# Corrections and Clarifications Digital Image Processing 

3rd Edition

Gonzalez and Woods

Prentice Hall
© 2008
October 5,2020

## CORRECTIONS

Page
81, 4th paragraph
88, Table 2.2, 3rd row, 3rd col
120,7 th line from top
133, 2nd line from bottom

149, footnote

159, Fig. 3.36(c)
181, footnote
185, Eq. (3.8-20)
186, 3 lines above Eq. (3.8-21)
186, below Eq. (3.8-21)
189, 7th line from top
203, 2nd line
207, 2nd equation from top
220, Eq. (4.3-12)
235, line 8
243, 2nd parag of example
244, parag below top equations
246 , bottom line
247, 5th line from top
247,10 th line from top
250 , eq in middle of page
252, 6th line from bottom
255 , entry number 8
255, table footnote
273 , line 6
277, Fig. 4.47 (c)
285, Table 4.5, 1 st column

291, below Eq. (4.9-24)
299, 4th line below Eq. (4.11-3)
that all member of the sets
$y=v \cos \theta+w \sin \theta$

$$
p\left(r_{k}\right)=r_{k} / M N
$$

$s_{4}=7$

## Should Read

that all members of the sets

$$
y=v \sin \theta+w \cos \theta
$$

$$
p\left(r_{k}\right)=n_{k} / M N
$$

$$
s_{4}=6
$$

The footnote should read: Because convolution is commutative, we have that $w(x, y) \star f(x, y)=f(x, y) \star w(x, y)$. This is not true of correlation, as you can see, for example, by reversing the order of the functions in Fig. 3.29(a).
The 8th black dot (counting from the left) should be located on the horizontal axis instead of at -1 .
Change all instances of med to mat.

$$
\ldots, M\}
$$

$$
\mu_{\mathrm{NOT}(A)}=
$$

We see that if all the THEN rules fire at full strength (all their responses are 1) ....

$$
\begin{gathered}
\ldots \text { levels }(\text { talk } \ldots \text { ) } \\
\sqrt{3} \ldots \text { where } \ldots 64.4 \ldots \\
\ldots A T \ldots \\
\ldots \operatorname{sinc}[(t-n \Delta T) / n \Delta T] \\
\ldots \text { subject's left eye } \ldots
\end{gathered}
$$

its DFT is even and the odd part is odd . .

$$
\begin{aligned}
& \text {. . . Eq. (4.6-14) } \\
& \ldots \text {. Fig. } 4.22(b)
\end{aligned}
$$

... Figure 4.22(c) shows the result.
$(1+\log |F(u, v)|)$
$f(x) \star h(x)=\sum_{m=0}^{399} f(x) h(x-m)$
. . . As rule . . .

$$
\begin{gathered}
\ldots, N\} \\
\mu_{\mathrm{NOT}(A)}(z)=
\end{gathered}
$$

We see that if any of the THEN rules fires at full strength (its response is 1 ) . . .

$$
\begin{gathered}
\ldots \text { levels (tall . . ) } \\
\sqrt{5} \ldots \text { where } \ldots 63.4 \\
\ldots A W \ldots \\
\ldots \operatorname{sinc}[(t-n \Delta T) / \Delta T] \\
\ldots \text { subject's right eye } \ldots
\end{gathered}
$$

its DFT is even and the imaginary part is odd . . .
. . . Eq. (4.6-13)
. . . Fig. 4.24(b)
. . . Figure 4.24(c) shows the result.

$$
\begin{gathered}
\log (1+|F(u, v)|) \\
f(x) \star h(x)=\sum_{m=0}^{399} f(m) h(x-m) \\
\ldots \text { As a rule } \ldots
\end{gathered}
$$

A correction was listed previously. However, the entry in the book actually is correct.
The footnote should read: Assumes that the functions have been extended by zero padding. Convolution is associative, commutative, and distributive. Correlation is distributive.
... ILPF of radius 10 . .
... ILPF of radius 5 . .
0.667
$\left\{\begin{array}{l}1 \\ 0\end{array}\right.$
we can express Eq. (4.9-23) . . .
... multiplying this result
0.607
$\left\{\begin{array}{l}0 \\ 1\end{array}\right.$
we can express Eq. (4.9-22) . . .
... dividing this result

## Gonzalez/Woods

## Digital Image Processing

Errata Sheet
Page 2 of 5
05 October, 2020

299, 2 lines above section head
306, Problem 4.18
306, Problem 4.19
316, Eq. (5.2-14)
329 , bottom of Fig. 5.12 caption
330, 5th line
361 , figure caption
362 , 5th line from top
374 , Eq. (5.11-9), 1 st line
374, Eq. (5.11-11)
376, Eq. (5.11-16)
380, Eq. (5.11-18)
382 , Eq. at bottom of page
385, 5th line from bottom
390, Prob 5.11(a)
393, Problem 5.31(b)
468, 3rd line from top
563, line above Ex 8.12
602, Eq. (8.2-57)
620, Eq. (8.3-4)
630, Fig. 9.3
6.47 , Eq. (9.5-4)

651, Fig. 9.22
. . . its complex conjugate and multiply it . . . . . its complex conjugate and divide it . . . Change the 1 on the right side of the equation to $M N$ ( see correction in Table 4.3, pg. 255 above. Also, it is understood that $u$ and $v$ are integers.
Add the following at the bottom of the problem statement, after the equation: where $u$ and $v$ are integer multiples of $M$ and $N$, respectively.

