E L2, we wish to find Sj(t)
E Vj as an approximation to s ( t ) . Write

and consider Sj(t) to be the orthogonal projection of s(i) onto the
subspace. Then, s(t) — Sj(t) is orthogonal to Vj so that

In matrix form this equation becomes

where

is the autocorrection sequence of the scaling function. If the scaling
function is compactly supported, the corresponding autocorrelation ma-
trix in (1.57) is banded with a finite number of diagonal bands. Also,
if the scaling function forms an orthonormal basis, then

If we have only the sample values of the signal s
to approximate the integral in (1.56) by a sum

s(t — k/2j), we have
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This demonstrates the difference between the coefficients of the scal-
ing function series and the sample values of the signal. The former
is used in wavelet signal processing (analog processing in the time do-
main, since the coefficient sequence of the scaling function series and
the wavelet series are to be processed), while the latter is used in filter
bank processing (digital processing in the frequency domain).

1.7 Types of Wavelets

In the preceding discussions of the approximate subspace and wavelet
subspace, the basis functions that span the subspace can have orthonor-
mal, semi-orthogonal, or biorthogonal bases. There are conditions to be
satisfied by each type of basis. We will state these conditions separately
as follows.

1.7.1 Orthonormal wavelet bases

Orthogonality of functions depends on the definition of the inner prod-
uct in that vector space. We have used the inner product defined in
the L2 space. Two different functions are orthogonal to each other if
the inner product of these functions is zero. That is,

If we take g(x) = /(x), and

we say that the function f ( x ) is normalized. Hence, if the set of basis
functions , 0j ' E Z spans an approximation space Vj and satisfies
the condition

it is a normalized orthogonal set, or, for short, an orthonormal set.
This definition applies to the wavelet subspace as well. A wavelet is
said to be orthonormal if the set of basis functions uj,k = 2j/2 u(2-7:r — k)
satisfies
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Since the wavelet subspace and the approximation subspace are orthog-
onal, we have

Notice that the relationships in (1.63) to (1.65) are all referred to the
same level of resolution. The relationships between wavelets at different
resolution levels are also orthogonal. That is,

Examples of the orthonormal wavelet basis include the Haar wavelets,
the Daubechies orthonormal wavelet bases of all orders, the Meyer
wavelets of all orders, and Battle-Lemarie orthonormal spline wavelets
(not compactly supported). We note here that both Meyer and Battle-
Lamarie wavelets are not compactly supported (finite time duration).

Decomposition and resconstruction sequences

The relations between the decomposition sequences {a^} , {b^} and the
reconstruction sequences {pk} , {q^} are the simplest for an orthonormal
basis. For perfect reconstruction of the signal, we may use the following
relations:

Once the pk sequence has been found through the construction of the
two-scale relation of the scaling function, the other sequences are de-
termined.

1.7.2 Semi-orthogonal wavelet bases

In the case of cardinal B-spline functions of orders higher than 1 and
their corresponding compactly supported spline wavelets, the integer
translates of the scaling functions, i.e., B-splines, as well as the B-
wavelets are not orthogonal. That is,
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However, the orthogonality between the scaling function Nm and the
B-wavelet U>Nm , as well as translates of wavelets at different resolutions,
is still preserved. In this case, the compactly supported spline wavelet
is called a semi-orthogonal wavelet. In order to facilitate efficient com-
putations of the expansion coefficients in the approximation spaces or
the wavelet spaces, a dual scaling function 0 and a dual wavelet Ui can
be found to satisfy the biorthogonality relation

where 0 = Nm and u = u N m have been used in these two equations.
We remark here that both the dual scaling function (the dual B-spline)
and the dual spline wavelet are both functions in the spline space of the
same order. Hence, these duals can be expanded into B-spline series of
the same spline order. We will show in later sections how to use these
relations to map coefficients between wavelet spaces and dual wavelet
spaces.

Decomposition and reconstruction sequences

The sequences for the two-scale relations in the mth order spline space
are

The two-scale relations for the dual spline and dual wavelets are slightly
more complicated. Since the B-spline functions of order m > 2 are not
orthogonal basis, the sequences {ak} , {bk} comes from the dual spline
and dual wavelets which are not compactly supported, but they are
both infinite sequences with exponential decay. Explicit expressions for
these sequences are
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where the z-transform of {gh} is the reciprocal of the z-transform of the
Euler-Frobenius-Laurent Polynomial E0(z), namely

Numerical values for these sequences are listed in Table 5.5 of the book
Wavelets: A Mathematical Tool for Signal Analysis(SIAM Publ., 1997)
for m = 2 (linear splines) and m = 4 (cubic splines).

1.7.3 Biorthogonal wavelet bases

It is known in the signal processing literature that finite impulse re-
sponse (FIR) filters with symmetric or antisymmetric coefficients have
linear phase or psuedo-linear phase characteristics. Linear phase prop-
erties are important for minimizing signal distortion during processing.
The processing sequences (or the FIR filters) {pk} and {qk} of finitely
supported orthogonal wavelets are generally not symmetric. In order
to take advantage of the symmetric property, one has to give up or-
thogonality. Filter designs in a two-channel filter banks are examples
of a biorthogonal basis. In this case, orthogonality between filters is
not required. The only requirement for filter bank design is that the
output of the filter bank be a delayed version of the input. That is, the
output signal must be a perfect copy (perfect reconstruction condition)
of the input signal. Biorthogonal wavelets of Cohen, Daubechies, and
Feauvears are examples of this class of bases. In addition, there may
not exist a scaling function or wavelet associated with filters designed
for filter bank processing. In other words, there may not be a nested
V spaces for arbitrary FIR filters as their two-scale sequences. For
this reason, the two-channel filter bank is an excellent alternative for
processing digital signals.

Decomposition and reconstruction sequences

The two-scale sequences of two biorthogonal wavelets of Daubechies
et al. are listed here as a reference. For more details of biorthogonal
wavelets, readers are referred to Section 5.6 (particularly, Example 5.41)
of the accompanying text An Introduction to Wavelets [3]; the text
Wavelets: A Mathematical Tool for Signal Analysis, Chapter 5, by
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Chui [2]; and the engineering texts, Wavelets and Subband Coding by
Vetterli and Kovacevic, Prentice Hall, 1995 [4], and Wavelets and Filter
Banks by Strang and Nguyen, Wellesley-Cambridge Press, 1996 [5].
Coefficients of the B-97 Daubechies biorthogonal wavelet are given in
the following table.

