Digital Image Processing 4th GLOBAL Edition

Gonzalez and Woods Pearson/Prentice Hall © 2018

June 17, 2023

CORRECTIONS

Some of the corrections listed may already be incorporated in your printing of the book

Page	Reads	Should Read
71, six lines from bottom	W/2	1/2 <i>W</i>
154-155	In Eq. (3-32) we made the implicit assumption that 1-D kernels are of dimension 1-by- n . Change a to b in the limits for consistency with Eq. (3-31). Then, in the 2^{nd} line of pg 155, make the change a =0 and b =2, again for consistency.	
162, 2nd line below Eq. (3-44)	a respectable 5.2.	a respectable 5.5.
212, 1st eq. in Ex 4.2	$dt = e^{-j2\pi\mu}$	$dt = e^{-j2\pi\mu 0} = e^0 = 1$
230, Eq. (4-52)	$\mathcal{S}(t,z) = \begin{cases} 1 & \text{if } t = z = 0\\ 0 & \text{otherwise} \end{cases}$	$\mathcal{S}(t,z) = \begin{cases} \infty & \text{if } t = z = 0\\ 0 & \text{otherwise} \end{cases}$
254, equation, middle of page.	$(f \star h)(x) = \sum_{m=0}^{300} f(x)h(x - m)$	$(f \star h)(x) = \sum_{m=0}^{300} f(m)h(x-m)$
255, labels in Figs. 4.27(e),(j).	$(f \star g)(x)$	$(f \star h)(x)$
295, Eq. (4-147)	The equation should read: $H(u,v) = (\gamma_H - \gamma_L)[1 - e^{-cD^2(u,v)/D_0^2}] + \gamma_L$	
297, below Eq. (4-148)	In the text below Eq. (4-148), lines 3, 6, and 12: replace "bandpass" with "bandreject"	
300, Eq. (4-154)	Both instances of n in the denominator should be $2n$.	
306, first line	$W_M^{u+K} = W_K^u$	$W_K^{u+K} = W_K^u$
307, Eq. (4-172)	$\alpha(n) = M \log_2 M$	$\alpha(p) = M \log_2 M$
360, Eq. (5-84)	Upper limit in last summation reads $M-1$	Replace with $N-1$
463, Fig. 6.29 Caption	(d), (e)-(f) should read: (d) The required CMY mapping function. (e)-(f) The required CMYK mapping functions.	
468, top side comment box	Change $s_{3,0}$ to $s_{0,3}$.	
468, Eq. (7-22)	The elements of the second column vector should be: $s_{0,u}, s_{1,u},, s_{N-1,u}$	
477, 3 rd line from top	x = 0, 1,, 7	x = 0, 1/8,, 7/8
478, Step 3 of Example 6.19	The components of the column vector h should be 1, $e^{-j\pi/8}$, $e^{-j\pi/4}$, and $e^{-j3\pi/8}$	
501, last parag, penultimate line	Fig. 7.16(b)	Fig. 7.17(b)
518, Eq. (7-150)	$g_1(n) = (-1)^n h_0(n)$	$g_1(n) = (-1)^{n+1} h_0(n)$
520, Eq. (7-152)	Unreadable	$\varphi(x,y) = \varphi(x)\varphi(y)$
542, Example 8.1	In the first eq. of the example, after the second term, insert the term " $+ 0.25(3)$ "	
543, Table 8.1	Change the 2rd, 3rd, and 4th entries in the Code 1 col to: 10000000, 11000100, and 11111111	
770, 7 lines from bottom	set, Q , of observations	set of Q vector observations
770, 2 lines from bottom	} be set of vector observations	} be a set of vector observations
771, 3 lines above Eq. (10-85)	\dots partition the set Q of observations \dots	\dots partition the set of Q observations \dots
773, Fig. 10.50, caption line 1	600×480	600×800
781, last line	Eq. (10-4)	Eq. (10-97)
804, Problem 10.6	(c)	There should be no part (c).