The entry in the 3 rd line of the right side of the equation should be $\left(1-P_{a}-P_{b}\right)$ instead of 0 .

$$
\begin{array}{c|c}
\ldots d=5 . & \ldots d=6 . \\
\ldots \text { mean }(\text { with } d=5) \ldots & \ldots \text { mean }(\text { with } d=6) \ldots
\end{array}
$$

Fig. 5.16(b)
With $\square=1$, as $\square$ decreases below $1 / 2 \ldots$
Similarly, when $\square$ increases above $1 / 2 \ldots$

## Insert a $\theta$ after $y \sin$ in the first line of the equation

$$
\begin{array}{l|l}
G(\rho, \theta)=\cdots & G(\omega, \theta)=\cdots
\end{array}
$$

On the rightmost side of the equation, replace $y \sin \rho$ by $y \sin \theta$
On the rightmost side of the equation, replace $y \sin \rho$ by $y \sin \theta$
$\ldots r \cos (\theta-\alpha) \ldots \quad \ldots r \cos (\theta-\varphi) \ldots$
$D \sin \gamma$
... elimination...
$D \sin n \gamma$
... eliminating . .
$g\left(\rho-x_{0} \cos _{\theta}-y_{0} \sin _{\theta}, \theta\right)$
. . . order K.
$g\left(\rho-x_{0} \cos \theta-y_{0} \sin \theta, \theta\right)$
. . . order $K-1$.
01000000 and 11000000 , respectively.
Insert " = 0 " on the right of Eq. (8.2-57)

$$
\hat{\omega}_{i}=\hat{c}_{i}-c_{i}
$$

$$
\hat{\omega}_{i}=\frac{\hat{c}_{i}-c_{i}}{\alpha c_{i}}
$$

The center section of Fig. 9.3(a) should be 5 elements wide instead of 6 .
Replace $A$ by $X_{k-1}^{i}$
Replace Fig. 9.22(c)-(e) with the following:


The bottom, leftmost pixel in the Marker Image, $F$, should be white.
The caption in Fig. 9.32(a) should read: Reconstruction-by-dilation of marker image.
In Skeletons, remove the union sign in the second line. $S_{k}(A)$ should be as given by Eq. (9.5-12).

$$
\ldots=b(-x-y)
$$

$\ldots=b(-x,-y)$

$$
\text { disk of radius } 2 \ldots
$$

. . . as explained in Section 9.5-7.
disk of radius $1 \ldots$
$\ldots$ as explained in our discussion of Eq. (9.5-27).
The values shown on the theta axis should be from -80 to +80 to correspond to Fig. 10.32(b).
If $T$ is set to the maximum value of...
If $T$ is set to any value less than the minimum value of...
$\ldots$ will consists of all 0 s . ... will consist of all 1 s .
(e) should read: (e) Absolute value of the difference between the seed value (255) and (a).

Should read: . . . the difference between the seed value (255) and Fig. 10.51(a).
The 1 -valed pixels in column 6 , rows $3: 6$, should be shifted to column 5 , rows $3: 6$.
That line should read: convert from an 8 -code to a 4 -code (see Problem 2.12).
The divisor in front of the summation and in the exponent should be $K$. The summation is still 0 to $P-1$. You can see why this is so by expanding Eq. (11.2-4) into two summations: one form 0 to $P-1$ and the other from $P$ to $K-1$. All the coefficients in the 2 nd summation are 0 , but the divisor in front of the summation and in the exponent is still $K$ in both expressions.
The double summations for Homogeneity and Entropy should be $i$ and $j$, instead of $i$ and $i$.

Gonzalez/Woods
Digital Image Processing
Errata Sheet
Page 3 of 5
05 October, 2020

868, last paragraph
870, below Eq. (12.2-7b)

870, Eq. (12-2-8)

The scan of the head is from right to left. Lines 6-7, change "left to right" to "right to left." Line 8, change "left leg" to "right leg." Line 12, change "right leg" to "left leg."
. . spatial convolution . . . . . spatial correlation . . .
Replace Eq. (12.2-8) with the following: $\gamma(x, y)=\frac{\sum_{s} \sum_{t}[w(s, t)-\bar{w}]\left[f(x+s, y+t)-\bar{f}_{x y}\right]}{\left\{\sum_{s} \sum_{t}[w(s, t)-\bar{w}]^{2} \sum_{s} \sum_{t}\left[f(x+s, y+t)-\bar{f}_{x y}\right]^{2}\right\}^{\frac{1}{2}}}$

870, 2nd and 3rd lines below Eq. $\ldots$ and $\bar{f}(x+s, y+t)$ is the average value of $f$ in $\ldots$ and $\bar{f}_{x y}$ is the average value of $f$ in the region (12.2-8)

889, Eq. (12.2-47)
892, Eq. (12.2-50)
921, 12th reference from top
the region coincident with $w$. coincident with $w$.
In the denominator, replace the + sign in the exponential term by a - sign.
In the denominator, replace the + sign in the exponential term by a - sign.
Eng, H.-L. and Ma, K.-K. [2006] . . .
Ng, P.-E. and Ma, K.-K. [2006] . . .

## CLARIFICATIONS



Gonzalez/Woods
Digital Image Processing

## Errata Sheet

Page 5 of 5
05 October, 2020