BiDaub9_7
k
-5
-4
-3
-2
-1
0
1
2
3
4
5

ak

0.026748757411
-0.016864118443
-0.078223266529
0.266864118443
0.602949018236
0.266864118443
-0.078223266529
-0.016864118443
0.026748757411

bk

-0.045635881557
0.028771763114
0.295635881557
-0.557543526229
0.295635881557
0.028771763114
-0.045635881557

Pk

-0.091271763114
-0.057543526228
0.591271763114
1.115087052458
0.591271763114
-0.057543526228
-0.091271763114

qk

-0.053497514822
-0.033728236886
0.156446533058
0.533728236886
-1.205898036472
0.533728236886
0.156446533058
-0.033728236886
-0.053497514822

1.8 Wavelet Packets

The hierarchical wavelet decomposition produces signal components
whose spectra reside in consecutive octave bands. In certain applica-
tions, the spectral resolution produced by this decomposition may not
be fine enough. One may want to use the CWT to obtain the nec-
essary finer resolutions by changing the scale parameter a by a small
increment. However, this increases the compuation load by orders of
magnitude. In order to avoid this problem, wavelet packets are general-
izations of wavelets in that each octave frequency band is itself further
subdivided into finer frequency bands by wavelet packet transforms.
In other words, the development of wavelet packets is a refinement of
wavelets in the freqency domain and is based on a mathematical the-
orem proven by I. Daubechies (the ) splitting trick). The theorem is
stated as follows:

If /(• — k) k^z forms an orthonormal basis and

then {F1(- — 2/c),F2(. — 2 k ) ; k E Z} is an orthonormal basis for E =
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span{f(- — n); n E Z}. The proof of this theorm is given in her book
Ten Lectures on Wavelets (SIAM PubL, 1992, p. 326) [6].

This theorem is obviously true when / is the scaling function 0,
since the two-scale relations for 0 and the wavelet u give

If we apply this theorem to the Wj spaces, we generate the wavelet
packet subspaces. The general recursive formulas for wavelet packet
generation are

where m,0 = 0 and mi = u are the scaling function and the wavelet,
respectively. For L = 1, we have the wavelet packets m2 and m3 gen-
erated by the wavelet m1 = u. This process is repeated so that many
wavelet packets can be generated from the two-scale relations. Because
of the many components available, any given signal can be represented
by a choice of wavelet packets at different levels of resolution. An op-
timized algorithm can be constructed to maximize a certain measure
(such as energy or entropy). Best-bases and best-level are two popular
algorithms for signal representations. The reader can find these algo-
rithms in [7]. The Toolware is designed so that the decomposition and
reconstruction algorithms can use either wavelets or wavelet packets.

1.8.1 Wavelet packet algorithms

The wavelet packet algorithm follows the wavelet algorithm with the
extension that the wavelet coefficients djk are also being processed in
the same way as the scaling function coefficients cJ,k• Hence, for every
decomposition process, the number of components is double that of the
previous resolution. Suppose an input signal s(n) has been mapped
into the approximation space Vj. That is, s (n) < — > cj,k. Using the de-
composition sequences an and bn, we obtain the scaling function series
coefficients Cj-1,k and the wavelet series coefficients dj-i,k. We can rep-
resent the scaling function component and the wavelet component at
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Figure 1.9: Wavelet packet decomposition tree

The coefficient sequences Cj-1,k and d j -1 ,k are decomposed through ar

and bn into four sequences

in which the last two sequences m_2,k, and Vj-2,k are wavelet packet
series coefficients. This process can be repeated for the four sequences
in (1.77) to produce eight coefficient sequences corresponding to eight
wavelet packet components of the original signal s(n). The decomposi-
tion tree structure is given in Fig 1.9. The algorithm for WP decom-
position and reconstruction of a one-dimensional signal is shown in Fig
1.10.

1.9 Two-Dimensional Wavelets

When the input signal is two-dimensional (2-D), it is necessary to rep-
resent the signal components by two-dimensional wavelets and two-
dimensional scaling functions. For any scaling function 0 with its cor-
responding wavelet u;, there are three different 2-D wavelets and one
2-D scaling function using the tensor-product approach. We can write
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decompose

reconstruct

Figure 1.10: Block diagram for the WP decomposition of a signal
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the 2-D wavelets as

and the 2-D scaling function as

In the spectral domain, each of the wavelets and the scaling function
occupies a different portion of the 2-D spectral plane. When we analyze
a 2-D signal, the decomposition algorithm generates four components
from the input signal. With respect to the spectral domain, the compo-
nents are labeled low-high (LH), high-low (HL), and high-high (HH),
corresponding to the wavelets (x,y) , M = 1,2,3. The component
that corresponds to the scaling function signal is called the low-low
(LL) component. The terms low and high refer to whether the pro-
cessing filter is lowpass or highpass. The decomposition of a 2-D signal
results in what is known as a hierarchacal pyramid. Because of the
downsampling operation, each image is decomposed into four subim-
ages. The size of each subimage is only a quarter of that of the original
image. Readers can refer to the last section of this manual to try to
decompose a 2-D image signal and see the resultant component display.

1.9.1 Two-dimensional wavelet packets

Two-dimensional wavelet packets are refinements of 2-D wavelets just
as in the 1-D case. Not only is the LL component (the scaling function
component) decomposed to obtain further details of the image, but the
other wavelet components (LH, HL, HH) can also be further decom-
posed. For example, starting with an original image with size 128x128,
a 2-D wavelet decomposition of this image will result in four subimages
of size 64x64. Continuing the decomposition, one gets 16 2-D wavelet
packet subimages of size 32x32. The computational algorithm for 2-
D wavelet packets is no different than that for the 2-D wavelets. It
requires an orderly bookkeeping for keeping track of the directions (x
or y), the filters used (highpass or lowpass), and the resolutions. The
reader can make use of this wavelet Toolware to practice the wavelet
packet decomposition and reconstruction of 2-D signals.



Part II

Wavelet Algorithms
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2.1 Wavelet Algorithms Overview

This part discusses the approach we take to numerically implement
the mathematical statements given in Part I. In addition, we also in-
clude several algorithms that have been used in many wavelet signal
processing applications such as thresholding, noise removal, and signal
compression. The algorithms are written in procedural form so that
the reader can easily follow them to build codes using his/her preferred
computer languages. The following algorithms are included in this sec-
tion:

1. Computation of STFT for 1-D signal

2. Computation of CWT for 1-D signal

3. Algorithm for generation of the graph of scaling functions

4. Algorithm for generation of the graph of wavelets

5. Mapping between B-splines and their duals

6. Decomposition of 1-D signals

7. Reconstruction of 1-D signals

8. Thresholding

9. Two-dimensional extension of the wavelet algorithms

10. Other algorithms

2.2 Algorithm for Computing the STFT

Let us rewrite the definition of STFT here for easy reference:

A straightforward approach to computing the STFT is to make use of
the Fast Fourier Transform (FFT) algorithm that can be found in many
numerical analysis books. The procedure for computing the STFT is
given here:

1. Choose a symmetric window function and sample it at the same
rate as the input data.

2. Count the total number of samples of the window function, say N.
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3. To take care of the edge (or boundary) effect of the algorithm, we
may reflect N/2 (if N is even) or N-1/2 (if N is odd) data points to
the outside the edges of the 1-D data set at both ends of the set.
That is, if the data set has M data points, the modified data set
will have a total of M + N points from - y to M + y .

4. Position the center of the window sample data (or the center of the
window) at n = 0 and multiply the window sample with the data
set. Take an TV-point FFT to obtain the spectrum of the function
at n = 0.