842, Eq. (11-23)	So that the eq will match Fig. 11.21, change it to: eccentricity = $\sqrt{\lambda_1^2 - \lambda_2^2} / \lambda_1 = \sqrt{1 - (\lambda_2/\lambda_1)^2}$ $\lambda_1 \ge \lambda_2$	
842, 1st line below Eq. (11-23)	For a line $\lambda_1 = 0$	For a line $\lambda_2 = 0$
638, Fig. 9.3c	Elements (3,5), (3,11), (5,5), and (5,11) should be 0 (white in the figure)	
831, 7th line of Example	Figure 11.14(c) shows	Figure 11.14(d) shows
876 2 nd parag. replace line 5	the pixels above the threshold as white and pixels at or below the threshold as	
876 lines 6 and 7	(all pixel values are at or above 0).	, with 0-valued pixels showing as black.
879 3 rd parag line 7	that do change	that do not change
975, 3 rd line from top	$\dots \delta_{x,y}(\ell+1)$	$\delta_{u,v}(\ell+1)$
980, last line of last parag	99.9%	99.4%
		225 175 90 90 125 5 90 225 5 5 5 225 125 100 225 225
878, Fig. 11.51	$T + \Delta T = 60$ Region R_2 Area = 3 $\psi = 10/3$ $Region R_2$ Area = 2 $\psi = 1$	Region R_1 Area = 12 Region R_3 Area = 4 ψ = 2 Region R_4 Area = 4 ψ = 0
927, Example 12.5	Region R, $Area = 1$ The multiplier in front of m1 and	Region R_s Area = 4
938, 4th line	positive (i.e., 6)	positive (i.e., 12)
947, footnote, eq. in 3rd line	$\exp[z_i(L)]$	$\exp[z_k(L)]$
959, 3rd line from bottom	0.02	0.5
962, 2nd parag., 1st line	1887	1897
972, Eq. (12-88)	The superscripts in the last summations on the second line should be (3) (3) instead of (2) (2)	
987, 3rd parag. 2nd line	universality	universal

Possible Missing References

Roberts, L. G. [1965]. "Machine Perception of Three-Dimensional Solids," in *Optical and Electro-Optical Information Processing*, Tippet, J. T. (ed.), MIT Press, Cambridge, MA.

Robertson, A. R. [1977]. "The CIE 1976 Color Difference Formulae," Color Res. Appl., vol. 2, pp. 7–11.

Gonzalez/Woods *Digital Image Processing*Errata Sheet for Global Edition
Page 3 of 3
17 June, 2023

Rosenblatt, F. [1959]. "Two Theorems of Statistical Separability in the Perceptron," In *Mechanisation of Thought Processes: Proc. of Symposium No. 10*, held at the National Physical Laboratory, November 1958, H. M. Stationery Office, London, vol. 1, pp. 421–456.

Rosenblatt, F. [1962]. *Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms*, Spartan, Washington, D. C.

Rosenfeld, A. and Kak, A. C. [1982]. *Digital Picture Processing*, vols. 1 and 2, 2nd ed., Academic Press, NY.

Ross, J. C. [2011]. The Image Processing Handbook, 6th ed., CRC Press, Boca Raton, FL.

Ross, S. M. [2014]. A First Course in Probability, 9th ed., Pearson Prentice-Hall, Upper Saddle River, NJ.

Russo F. and Ramponi, G. [1994]. "Edge Extraction by FIRE Operators," *Fuzz-IEEE '94*, vol. 1, pp. 249–243, IEEE Press, New York.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. [1986]. "Learning Internal Representations by Error Propagation," In *Parallel Distributed Processing: Explorations in the Microstructures of Cognition, Vol. 1: Foundations*, Rumelhart, D. E., et al. (eds.), MIT Press, Cambridge, MA, pp. 318–362.