5. Shift the window data to the right by one point and repeat step 4
to obtain the spectrum of the function at n = 1.

6. Repeat step 5 until the center of the window has reached the end
point of the data set at n = M — 1. The resulting output data
should be a rectangular array of M x N points.

7. Display the data through either a 3-D plot or a gray-scale plot.

Example

We use an example similar to the one given in Dauchies' book for
illustration. Let the function to be processed be

f ( t ) = sin 10007t + sin 2000t + a[6(t - t1) + (t - t2)], (2.82)

where a is a constant chosen to be 3 and t1 and t2 are 0.192 and 0.196
msec, respectively. The function is sampled at 8000 points per second.
The frequencies are chosen so that when the time window width is small
enough to resolve the delta functions, the corresponding frequency win-
dow width is too wide to resolve the two frequencies accurately. We
use a rectangular window of different window widths, 8 and 64 points,
respectively. The STFTs of the functions for these windows are com-
puted using the Toolware, and the results are shown in Fig 2.1 and Fig
2.2. One can easily see from these graphs that if the window in the
time-domain is wide enough to resolve the low frequencies, the delta
functions are not resolvable. If the time-domain window is narrow
enough to resolve the delta functions, the frequency resolution is low.

We will show later that the CWT can resolve the delta functions and
the frequencies simultaneously in only one pass by varying the scale
parameter.
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Figure 2.1: STFT outputs for the window size equal 8

2.3 Algorithm for Computing the CWT

The definition of the CWT given in part A is written here:

where h(t) = is used in (2.83). Using the convolution integral
expression, (2.83) can be computed by using FFT as in the case of
STFT. The steps are outlined as follows:

1. Select a wavelet of your choice to be used for this computation.

2. For a given scale a, sample the wavelet at the same rate as the
input data.

3. Treat the data at the edge the same way as indicated in the STFT.

4. Compute the FFT of the input data and that of the wavelet at
scale a.

5. Multiply the two FFTs and take the IFFT to obtain the CWT of
the function at the scale a.
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Figure 2.2: STFT outputs for the window size equal 64

6. Repeat steps 2 through 5 for as many values of a as the user wishes.

7. Display data using a 3-D plot or gray-level display.

Example

The same function used to demonstrate the STFT is also used here
to demonstrate the characteristics of the CWT. We choose the Morlet
wavelet and compute the CWT via FFT. The result shown in Fig 2.3
clearly shows the advantage of a flexible window of the CWT. It requires
only one computation to resolve both the frequencies and the delta
functions in (2.82). One can compare this graph of the CWT to that
of the STFT.

2.4 Computation and Display of Scaling Functions

We give two algorithms for computing the scaling functions.

Spectral-domain method

Let us recall the two-scale relations for the scaling function
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Figure 2.3: CWT outputs

and consider the spectral domain expression of this relation, namely,

(2.84)

where P(*) is the z-transform of the sequence pk. Hence, the scaling
function <0>(t) can be obtained by finding the IFFT of the infinite prod-
uct given by (2.84). In general, the infinite product must be truncated
so that there is only a finite number of points in the IFFT program.

This approach is not easy to implement because the complexity of
the product of the discrete Fourier transform of the sequence {pk}- If
the number of elements in this sequence is small, the problem is still
manageable; otherwise, the data storage required is substantial. The
following alternative approach can be used.
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Iterative method

We modify the two-scale equation to fit an iterative technique by con-
sidering

The index n indicates the number of iterative loops. For initial-
ization, the user may use either first- or second-order B-splines. The
iteration should converge after 5 to 10 iterations if the regularity of
the function is high. However, for some sequences designed by the per-
fect reconstruction filter bank approach, the algorithm may not even
converge at all. In other words, there are filter banks that are not as-
sociated with scaling functions and wavelets. The final data may be
seen by using the usual 1-D graphic display. The code to generate the
scaling function in this Toolware is based on this algorithm. We outline
the procedure as follows:

1. Initialize the program by setting all data files to zero.

2. Set desired number of iteration, say 10, and set the iteration index
to 1.

3. Input the initial trial function ( 0 0 ( X ) . One may use an impulse
function, a rectangular pulse (i.e., first-order B-spline), a triangu-
lar pulse (i.e., second-order B-spline), etc.

4. Carry out (3.13) by convolving the function with the Pk sequence.

5. Upsample the resulting sequence by inserting zeros in between
every other data point. This sequence is 01(x).

6. Increase the iteration index by 1 and repeat steps 4 to 6 until 10
iteration cycles have been completed.

The reader may use the Toolware to familiarize himself/herself with
scaling functions included in the software.

2.5 Computation and Graphical Display of Wavelets

To generate a wavelet that satisfies the two-scale relation

we can use either the spectral or the time-domain approach. For the
spectral-domain approach, we simply multiply the infinite product in
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(2.84), except that the index k runs from 2 to , by one-half of the
z-transform of {qk} , namely,

For the time-domain approach, we take the linear combination of the
translate scaling function 0(2t — k) using the coefficients qk. We use
the time-domain approach in this Toolware to generate the graphs of
different wavelets. The reader should use the Toolware to view different
wavelets as given in Part C.

2.6 Mapping between B-Splines and Their Duals

When B-splines are chosen to represent a signal s ( t ) , we have shown
in Part I that it is necessary to map the sample values s to
an approximation of the signal Sj(t) = This procedure
maps the signal into the B-spline (or the approximation) space at the
jth resolution. Since the decomposition sequences {ak} and {bk} for
B-splines and B-spline wavelets are infinitely long, a truncation of the
sequence is necessary with a reasonable filter length to ensure adequate
accuracy. For processing of large images (e.g., mammograms at 4000 x
5000 x 12 bits per image) or 3-D images (e.g., multislice CAT scans),
the decomposition process is inefficient and the compuational load is
large. Since the B-splines Nm(2jt — k) and its duals span
the same subspace Vj, it is convenient and efficient to map the B-spline
coefficients cj,k to the dual-spline coefficients After that, we may
process the signal using sequences {pk} and {qk} , which are finite with
relatively short filter lengths.

Let

be a signal approximated by a B-spline series
and the dual B-spline series , respectively, ck,j
are the spline coefficients that have been determined through the initial
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mapping from the sampled values. To obtain the dual B-spline coef-
ficients, one simply makes use of the orthogonality condition between
the B-spline and its dual,

Let j = 0 by making the sampling interval unity. We compute the dual
coefficients ck,j by

Since B-splines have compact support, the autocorrelation sequence

is a finite sequence where

so that

can be computed very efficiently. If the final objective of the processing
requires the reconstruction of the signal, as in image compression, one
needs to eventually convert the processed coefficients back to B-spline
coefficients for image quality evaluation and display. However, if the
processing objective is for detection and recognition, the dual-spline
coefficients can be used for neural network training purposes.

2.7 Decomposition of a 1-D Signal

The decomposition algorithm for scaling function coefficients is de-
scribed by

We can rewrite the expression as
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which is interpreted as convolution before downsampling by 2. In terms
of digital signal processing symbolism, it is given in Fig 1.8.

The computation of the wavelet coefficients at one level of resolution
is carried out in a similar manner, namely,

Comine these two steps to form the decomposition block as shown later.
This decomposition block can be repeated and sequentially applied to
the scaling function coefficients Cj_p,k, to yield the wavelet coefficient
sequences dj-p-1,k,p = 0,1, 2,...., M.

Implementation of (2.94) is simple. Taking a scaling coefficient set
to convolve with the coefficient set {ak} and downsampling yields the
scaling function coefficients at one lower resolution level. Repeating
the same procedure with coefficient set {bk} yields the wavelet coeffi-
cients. These procedures are repeated to yield the coefficients at lower
resolution levels.

2.8 Reconstruction of 1-D Signals

The two-scale relations for the approximation space and the wavelet
space constitute the reconstruction algorithm. The scaling function co-
efficients at a higher resolution level are computed by using the formula

Each summation can be interpreted as a convolution process after up-
sampling. This process is depicted in Fig 1.8. It can be repeated for
coefficient sequences {CJ- P , k } and {d j - p , k ,p = M,M — 1,...,0. The
reader should use the Toolware to practice this algorithm for 1-D sig-
nals.

2.9 Thresholding

Thresholding is one of the most often used processing tools in wavelet
signal processing. It is used in noise reduction, in signal and image
compression, and sometimes in signal recognition. The four types of
thresholding we use are (l)hard thresholding, (2)soft thresholding,
(3)quantile thresholding, and (4)universal thresholding. The choice of
thresholding methods depends on the application. We discuss each type
here briefly.
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2.9.1 Hard thresholding

Hard thresholding sometimes is called gating. If a signal (or a coeffi-
cient) value is below a preset value, it is set to zero. That is,

where a is the threshold value or the gate value.

2.9.2 Soft thresholding

Soft thresholding is defined as

The function f ( x ) generally is a linear function (a straight line with
slope to be chosen). However, spline curves of third or fourth orders
may be used to effectively weight the value greater than a.

In some applications such as signal compression, using a quadratic
spline curve may increase the compression ratio by a certain amount.

2.9.3 Quantile thresholding

In certain applications, such as image compression, where a bit quota
has been assigned to the compressed file, it is more advantageous to set
a certain percentage of wavelet coefficients to zero to satisfy the quota
requirement. In this case, the setting of the threshold value a is based
on the histogram and total number of coefficients. The thresholding
rule is the same as hard thresholding.

2.9.4 Universal thresholding

In some noise removal applications in which the noise statistics is
known, it may be more effective to set the threshold value based on
the noise statistics. For example, Donoho and Johnstone [8] set the
threshold value to be

where v is the standard deviation of the noise and l is the cardinality
of the data set. This threshold value can be used in either hard or soft
thresholding as shown earlier.
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Implementation

Implementations of the hard, quantile and universal thresholding meth-
ods are quite simple. One simply subtracts the threshold value from
the magnitude of each coefficient. If the difference is negative, the co-
efficient is set to zero. If the difference is positive, no change is applied
to the coefficient. To implement the soft thresholding by using a linear
function of unit slope, the thresholding rule is

2.10 Two-Dimensional Extension of Wavelet Algo-
rithms

We have mentioned in previous sections that the 2-D wavelets are tensor
products of the 1-D scaling function and the wavelet. Corresponding
to the scaling function and the wavelet in one dimension are three
2-D wavelets and one 2-D scaling function at each level of resolution.
As a result, the 2-D extension of the wavelet algorithms is the 1-D
algorithm applied to both the x and y directions of the 2-D signal. Let
us consider a 2-D signal as a rectangular matrix of signal values. In
the case where the 2-D signal is an image, we call these signal values
Pixel values corresponding to the intensity of the optical reflection.
Consider the input signal cj(m, n) as an N x TV square matrix . We may
process the signal along the x direction first. That is, we decompose the
signal row-wise for every row using the 1-D decomposition algorithm.
Because of the downsampling operation, the two resultant matrices are
rectangular, and of size N x ~. These matrices are then transposed and
processed row-wise again to obtain four ~ x y square matrices, namely,
cj-1 (m, n), di'1 (m, n), d J

2 -
l (m, n), and d{-1 (m, n). The subscripts of the

d matrices correspond to the three different wavelets. This procedure
can be repeated an arbitrary number of times to the c£(m, n) matrix
(or the LL component), and the total number of coefficients after the
decomposition is always equal to the initial input coefficient TV2. The
reader may use the Toolware to practice the 2D decomposition and
reconstruction algorithms.

If the coefficients are not processed, the original data can be recov-
ered exactly through the reconstruction algorithm. The procedure is
simply the reverse of the decomposition, except that the sequences are
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{Pki Qk} instead of {ak, bk}. Care should be taken to remember upsam-
pling first before convolution with the processing sequences.

2.11 Other Algorithms

Toolware also includes following codes for wavelet processing:

• Noise removal using hard thresholding

• Image compression using thresholding

• 1-D wavelet packet decomposition and reconstruction

• 2-D wavelet packet decomposition and reconstruction

Implementation of noise removal is straightforward and is not elab-
orated here. The user can make use of the Toolware to see the effect of
speckle noise being removed from an image, using hard thresholding.

Setting the wavelet (or wavelet packet) coefficients at small ampli-
tudes to zero by thresholding compresses the image information because
it takes many fewer bits to represent clusters of zero coefficients. The
reconstructed image will lose fidelity because some high frequency com-
ponents of the image have been removed by thresholding.

The algorithmic logic of the 1-D and 2-D wavelet packet algorithms
has been discussed in Part I. The basic algorithm is no different from
the wavelet algorithms, except the user has to keep track of the de-
composition structure. A procedural discussion of these algorithms is
very lengthy and will not be presented here. We encourage the user to
practice this algorithm in the Toolware using the images provided, or
images from other sources.
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3.1 The Wavelet Toolware Overview

Wavelet Toolware is a 32-bit, stand-alone software program with all
necessary library routines bundled together in a package. It has five
tools: the one- and two-dimensional (1-D/2-D) discrete wavelet trans-
form (DWT) tools, the continuous wavelet transform (CWT) tool, the
short time Fourier transform (STFT) tool, and the wavelet generation
tool. 1-D/2-D DWT tools respectively support DWT decomposition,
DWT coefficient processing, and DWT reconstruction of one- and two-
dimensional signals. The CWT tool reads in a 1-D signal data file,
computes its CWT coefficients, and then displays the coefficients on
the screen. Similarly, the STFT tool reads in a 1-D signal and gener-
ates the STFT coefficients for display. The wavelet generation tool is a
simple utility to generate B-spline wavelets and Daubechies orthonor-
mal wavelets.

The 1-D and 2-D DWT tools have a similar operating structure.
They assist the user to decompose a signal, using scaled wavelets at
different levels, process DWT coefficients, and then reconstruct the
signal in a very flexible manner. A decomposed signal can be recon-
structed from any level to any other lower level, with only seleced levels
affected. In addition to some simple processing functions already in-
cluded in Toolware, the user can also add new functions to Toolware
through a defined dll program interface. Toolware creates new files only
at the explicit request of the user. Thus, accidental crash or termination
of Toolware execution should not affect existing files. Toolware runs
on the Microsoft Win95 or NT (3.1, 3.5, 3.51, 4) operating system.
For performance and stability reasons, we recommend systems with a
Pentium 133Mhz or equivalent processor, and 32MB of main memory.
The memory size should proportionally increase for processing of large
files to keep intermediate results.

3.1.1 Installation of Toolware

Toolware installation is very simple. The user just follows these steps,
and the installation program does the rest.

1. Insert the CD-ROM into the CD drive E, which is the most typical
CD drive label. If the label of the CD drive on your machine is
not E, use the proper CD drive label in subsequent steps.

2. Click on the run icon on the desktop.

3. Type in E:setup command, and the installation will start.
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4. Interact with the installation software to load Toolware program
files and data files into the directory that you want to host Tool-
ware.

3.1.2 Wavelets

Toolware supports several different wavelets, including Daubechies or-
thonormal wavelets (Daubl to DaublO); linear B-spline wavelet and
cubic B-spline wavelet; Battle-Lemarie spline wavelets; zeroth- and
first-order Meyer wavelets; and biorthogonal Daubechies wavelets (1,1)
to (1,3), (2,1) to (2,4), (3,1) to (3,5), (4,1), (4,2), and (5,1). As shown
in Fig 3.1, an image is decomposed using the tensor product of the
1-D transform of an image along its vertical and horizontal directions,
respectively. Boundary data for both 1-D and 2-D data are treated by
a simple wrap-around or data-reflection method to achieve perfect (or
nearly perfect) reconstruction.

Figure 3.1: The one-lelvel DWT decomposition structure of a 2-D image in Toolware

Toolware is not designed for solving high-precision computational
problems, but is meant for general learning and experimentation. Typ-
ical numerical errors in the decomposition and reconstruction of a
512 x 512 gray-scale image are listed in the following table. The signal-
error ratio is defined as the absolute ratio of the reconstruction errors
divided by a signal, expressed in decibels. Our test results show that
the difference in numerical errors on different machines is very small.

wavelet
Daubl
Daub2
Daub3

errors
0.00000e+100
8.16986e-20

1.63352e-18

signal-error ratio
dB
2.39009e+02 dB
2.26000e+02 dB
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wavelet
Daub4
Daub5
Daub6
Daub7
Daub8
Daub9
DaublO
BiDaubl_l
BiDaubl_2
BiDaubl_3
BiDaub2_l
BiDaub2_2
BiDaub2_3
BiDaub2_4
BiDaub3_l
BiDaub3_2
BiDaub3_3
BiDaub3_4
BiDaub3_5
BiDaub4_l
BiDaub4_2
BiDaub5_l
Linear BSpline
Cubic BSpline
Battle_Lemarie
Meyerzero
Meyerfirst

errors
7.98535e-20
1.15028e-19
1.17830e-19
1.17253e-19
4.24760e-19
7.74388e-20
8.43506e-19
0.00000e+100
0.00000e+100
0.00000+100
0.00000+100
0.00000e+100

8.46053e-13

5.28276e-01
8.46053e-13
4.90989e-20
1.14181e-21
4.92118e-20
7.94940e-08
3.08383e-01
1.10625e-17
6.31288e-02
4.62319e-02

signal-error ratio
2.39108e+02 dB
2.37523e+02 dB
2.37418e+02 dB
2.37440e+02 dB
2.31849e+02 dB
2.39241e+02 dB
2.28870e+02 dB

dB
dB
dB
dB
dB
dB

1.68857e+02 dB
dB
dB
dB

5.09022e+01 dB
1.68857e+02 dB
2.41220e+02 dB
2.57555e+02 dB
2.41210e+02 dB
1.19127e+02 dB
5.32399e+01 dB
2.17692e+02 dB
6.01285e+01 dB
6.14814e+01 dB

3.2 Using Toolware

Toolware is activated by double-clicking on the Toolware group icon,
Fig 3.2, which is placed at the designed directory during installation,
to bring out the main menu, Fig 3.3. After the main menu appears on
the screen, the user can activate any of the five tools simultaneously.
The five tools include one-dimensional discrete wavelet transform and
processing two-dimensional discrete wavelet transform and

processing continuous wavelet transform

short time Fourier transform (STFT) and the generation of
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Figure 3.2: The start-up icon for Tool ware programs

Figure 3.3: Tool ware main menu

wavelets These tools operate independently, and they use
different data formats.

3.3 2-D DWT Tool

After you open the 2-D DWT tool, you need to choose a data file before
proceeding with other processing functions. This is done by clicking on
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3.3.1 Data file selection 

Toolware accepts pgm image files, meaning that any files appended 
with “.pgm” can be read into Toolware for processing. After the user 
clicks on the File button, or its corresponding graphical icon, the file 
selection window (Fig 3.4) will pop out for the user to  open an image 
file for processing. From the file window, one can identify any image 
file (in PGM format) in any directory and then load the file by clicking 
on the butt on. 

Figure 3.4: File selection window for 2-D images 

A loaded image is automatically displayed on the screen for DWT 
and processing (see Fig 3.5 for a sculpture image, file name “art.pgm,” 
taken from the main campus of Texas A&M University). The left- 
most corner of this window lists the title of the tool and the cho- 
sen file name. 
maximize, minimize, and close the current window. The second row 

The two buttons at the upper right corner ( 1 

DWT tool where each of these headings is a pull-down menu. 
Although they could be activated from the pull-down menu, key 

operations of the 2-D tool are represented by thumbnail icons at the 
third row of its window. 

The first group of four icons enable opening, savi 
ing a displayed image. The second group of three icons 
the decomposition, reconstruction, and processing of the selected im- 
age. Up to  five levels of DWT coefficients can be stored in the internal 
buffer for display, but only levels 0 to  3 can be processed by processing 
functi e P button. By clicking on one of the following 
icons ), the user can display any particular decomposi- 
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Figure 3.5: A 2-D image in the 2-D tool
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tion level of wavelet coefficients.
All DWT coefficients at different levels are buffered in Toolware,

and they are dynamically packed together to form one display image as
needed. Level 0 represents the original data, or the image reconstructed
from its DWT coefficients. Obviously, the reconstructed image can be
different from the original one if certain DWT coefficients are manip-
ulated by processing functions in the tool. The user needs to take
precaution in preserving the original image while saving new results
into the hard disk.

3.3.2 Wavelet decomposition

After an image is loaded into the 2-D tool, it can be decomposed by
clicking on the button. Then, a list of wavelet decomposition se-
quences will pop up along with a choice of the decomposition structure.
Fig 3.6 shows an example, in which a five-level wavelet-packet struc-
ture is selected for decomposition of an image using the Daubechies
biorthogonal wavelet. The decomposition process is started and termi-
nated automatically by clicking on the OK button.

Figure 3.6: Selection of the decomposition parameters

After Toolware has performed the decomposition based on selected
parameters, the decomposed image will pop up on the window, so that
the user can view the absolute value of the wavelet coefficients, see Fig
3.7. The displayed image is generated by using the truncated absolute
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values of wavelet coefficients, but raw DWT coefficients are retained in
an internal buffer for actual processing. As needed, any other decom-
position level within the decomposition range can be seen by clicking
on one of the icons When the level i is clicked on, all
DWT coefficients from level 1 to level i are displayed in the same win-
dow. In a composed image of DWT coefficients, the upper left block is
the LL (low-low) band, the lower left block is the LH (low-high) band,
the upper right block is the HL (high-low) band, and the lower right
block is the HH (high-high) band. Although the image is decomposed
for four levels, the example in Fig 3.7 shows that we can still retrieve
level-2 wavelet packet coefficients for processing and display, since all
coefficients at every level are saved into an internal buffer. The screen
remains unchanged if an invalid level of an image is chosen. This can
happen, for example, if the user tries to view the second-level DWT
coefficients of an image not yet decomposed.

Figure 3.7: DWT coefficient display

3.3.3 Display thresholding

Wavelet coefficients are usually very sparse. For much better visual
effects, we display wavelet coefficients, except for the coefficients in the
lowest subband, in reverse brightness. That is, except for DWT co-
efficients in the lowest subband, i.e., LL, LLLL, LLLLLL, etc., larger
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DWT coefficients are represented by darker display pixels. For conve-
nience of operation, a set of buttons,
is available for quick preview of thresholding effects without changing
their internal values. The two leftmost buttons decrease/increase the
smallest (absolute) values to be displayed. The next two buttons de-
crease/increase the largest (absolute) values to be displayed. Next to
them, the ruler-like icon indicates the selected lower/upper bounds with
respect to the range of true values. Wavelet coefficients that fall into
the lower/upper bound setting are scaled to the display range of 0 to
255. The far right button resets all the threshold settings and returns
the image display back to its original form. We remark here that, un-
like the processing functions, the display thresholding does not have
permanent effects on the internal values of the displayed DWT coeffi-
cients. The user should use built-in or custom processing functions to
alter DWT coefficients for actual signal processing purposes. Fig 3.8
shows an example in which some DWT coefficients are thresholded in
the display buffer, so that they become less visible on the screen.

Figure 3.8: DWT coefficient display after thresholding

3.3.4 Wavelet reconstruction

We note that once a data set is decomposed, its selected decomposition
parameters are locked into the tool to prevent erroneous, meaningless
reconstruction. When clicking on the button, a window for se-
lection of reconstruction parameters will pop up. Toolware can perform
reconstruction between different levels, and their results will be stored
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in its internal buffers with the possibility of overwriting their exist-
ing contents. For example, if an image is decomposed into four levels,
its DWT coefficients at levels 1, 2, 3, and 4 are kept in the internal
buffers. If a level-3 to level-0 reconstruction request is selected, as in
Fig 3.9, DWT coefficients stored in level 3 buffers are retrieved and
then reconstructed back to level-2 subbands. The new level-2 values
will be saved into the level-2 buffers. Then, level-2 coefficients will be
reconstructed into level-1 coefficients, and new level-1 coefficients will
be reconstructed back to level-0. If any of level-3 coefficients have been
altered before the reconstruction request, it is likely that old level-2,
level-1, and level-0 coefficients will be overwritten in the reconstruction
process.

Figure 3.9: Selection of DWT reconstruction

As usual, the user can view the new DWT values after reconstruc-
tion. If the user exits Toolware at this point, the original file on the
hard disk is not affected, but if the file-save button is invoked, then the
latest level-0 image will replace the original image if the same file name
is chosen.

Coefficient processing

In most signal processing applications, DWT coefficients are altered,
deleted, or clustered to achieve certain effects. The 2-D tool allows
the user to add new functions for processing of DWT coefficients in
its buffers. Processing of DWT coefficients is triggered by the
button, and a list of processing functions will pop up.
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Figure 3.10: Selection of DWT processing functions

In the example shown in Fig 3.10, the user has chosen to apply a simple
thresholding routine to eight subbands of the decomposed art.pgm im-
age. When the OK button is clicked on, this routine will be applied to
each of the subbands, one after another, until all the selected subbands
are processed. Post-processed DWT coefficients will be displayed on
the screen automatically, see Fig 3.11.

Figure 3.11: Post-processed DWT coefficients

In addition to its own internal routines, the 2-D tool will accept
user-defined processing functions, provided that they conform to the
following "dll" interface structure. More detail on the integration of
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processing functions to the Toolware will also be discussed in the section
on the 1-D tool.

tfdefine PROC2D /*Tell the Toolware that this
is a 2-D processing routine*/

#define NAME "Simple Smoothing" /*The name of
this routine*/

#include "extfuncl.h" /*Some Toolware symbols*/
/* This routine accepts floating point numbers

placed in the 2-D array "input",*/
/* process the array, and then place the results

at the 2-D array "output". */
/* The dimension of the matrix is specified by

"x" and "y".*/
TOOLBOX_FUNCTION process(float huge **input,
float huge **output, int x, int y)

{
int i ,j;

output [i] [ ] =
(input [i-1] [j-1] +input[i] [j-1]

+input[i+l] [j-l]) +
(input [i-1] [j] +input[i][j]

+input[i+1] [j]) +
(input [i-1] [j+1] +input[i] [j+1]

+input [i+1] [j+1
}

One needs to use a compiler to compile a new routine into a Windows
"dll" (dynamic link library) file and place it into the Toolware directory.
Otherwise, the 1-D tool will not be able to find your custom routine
for execution. In using Borland C++ 5.0, one loads the .ide project (in
C++) into the compiler and makes necessary functional changes. Then,
simply build the dll libary to be saved into the Toolware directory. If
you use other compilers to generate codes, in order to be compatible,
the .dll used must have names exported explicitly (see dll.map). If
these files do not match, Toolware will assume that the .dll is not an
external tool designed for it and will ignore it.
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Figure 3.12: 1-D data file selection

3.4 1-D DWT Tool

After the 1-D DWT tool is activated, it does not display any signal
before any data file is opened. The 1-D DWT tool has the same set of
control buttons as the 2-D DWT tool, but their display and processing
mechanisms are quite different. The list of files that can be read into
the 1-D DWT tool by clicking on the button is displayed on
the screen, see Fig 3.12.

Data file format

The 1-D DWT tool accepts numerical (integer or floating-point) files in
the ASCII format. Appending "pts" to a file name, i.e., /z/e_nome.pts,
makes it visible to the 1-D DWT tool, and the file name will appear on
the file list of Toolware. The folowing are three examples that have an
acceptable data format for the Toolware.

Style 1:

0.000000
0.000111
0.000444
0.000998
0.001773
0.002765
0.003973
0.005395
0.007027
0.008866
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0.010906
0.013145
0.015577

Style 2:

0.000000 0.000111 0.000444 0.000998 0.001773
0.002765 0.003973 0.005395 0.007027 0.008866
0.010906 0.013145 0.015577

Style 3:

37 40 204 80 88 163 186 131 112 157 129 120 82 69
116 74 43 73 114 73 90 123 147 149 165 193 185 168
180 203 172 165 181 182 183 177 191 210 197 219 224
148 96 255 100 1 144 88 20 7 55 45 27 74 43 58 193
74 93 179 185 113 114 172 114 10 0 87 70 100 64 38
75 109 63 85 139 135 138 161 172 188 186 173 185 206
170 163 1 93 182 171 178 196 208 194 214 223 191 74
226 181 0 123 109 33 5 42 56 26 49

After a data file is loaded into the Toolware, it is graphically displayed
on the screen in a three-row format, see Fig 3.13, and the data is
ready for DWT decomposition, processing, and reconstruction. The
three rows have three different buffers, denoted as DB1,DB2, and DB3
which will be also used for processing and reconstruction of DWT co-
efficients. In this example, both DB1 and DB2 contain an unprocessed
signal, and DB3 is empty. Details on management of the three display
buffers will be explained later.

3.4.1 1-D DWT decomposition

The 1-D tool supports both pyramidal decomposition and wavelet-
packet decomposition. Similar to the decomposition procedure of the
2D DWT Tool, you need to first specify a decomposition level and a
wavelet type for decomposition of a one-dimensional signal. The 1-
D DWT decomposition is activated by clicking on A list of
wavelets will pop up on the screen together with decomposition struc-
tures, see Fig 3.14. At the user's choice, one needs to select the wavelet
type, the decomposition level, and the decomposition structure, i.e.,
pyramidal or wavelet packet, and then click on the OK button to start
decomposition. In this example, we have chosen a level-0 to level-4,



3.4. 1-D DWT TOOL 57

Figure 3.13: The three-row display of an acoustic signal

wavelet-packet decomposition of the signal by the cubic-spline wavelet.

3.4.2 Viewing and processing the data

The 1-D DWT tool can decompose a signal up to four levels. As in the
2-D tool, it also uses different buffers to store DWT coefficients. For
example, if a signal is decomposed for three levels, its DWT coefficients
in any of the three levels can be retrieved for processing, reconstruc-
tion, and display. When a particular subband at a level is chosen by
clicking on one of the following "level" buttons, the DWT coeffcients
will be loaded into the three display buffers DB1,DB2, and DB3 for

Figure 3.14: Selection of decomposition parameters
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visualization based on the following rules.

When the user clicks on OA, the original signal is displayed on
and the reconstructed signal, if any, is displayed on DB3. The (recon-
struction) difference between DB1 and DB3 is shown at DB2. If the
system does not have any reconstructed data yet, then DB3 (and thus
the third display row) is empty, and both DB1 and DB2 display the
original data because DB2 keeps the difference between DB1 and DB3.
For other decomposition levels, DB3 displays the parent subband of
the two chosen subbands displayed in DB1 and DB2. That is, at level
1A, which represents the two subbands decomposed from the original

signal at 0A, its low-pass and bandpass subbands are displayed in DB1 and DB2, respectively. The parent of 1A, which corresponds to the

original signal, is displayed on DB3. For following levels, letters A and
B respectively denote the low-pass and bandpass children of a set of
DWT-coefficients.

When level 2A is chosen, the low-pass and bandpass children of the
level 1A low-pass subband, which is displayed on DB3, are respectively
displayed on DB\ and DB2. Similarly, at level 2B, the low-pass and
bandpass children of the level 1A bandpass subband, which is displayed
on -D-B3, are respectively displayed in DB1 and DB2. Rules for use of

and DB2 at other levels are listed as follows.

Level
3A
3B
3C
3D
4A
4B
4C
4D
4E
4F
4G
4H

DBi and DB
children
children
children
children
children
children
children
children
children
children
children
children

from
from
from
from
from
from
from
from
from
from
from
from

2 display
the
the
the
the
the
the
the
the
the
the
the
the

low-pass
bandpass
low- pass
bandpass
low-pass
bandpass
low-pass
bandpass
low-pass
bandpass
low- pass
bandpass

band
band

band

of 2A
of 2A

of 2B
band of 2B

band
band

band
band

band
band

band
band

of 3A
of 3A

of3B
of 3B

of3C
of3C

of 3D
of 3D

Fig 3.15 shows DWT coefficients of an signal. In its normal display
mode, the maximum and minimum values of all DWT coefficients, in-
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eluding the original data, are used to set the display scales. This usually
leads to loss of visual details of small coefficients in some subbands, as
expected, for the sake of display consistency. To remedy this problem,
the 1-D tool is equipped with a sliding magnifier through which one can
better view details of small coefficient values. By simply pressing on
the left mouse button, a magnified version of data surrounding the cur-
sor will display on a small floating window, see Fig 3.16. The zoom-in
window disappears at the release of the button.

Figure 3.15: The three-row display of DWT coefficients at level-3

For a given display level, the user can process data stored in the
to DB5 by clicking on the "P" (processing) button, and then
the list of processing functions will pop up, see Fig 3.17. By clicking
on a processing function together with one or more buffer buttons (up-
permost signal (DB1), middle signal (DB2), bottom signal (DB3)), the
user can process data stored in selected buffers by the chosen function.
Both the internal and display buffers are refreshed after the processing
function is executed.

At any time, the user can reconstruct all or some DWT coefficients.
Similar to the 2D Tool, once a signal is decomposed, its decomposition
structure is registered into Toolware, and the user can only use the se-
lected decomposition wavelet and structure for reconstruction. In the
example shown in Fig 3.18, only the reconstruction levels can be chosen
by the user, and all other parameters will be set by Toolware. Once
the reconstruction command is executed, new level-3 DWT coefficients
are reconstructed from level-4 DWT coefficients and saved into level-3
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Figure 3.16: A magnified view of small DWT coefficients

Figure 3.17: The window for 1-D DWT processing functions
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Figure 3.18: Selection of the reconstruction structure

buffers. Level-2 buffers are updated in a similar fashion. This process
repeats until all levels between the chosen reconstruction levels are up-
dated. As usual, you can view the modified signal after reconstruction.

Custom processing routines

Like the 2-D tool, the 1-D tool also accepts custom routines for pro-
cessing wavelet coefficients. The following is an example routine for
smoothing of the chosen signal.

#define PROC1D /*Tell the Toolware this
is a 1-D routine*/

tfdefine NAME "Simple Smoothing" /*Name of the routine*/
#include "extfuncl.h" /*Toolware symbols*/
/* This routine accepts floating point numbers placed in
the array "input",*/
/* process the array, and then place the results at the
array "output". */
/* The total number of data samples is defined by "len".*/
TOOLBOX.FUNCTION process(float huge *input,
float huge *output, int len)
{

int i;
for(i=l;i<len-l;i++)

output[i]= (input[i-1] +input[i] +input[i+1])/3.0;
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3.5 Continuous Wavelet Transform Tool

The continous wavelet transform tool (CWT tool) generates the con-
tinuous wavelet coefficients of a one-dimensional signal. It has eight
different control buttons, see Fig 3.19.

Figure 3.19: CWT tool control buttons

Starting from left to right, the first button is for selection of a data
file for processing, the second and third are for saving the displayed
CWT coefficients into an ASCII data file, or a pgm (image) file, respec-
tively. The image of the CWT coefficient matrix can be printed to your
printer by clicking on the printer button. The relative display intensity
of CWT coefficients can be adjusted by the next four buttons. Clicking
on the fifth button, which has a straight line, means that the display
intensity directly reflects the magnitude of CWT coefficients. The next
two buttons are for (de)emphasis of small and large coefficients. The
eighth button allows you to display either only the magnitude, which is
the default mode, or signed amplitudes, with different colors assigned
to positive and negative values.

The CWT coefficients of the signal, which are organized into a two-
dimensional matrix, are graphically shown on the display window of
the CWT tool. The x-axis of the display is the time line, and the y-
axis is the scale of the signal. After you invoke the CWT tool from
the main menu, it will display an empty window. By clicking on the
file selection button, you can select a ".pts" or ".wav" file as the signal
input. Then, the CWT tool will produce the CWT coefficients through
a self-explanatory sequence. After the signal is processed, its CWT
coefficients will be displayed on the window.

In this example displayed in Fig 3.20, the data set (file: delta.pts)
represents two compounded sinusoidal signals, in addition to two im-
pulses. The frequencies of the two sinusoidal signals are 500 and 1000
Hz, respectively. The magnitudes of the two impulses are located at
t = 0.192 and 0.196, respectively, and their magnitude is 6. The sam-
pling rate for this signal is set at 8 kHz. You can see from the "image"
that the CWT coefficients of the two sinusoidal signals are clearly dis-
played horizontally, and those of the two impulses are displayed verti-
cally at their time instants.
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Figure 3.20: CWT coefficients

3.6 Short Time Fourier Transform Tool

Similar to the CWT tool, the STFT tool generates the short time
Fourier transform coefficients of a one-dimensional signal, for a given
window size. Except for the selection of the window size, which deter-
mines the size of a signal segment for FFT computations, the STFT
tool has an identical set of control buttons, except for selection of the
short time window, and they serve the same purposes as those in the
CWT tool. By clicking on the "file" button, you can choose a one-
dimensional data file, in either the pts format, or the standard wav
format, to be processed by the STFT tool. Similar to the CWT tool,
the STFT coefficients of the signal are organized into a two-dimensional
matrix and then graphically displayed, where the a:-axis of the display
is the time line, and the ?/-axis is the frequency axis of the signal.

It is interesting to compare the results obtained from the CWT to
those from the STFT. The following two figures represent the results
when the window sizes are set to be w = 8 (Fig 3.21), and w = 64
(Fig 3.22), respectively. As expected, for a given window size, the
STFT has either good time resolution or good frequency resolution,
but not both. Using the CWT, we can easily determine that the signal
delta.pts has two dominating frequencies, and two impulses, from the
CWT coefficients. On the other hand, one must use different window
sizes to test this signal in order to reach the same or a similar conclusion.
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Figure 3.21: STFT coefficients for window size=8

3.7 Wavelet Builder Tool

The wavelet builder tool constructs two different types of wavelets and
their scaling functions. In addition to their graphical display, the nu-
merical values of those functions can also be exported to data files.
The B-spline functions are generated using their closed-form expres-
sions. By choosing the B-spline family from the file selection button,
you will see the Harr wavelet at iteration 1. Each time you click on the
yellow, rightward arrow, the wavelet order increases by 1. That means
that you will see the linear, cubic, and other splines and wavelets by
clicking on the same button. Fig 3.23 displays the cubic spline and
its wavelet. The Daubechies orthonormal wavelets are generated in a
similar manner. Some precomputed coefficients are already saved in
the system for fast retrieval and export. The values of these wavelets
functions can be saved into text files for further processing. For exam-
ple, you could save the numerical values of wavelet functions into data
files, and then use the STFT tool to examine their spectra.
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Figure 3.22: STFT coefficients for window size=64

Figure 3.23: Cubic spline and its wavelet
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decomposition relation, 15, 16
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wavelets, 35
window area, 9
window function, 2, 3, 9, 30
window measures, 9



INDEX 73

window width, 9
window widths, 9, 10
Windowed Fourier Transform, 2
windowing effect, 3

z-transform, 21


	000.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	300.pdf
	301.pdf
	302.pdf
	303.pdf
	304.pdf
	305.pdf
	306.pdf
	307.pdf
	308.pdf
	309.pdf
	400.pdf
	401.pdf
	402.pdf
	403.pdf
	404.pdf
	405.pdf
	406.pdf
	407.pdf
	408.pdf
	409.pdf
	410.pdf
	411.pdf
	412.pdf
	413.pdf
	414.pdf
	415.pdf
	416.pdf
	417.pdf
	418.pdf
	419.pdf
	420.pdf
	421.pdf
	422.pdf
	423.pdf
	424.pdf
	425.pdf
	426.pdf
	427.pdf
	428.pdf
	429.pdf
	430.pdf
	431.pdf
	432.pdf
	433.pdf
	434.pdf
	435.pdf
	436.pdf
	437.pdf
	438.pdf
	439.pdf
	440.pdf
	441.pdf
	442.pdf
	443.pdf
	444.pdf
	445.pdf
	446.pdf
	447.pdf
	448.pdf
	449.pdf
	450.pdf
	451.pdf
	452.pdf
	453.pdf
	454.pdf
	455.pdf
	456.pdf
	457.pdf
	458.pdf
	459.pdf
	460.pdf
	461.pdf
	462.pdf
	463.pdf
	464.pdf
	465.pdf
	466.pdf
	467.pdf
	468.pdf
	469.pdf
	470.pdf
	471.pdf
	472.pdf
	473.pdf
	474.pdf
	475.pdf
	476.pdf
	477.pdf
	478.pdf
	479.pdf
	480.pdf
	481.pdf
	482.pdf
	483.pdf
	484.pdf
	485.pdf
	486.pdf
	487.pdf
	488.pdf
	489.pdf
	490.pdf
	491.pdf
	492.pdf
	493.pdf
	494.pdf
	495.pdf
	496.pdf
	497.pdf
	498.pdf
	499.pdf
	500.pdf
	501.pdf
	502.pdf
	503.pdf
	504.pdf
	505.pdf
	506.pdf
	507.pdf
	508.pdf
	509.pdf
	510.pdf
	511.pdf
	512.pdf
	513.pdf
	514.pdf
	515.pdf
	516.pdf
	517.pdf
	518.pdf
	519.pdf
	520.pdf
	521.pdf
	522.pdf
	523.pdf
	524.pdf
	525.pdf
	526.pdf
	527.pdf
	528.pdf
	529.pdf
	530.pdf
	531.pdf
	532.pdf
	533.pdf
	534.pdf
	535.pdf
	536.pdf
	537.pdf
	538.pdf
	539.pdf
	540.pdf
	541.pdf
	542.pdf
	543.pdf
	544.pdf
	545.pdf



